期刊文献+
共找到10,833篇文章
< 1 2 250 >
每页显示 20 50 100
Discovery and inspiration of large-and medium-sized glutenite-rich oil and gas fields in the eastern South China Sea:An example from Paleogene Enping Formation in Huizhou 26 subsag,Pearl River Mouth Basin 被引量:1
1
作者 XU Changgui GAO Yangdong +4 位作者 LIU Jun PENG Guangrong LIU Pei XIONG Wanlin SONG Penglin 《Petroleum Exploration and Development》 SCIE 2024年第1期15-30,共16页
Based on the practice of oil and gas exploration in the Huizhou Sag of the Pearl River Mouth Basin,the geochemical indexes of source rocks were measured,the reservoir development morphology was restored,the rocks and ... Based on the practice of oil and gas exploration in the Huizhou Sag of the Pearl River Mouth Basin,the geochemical indexes of source rocks were measured,the reservoir development morphology was restored,the rocks and minerals were characterized microscopically,the measured trap sealing indexes were compared,the biomarker compounds of crude oil were extracted,the genesis of condensate gas was identified,and the reservoir-forming conditions were examined.On this basis,the Paleogene Enping Formation in the Huizhou 26 subsag was systematically analyzed for the potential of oil and gas resources,the development characteristics of large-scale high-quality conglomerate reservoirs,the trapping effectiveness of faults,the hydrocarbon migration and accumulation model,and the formation conditions and exploration targets of large-and medium-sized glutenite-rich oil and gas fields.The research results were obtained in four aspects.First,the Paleogene Wenchang Formation in the Huizhou 26 subsag develops extensive and thick high-quality source rocks of semi-deep to deep lacustrine subfacies,which have typical hydrocarbon expulsion characteristics of"great oil generation in the early stage and huge gas expulsion in the late stage",providing a sufficient material basis for hydrocarbon accumulation in the Enping Formation.Second,under the joint control of the steep slope zone and transition zone of the fault within the sag,the large-scale near-source glutenite reservoirs are highly heterogeneous,with the development scale dominated hierarchically by three factors(favorable facies zone,particle component,and microfracture).The(subaqueous)distributary channels near the fault system,with equal grains,a low mud content(<5%),and a high content of feldspar composