期刊文献+
共找到5,907篇文章
< 1 2 250 >
每页显示 20 50 100
Superlubricity behaviors of Nitinol 60 alloy under oil lubrication 被引量:6
1
作者 曾群锋 董光能 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第2期354-359,共6页
The tribological tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disc in the tribometer system. Four kinds of oils were experimentally investigated as lubrication oils for lubricating Nitinol ... The tribological tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disc in the tribometer system. Four kinds of oils were experimentally investigated as lubrication oils for lubricating Nitinol 60 alloy in the boundary lubrication regime. The experimental results were compared with a reference dry friction. It was found that Nitinol 60 alloy can be lubricated significantly and has shown remarkable lubrication performance. A superlubricity behavior of Nitinol 60 alloy was observed under castor oil lubrication. An ultra-low coefficient of friction of Nitinol 60 alloy about 0.008 between Nitinol 60 alloy and GCr15 steel was obtained under castor oil lubrication condition after a running-in period. Accordingly, the present study is focused on the lubrication behaviors of castor oil as potential lubrication oil for Nitinol 60 alloy. In the presence of castor oil, coefficient of friction is kept at 0.008 at steady state, corresponding to so-called superlubricity regime (when sliding is then approaching pure rolling). The mechanism of superlubricity is attributed to the triboformed OH-terminated surfaces from friction-induced dissociation of castor oil and the boundary lubrication films formed on the contact surface due to high polarity and long chain of castor oil allowing strong interactions with the lubricated surfaces. 展开更多
关键词 Nitinol 60 alloy oil lubrication SUPERlubricITY lubrication films
下载PDF
Silicone oil as a corneal lubricant to reduce corneal edema and improve visualization during 被引量:1
2
作者 Dan-Yang Che Zhu-Lin Chan +1 位作者 Ji-Bo Zhou Dong-Qing Zhu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第1期92-96,共5页
AIM:To evaluate the efficacy and safety of silicone oil(SO)as a corneal lubricant to improve visualization during vitrectomy.METHODS:Patients who underwent vitreoretinal surgery were divided into two groups.Group 1 wa... AIM:To evaluate the efficacy and safety of silicone oil(SO)as a corneal lubricant to improve visualization during vitrectomy.METHODS:Patients who underwent vitreoretinal surgery were divided into two groups.Group 1 was operated on with initial SO(Oxane 5700)as a corneal lubricant.Group 2 was operated on with initial lactated ringer’s solution(LRS)and then replaced with SO as required.Fundus clarity was scored during the surgery.Fluorescein staining was performed to determine the damage to corneal epithelium.RESULTS:Totally 114 eyes of 114 patients were included.Single SO use maintained a clear cornea and provided excellent visualization of surgical image.In group 1,the fundus clarity was grade 3 in 41/45 eyes and grade 2 in 4/45 eyes.In group 2,corneal edema frequently occurred after initial LRS use.The fundus clarity was grade 3 in 19/69 eyes,2 in 37/69 eyes and 1 in 13/69 eyes(P<0.05).SO was applied in 29 eyes of initial LRS use with subsequent corneal edema,which eliminated the corneal edema in 26 eyes.Corneal fluorescein staining score in group 1 was 0 in 28 eyes,1 in 11 eyes and 2 in 6 eyes,and 40,20 and 9,respectively,in group 2(all P>0.05).CONCLUSION:The use of SO as a corneal lubricant is effective and safe for preserving and improving corneal clarity and providing clear surgical field during vitrectomy. 展开更多
关键词 silicone oil corneal lubricant corneal edema VITRECTOMY
下载PDF
Molecular Mechanism and Molecular Design of Lubricating Oil Antioxidants 被引量:1
3
作者 Su Shuo Long Jun +2 位作者 Duan Qinghua Zhou Han Zhao Yi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期135-145,共11页
To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular me... To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular mechanism of the antioxidant reaction of hindered phenol,diphenylamine,and alkyl sulfide are studied via molecular simulations.Calculation results show that the strong electron-donating ability and high hydrogen-donating activity of the antioxidant molecule and the low hydrogen-abstracting activity of free radicals formed after dehydrogenation are the internal molecular causes of the shielding of phenol and diphenylamine from scavenging peroxy free radicals,and the strong electron-donating ability is the internal molecular cause of the high activity of thioether in decomposing alkyl hydrogen peroxide.Based on this antioxidant molecular mechanism,a molecular design rule of antioxidant is proposed,namely“high EHOMO,large Q(S),low bond dissociation energy BDE(O—H)and BDE(N—H)”.Two new antioxidants,PAS-I and PAS-II,are designed and prepared by chemical bonding of hindered phenol,diphenylamine,and sulfur atoms.Experimental results show that these antioxidants both have excellent antioxidant effects in lubricating oil,and that PAS-II is the superior antioxidant,consistent with theoretical predictions. 展开更多
关键词 lubricating oil ANTIOXIDANT molecular mechanism molecular design antioxidant performance
下载PDF
Preparation of nano-copper as lubrication oil additive 被引量:5
4
作者 王晓丽 徐滨士 +3 位作者 许一 于鹤龙 史佩京 刘谦 《Journal of Central South University》 SCIE EI CAS 2005年第S2期203-206,共4页
Nano-copper used as lubrication oil additive has good tribological property and active self-repairing effect for friction pairs. The reduction in liquid phase for preparing nano-additive is one of the most common meth... Nano-copper used as lubrication oil additive has good tribological property and active self-repairing effect for friction pairs. The reduction in liquid phase for preparing nano-additive is one of the most common method. Nano-copper was prepared by reduction in liquid phase. The different project and routine practice for preparing nano-copper were researched. The dispersion problem of nano-copper was investigated by surface treatment and high dispersion. The particles dimension, the dispersion stability and the purity of nano-copper were characterized by TEM and XRD. The conclusion indicates that the methods of the preparation and dispersion can obtain 20nm copper additive with good dispersion property in lubrication oil. 展开更多
关键词 NANO-COPPER lubrication oil ADDITIVE reduction in LIQUID phase DISPERSION
下载PDF
Identification of Lubricating Oil Additives Using XGBoost and Ant Colony Optimization Algorithms
5
作者 Xia Yanqiu Cui Jinwei +2 位作者 Xie Peiyuan Zou Shaode Feng Xin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期158-167,共10页
To address the problem of identifying multiple types of additives in lubricating oil,a method based on midinfrared spectral band selection using the eXtreme Gradient Boosting(XGBoost)algorithm combined with the ant co... To address the problem of identifying multiple types of additives in lubricating oil,a method based on midinfrared spectral band selection using the eXtreme Gradient Boosting(XGBoost)algorithm combined with the ant colony optimization(ACO)algorithm is proposed.The XGBoost algorithm was used to train and test three additives,T534(alkyl diphenylamine),T308(isooctyl acid thiophospholipid octadecylamine),and T306(trimethylphenol phosphate),separately,in order to screen for the optimal combination of spectral bands for each additive.The ACO algorithm was used to optimize the parameters of the XGBoost algorithm to improve the identification accuracy.During this process,the support vector machine(SVM)and hybrid bat algorithms(HBA)were included as a comparison,generating four models:ACO-XGBoost,ACO-SVM,HBA-XGboost,and HBA-SVM.The results showed that all four models could identify the three additives efficiently,with the ACO-XGBoost model achieving 100%recognition of all three additives.In addition,the generalizability of the ACO-XGBoost model was further demonstrated by predicting a lubricating oil containing the three additives prepared in our laboratory and a collected sample of commercial oil currently in use。 展开更多
关键词 lubricant oil additives fourier transform infrared spectroscopy type identification ACO-XGBoost combinatorial algorithm
下载PDF
Assessment of Lubrication Property and Machining Performance of Nanofluid Composite Electrostatic Spraying(NCES)Using Different Types of Vegetable Oils as Base Fluids of External Fluid 被引量:1
6
作者 Yu Su Zepeng Chu +2 位作者 Le Gong Bin Wang Zhiqiang Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期97-110,共14页
The current study of minimum quantity lubrication(MQL)concentrates on its performance improvement.By contrast with nanofluid MQL and electrostatic atomization(EA),the proposed nanofluid composite electrostatic sprayin... The current study of minimum quantity lubrication(MQL)concentrates on its performance improvement.By contrast with nanofluid MQL and electrostatic atomization(EA),the proposed nanofluid composite electrostatic spraying(NCES)can enhance the performance of MQL more comprehensively.However,it is largely influenced by the base fluid of external fluid.In this paper,the lubrication property and machining performance of NCES with different types of vegetable oils(castor,palm,soybean,rapeseed,and LB2000 oil)as the base fluids of external fluid were compared and evaluated by friction and milling tests under different flow ratios of external and internal fluids.The spraying current and electrowetting angle were tested to analyze the influence of vegetable oil type as the base fluid of external fluid on NCES performances.The friction test results show that relative to NCES with other vegetable oils as the base fluids of external fluid,NCES with LB2000 as the base fluid of external fluid reduced the friction coefficient and wear loss by 9.4%-27.7%and 7.6%-26.5%,respectively.The milling test results display that the milling force and milling temperature for NCES with LB2000 as the base fluid of external fluid were 1.4%-13.2%and 3.6%-11.2%lower than those for NCES with other vegetable oils as the base fluids of external fluid,respectively.When LB2000/multi-walled carbon nanotube(MWCNT)water-based nanofluid was used as the external/internal fluid and the flow ratio of external and internal fluids was 2:1,NCES showed the best milling performance.This study provides theoretical and technical support for the selection of the base fluid of NCES external fluid. 展开更多
关键词 Nanofluid composite electrostatic spraying lubrication property Machining performance Vegetable oil External fluid
下载PDF
Effect of applied load on transition behavior of wear mechanism in Cu-15Ni-8Sn alloy under oil lubrication 被引量:4
7
作者 张世忠 甘雪萍 +3 位作者 成金娟 姜业欣 李周 周科朝 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1754-1761,共8页
Tribological behavior of Cu-15Ni-8Sn(mass fraction, %) alloy against GCr15 ring under various loads was investigated on a ring-on-block tester in oil lubrication. The results showed that the wear rate increased slowly... Tribological behavior of Cu-15Ni-8Sn(mass fraction, %) alloy against GCr15 ring under various loads was investigated on a ring-on-block tester in oil lubrication. The results showed that the wear rate increased slowly from 1.7×10^(-7) to 9.8× 10^(-7) mm^3/mm under the load lower than 300 N, and then increased dramatically to the climax of 216×10^(-7) mm^3/mm under the load over 300 N, which indicated the transition of wear mechanism with the increase of applied load. The wear mechanism mainly was plastic deformation and abrasive wear under the load less than 300 N. As the applied load was more than 300 N, the wear mechanism of Cu-15Ni-8Sn alloy primarily was delamination wear. Besides, the transition can also be confirmed from the different morphologies of worn surface, subsurface and wear debris. It is distinctly indicated that the appearance of flaky debris at the applied load over 300 N may be a critical point for the change of wear mechanism. 展开更多
关键词 Cu-15Ni-8Sn alloy wear mechanism applied load oil lubrication
下载PDF
Lubrication performance of rapeseed oil-based nano-lubricants in parallel tubular channel angular pressing process 被引量:1
8
作者 Mehdi KASAEIAN-NAEINI Ramin HASHEMI Ali HOSSEINI 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第5期1042-1049,共8页
Due to the biological risks of using the conventional lubricants,the vegetable oils have been considered nowadays.Besides,to improve the tribological properties of the vegetable oils in various applications like metal... Due to the biological risks of using the conventional lubricants,the vegetable oils have been considered nowadays.Besides,to improve the tribological properties of the vegetable oils in various applications like metal forming processes,nanoparticles have been used as additives.This research evaluated the lubrication performance of the Al2O3 and TiO2 nanoparticles dispersed in rapeseed oil during the parallel tubular channel angular pressing (PTCAP) process.The experimental PTCAP tests have been fulfilled under three lubrication conditions and the comparison between the PTCAP processed tubes has been performed in terms of the maximum forming force,surface roughness,and microhardness.The experimental results indicate that adding the mentioned nanoparticles has caused at least a 50% reduction in the maximum deformation load.Moreover,a remarkable decrement in the surface roughness of the formed tubes has been obtained. 展开更多
关键词 parallel tubular channel angular pressing nano lubricant nano-particle additives vegetable oil aluminum alloy
下载PDF
A new cold rolling lubrication method combining emulsion and neat oil lubrication
9
作者 QU Peilei LI Shanqing +1 位作者 WANG Kangjian ZHANG Xiaoming 《Baosteel Technical Research》 CAS 2014年第1期10-14,共5页
The cooling and lubrication process is one of the key processes in cold rolling,as it not only determines surface quality and strip shape,but also reduces the rolling power consumption and extends the life of the roll... The cooling and lubrication process is one of the key processes in cold rolling,as it not only determines surface quality and strip shape,but also reduces the rolling power consumption and extends the life of the roll even during high-speed operation.In this study,an innovative method combining emulsion lubrication and neat oil lubrication was used to solve some problems associated with individual passes.Laboratory tests on stainless steel strips showed that this new lubrication method could improve the surface quality of the strip,control the rolling friction in the deformation zone,and has the potential of making lubrication systems simpler and easier to operate,all while reducing the negative environmental impact from emulsion processing. 展开更多
关键词 cold rolling lubrication emulsion lubrication neat oil lubrication
下载PDF
Multifunctional Lubricant Additive Improves Lubrication and Antioxidation Properties of Tung Oil
10
作者 Na Yao Haiyang Ding +3 位作者 Mei Li Shouhai Li Lina Xu Xiaohua Yang 《Journal of Renewable Materials》 EI 2023年第7期3115-3128,共14页
It is of considerable significance to develop efficient and environmentally friendly machinery lubricant additives because of the increasing depletion of petrochemical resources and severe environmental problems.Herei... It is of considerable significance to develop efficient and environmentally friendly machinery lubricant additives because of the increasing depletion of petrochemical resources and severe environmental problems.Herein,we proposed a facile strategy to synthesize a multifunctional vegetable oil-based lubricant via the lignin derivative vanillin coupled to amine and diethyl phosphite to produce a lubricating additive with both extreme pressure and antioxidant properties.Compared with pure tung oil,the lubricating and antioxidant performance of tung oil is significantly improved after adding additives.Adding the 1.0 wt%additive to the tung oil reduced the friction wear coefficient and the volume,and the oxidation induction time was much longer than pure tung oil. 展开更多
关键词 Tung oil lubricant additives ANTIOXIDATION MULTIFUNCTION
下载PDF
Numerical Investigation on Flow Pattern of Air-Oil with Different Viscosities Lubrication
11
作者 Qunfeng Zeng Jinhua Zhang +1 位作者 Jun Hong Wenjun Su 《Engineering(科研)》 2017年第1期1-13,共13页
In the present work, the performance of oil-air two-phase flow under different lubricant oils was investigated. The simulation method was applied to study the influence of the oil viscosity on the flow pattern, veloci... In the present work, the performance of oil-air two-phase flow under different lubricant oils was investigated. The simulation method was applied to study the influence of the oil viscosity on the flow pattern, velocity distribution and Re number in oil-air lubrication by FLUENT software with VOF model to acquire the working performance of oil-air lubrication for high-speed ball bearing. This method was used to obtain the optimum lubrication conditions of high-speed ball bearing. The optimum operating conditions that produce the optimum flow pattern were provided. The optimum annular flow was obtained by PAO6 oil with the low viscosity. Reynolds number influences the fluid shape and distribution of oil and air in pipe. The annular flow can be formed when Reynolds number is an appropriate value. The velocity distribution of oil-air two-phase flow at outlet was also discussed by different oil viscosities. The simulating results show that due to the effect of the oil viscosity and flow pattern the velocity decreased and expanded gradually close to the pipe wall, and the velocity increased close to the central pipe. The simulation results provide the proposal for the design and operation of oil-air two-phase flow lubrication experiments in the present work. This work provides a useful method in designing oil-air lubrication with the optimum flow pattern and the optimum operating conditions. 展开更多
关键词 oil-Air lubrication FLOW Pattern Two-Phase FLOW ANNULAR FLOW
下载PDF
Tribological effects of oxide based nanoparticles in lubricating oils 被引量:3
12
作者 顾彩香 朱冠军 +2 位作者 李磊 田晓禹 朱光耀 《Journal of Marine Science and Application》 2009年第1期71-76,共6页
In order to enhance the tribological properties of lubricating oil, suitable surfactants such as Tween-20, Tween-60, Span-20 and Sodium sodecylbenzenesulfonate were selected and lubricating oils containing CeO2 and Ti... In order to enhance the tribological properties of lubricating oil, suitable surfactants such as Tween-20, Tween-60, Span-20 and Sodium sodecylbenzenesulfonate were selected and lubricating oils containing CeO2 and TiO2 nanoparticles were prepared. The morphology and size of CeO2 and TiO2 nanoparticles were examined with a transmission electron microscope (TEM). The tribological properties of the oils were tested using an MRS-1J four-ball tribotester. The research results show that when the proportion by weight of CeO2 nanoparticles to TiO2 nanoparticles is 1:3, and the total weight fraction is 0.6%, the lubricating oil has optimal anti-wear and friction reducing properties. The addition of CeO2 nanoparticles reduces the required amount of TiO2 nanoparticles. 展开更多
关键词 NANOPARTICLES SURFACTANTS lubricating oil tribological properties
下载PDF
Thermal oxidation of two aviation synthetic lubricant base oils 被引量:3
13
作者 费逸伟 郭峰 +2 位作者 姚婷 杨宏伟 程治升 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第4期396-404,共9页
The thermal degradation of two synthetic lubricants base oils, poly-a-olefins (PAO) and di-esters (DE), was investigated under oxidative pyrolysis condition and their properties were characterized in simulated "a... The thermal degradation of two synthetic lubricants base oils, poly-a-olefins (PAO) and di-esters (DE), was investigated under oxidative pyrolysis condition and their properties were characterized in simulated "areo-engine" by comparing the thermal stability and identifying the products of thermal decomposition as a function of exposure temperature. The characterization of the products were performed by means of Fourier transform infrared spectrometry (FTIR), gas chromatography/mass spectrometry (GC/MS) and viscosity experiments. The results show that PAO has the lower thermal stability, being degraded at 200℃ different from 300 ℃ for DE. Several by-products are identified during the thermal degradation of two lubricant base oils. The majority of PAO products consist of alkenes and olefins, while more oxygen-contained organic compounds are detected in DE samples based on GC/MS analysis. The related reaction mechanisms are discussed based on the experimental results. 展开更多
关键词 synthetic aviation lubricant base oils thermal stability oxidative pyrolysis GC/MS analysis viscosity degradation
下载PDF
INFLUENCE OF COLD NITROGEN GAS AND OIL MIST IN MACHINING NICKEL-BASE K424 ALLOY WITH CERAMIC CUTTING TOOLS 被引量:1
14
作者 苏宇 何宁 +3 位作者 李亮 徐胜 肖茂华 邱宝贵 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第2期118-124,共7页
The role of cold nitrogen gas and oil mist on tool wear and surface roughness is investigated in turning the K424 nickel-base super alloy with Sialon and SiC whisker-reinforced alumina ceramic tools. A new cooling sys... The role of cold nitrogen gas and oil mist on tool wear and surface roughness is investigated in turning the K424 nickel-base super alloy with Sialon and SiC whisker-reinforced alumina ceramic tools. A new cooling system is developed and used to lower the temperature of the compressed nitrogen gas. Experiments are performed in three different cooling/lubrication modes, i.e. the dry cutting, the cold nitrogen gas (CNG), and the cold nitrogen gas and oil mist (CNGOM). Experimental results show that the depth-of-cut notching severely limits the tool life in all the cooling/lubrication modes. Compared with the dry cutting, the use of CNG and CNGOMcan yield higher wear rate of depth-of-cut notching and worse surface finish. 展开更多
关键词 cold nitrogen gas oil mist ceramic cutting tool tool wear surface finish
下载PDF
OBJECT-ORIENTED IMPLEMENTATION OF EXPERT SYSTEMS FOR ENGINE LUBRICATING OIL INSPECTION
15
作者 杨忠 左洪福 +2 位作者 刘正埙 干敏梁 吴惠祥 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1997年第2期170-176,共7页
The inspection of engine lubricating oil can give an indication of the internal condition of an engine. By means of the Object-Oriented Programming (OOP), an expert system is developed in this paper to computerize the... The inspection of engine lubricating oil can give an indication of the internal condition of an engine. By means of the Object-Oriented Programming (OOP), an expert system is developed in this paper to computerize the inspection. The traditional components of an expert system, such us knowledge base, inference engine and user interface are reconstructed and integrated, based on the Microsoft Foundation Class (MFC) library. To testify the expert system, an inspection example is given at the end of this paper. 展开更多
关键词 expert systems lubricating oil OBJECT-ORIENTED engines INSPECTION
下载PDF
Rapidly determining kinematic viscosity of aviation lubricating oil 50-1-4Φ by mid-infrared spectrometry
16
作者 宗营 姜旭峰 +1 位作者 孙静 校云鹏 《Journal of Measurement Science and Instrumentation》 CAS 2014年第3期79-82,共4页
This paper analyzed 11 lubricating oil 50-1-4Ф samples of different base oil content (standard oil) and 28 used oil samples by Fourier transform mid-infrared spectrometer (FTIR). First, the absorption peak of 1 4... This paper analyzed 11 lubricating oil 50-1-4Ф samples of different base oil content (standard oil) and 28 used oil samples by Fourier transform mid-infrared spectrometer (FTIR). First, the absorption peak of 1 465 cm 1 was selected as the characteristic peak for determining their kinematic viscosities. And then correlation of the kinematic viscosity and the absorbance at characteristic peaks of corresponding infrared spectrum of standard oil and used oil samples was analyzed, re- spectively, and two regression equations were proposed. Finally, the regression equation of standard oil was corrected through other 20 new oil samples. The results show that determining kinematic viscosity of new lubricating oil 50-1-4Ф and the used one by FTIR is feasible and reliable. 展开更多
关键词 mid-infrared spectrum aviation lubricating oil kinematic viscosity
下载PDF
Rapidly determining fuel pollution level of aviation lubricating oil 50-1-4Φby mid-infrared spectrometry
17
作者 宗营 姜旭峰 +1 位作者 岳聪伟 孙静 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第2期190-192,共3页
A series of aviation lubrication oil 50-1-4φ samples were prepared with different RP-3 content, and then these sam- ples were analyzed by Fourier transform mid-infrared spectrometer (FTIR). The infrared region of ... A series of aviation lubrication oil 50-1-4φ samples were prepared with different RP-3 content, and then these sam- ples were analyzed by Fourier transform mid-infrared spectrometer (FTIR). The infrared region of 805--755 cm-1 was selected as quantitative area for determining fuel pollution level of aviation lubrication oil. Finally, correlation of the testing peak area and the fuel pollution level of corresponding samples were analyzed, and the regression equation was proposed. The results show that determining jet fuel pollution level of aviation lubricating oil by FTIR is feasible and reliable. 展开更多
关键词 mid-infrared spectrum aviation lubricating oil fuel pollution level
下载PDF
Study on application of CeO_2 and CaCO_3 nanoparticles in lubricating oils 被引量:6
18
作者 顾彩香 李庆柱 +1 位作者 顾卓明 朱光耀 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第2期163-167,共5页
The ceria (CeO2) nanoparticles and calcium carbonate (CaCO3) nanoparticles were chosen as additives of anti-wear and extreme pressure for lubricating oils, and the morphology and sizes of nanoparticles were examin... The ceria (CeO2) nanoparticles and calcium carbonate (CaCO3) nanoparticles were chosen as additives of anti-wear and extreme pressure for lubricating oils, and the morphology and sizes of nanoparticles were examined using Transmission Electron Microscope (TEM). The tribological performance of lubricating oils containing combined nanoparticles were determined by four-ball friction and wear tester, and the chemical composition of steel ball with worn surface were analyzed by X-ray Photoelectron Spectrurn(XPS). The results showed that the lubricating oils containing combined nanoparticles had good anti-wear and friction reducing effects, and the tribological properties were optimal when WCeO2+CaCO3=0.6%, WCeO2:WCaCO3=1:1. The extreme pressure value increased by 40.25%, the wear spot diameter reduced by 33.5%, and friction coefficient reduced by 32% compared with 40CD oil. The coordinated action of big and small particles made anti-wear and friction reducing effective. Tribological chemical reactions resulting from the friction surface formed metal calcium, metal cerium and oxides film, and they could fill up the concave surface and protect the worn surface. 展开更多
关键词 ceria nanoparticles calcium carbonate nanoparticles lubricating oil anti-wear and friction reducing coordinated action tribological chemistry rare earths
下载PDF
Tribological Performances of Fatty Acyl Amino Acids Used as Green Additives in Lubricating Oil 被引量:9
19
作者 Chen Boshui Wang Jiu +3 位作者 Fang Jianhua Huang Weijiu Sun Xia Yu Ying 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2010年第3期49-53,共5页
The friction and wear characteristics of lauroyl glutamine, lauroyl glycine and lauroyl alanine, used as green additives in HVI 350 mineral lubricating oil, were evaluated on a four-ball tribotester. The morphologies ... The friction and wear characteristics of lauroyl glutamine, lauroyl glycine and lauroyl alanine, used as green additives in HVI 350 mineral lubricating oil, were evaluated on a four-ball tribotester. The morphologies and chemical species of the worn surfaces were analyzed by scanning electron microscope (SEM) and X-ray photoelectron spectroscope (XPS), respectively. The test results indicated that the three fatty acyl amino acids could effectively improve the anti-wear and friction-reducing abilities of the HVI 350 mineral oil. The improvement in anti-wear and friction-reducing abilities of the mineral oil by the related amino acids was mainly ascribed to the formation of a composite boundary lubrication film due to the adsorption of amino acids on the friction surfaces. 展开更多
关键词 fatty acyl amino acid mineral lubricating oil friction wear
下载PDF
Vegetable Oil-Based Nanolubricants in Machining:From Physicochemical Properties to Application 被引量:6
20
作者 Xiaotian Zhang Changhe Li +9 位作者 Zongming Zhou Bo Liu Yanbin Zhang Min Yang Teng Gao Mingzheng Liu Naiqing Zhang Zafar Said Shubham Sharma Hafiz Muhammad Ali 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期4-42,共39页
Cutting fluid is crucial in ensuring surface quality and machining accuracy during machining.However,traditional mineral oil-based cutting fluids no longer meet modern machining’s health and environmental protection ... Cutting fluid is crucial in ensuring surface quality and machining accuracy during machining.However,traditional mineral oil-based cutting fluids no longer meet modern machining’s health and environmental protection require-ments.As a renewable,pollution-free alternative with excellent processing characteristics,vegetable oil has become an inevitable replacement.However,vegetable oil lacks oxidation stability,extreme pressure,and antiwear proper-ties,which are essential for machining requirements.The physicochemical characteristics of vegetable oils and the improved methods’application mechanism are not fully understood.This study aims to investigate the effects of viscosity,surface tension,and molecular structure of vegetable oil on cooling and lubricating properties.The mechanisms of autoxidation and high-temperature oxidation based on the molecular structure of vegetable oil are also discussed.The study further investigates the application mechanism and performance of chemical modification and antioxidant additives.The study shows that the propionic ester of methyl hydroxy-oleate obtained by epoxidation has an initial oxidation temperature of 175℃.The application mechanism and extreme pressure performance of conventional extreme pressure additives and nanoparticle additives were also investigated to solve the problem of insufficient oxidation resistance and extreme pressure performance of nanobiological lubricants.Finally,the study discusses the future prospects of vegetable oil for chemical modification and nanoparticle addition.The study provides theoretical guidance and technical support for the industrial application and scientific research of vegetable oil in the field of lubrication and cooling.It is expected to promote sustainable development in the manufacturing industry. 展开更多
关键词 Cutting fluid Vegetable oil Chemical modification ANTIOXIDANT Extreme pressure additive Minimum quality lubrication
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部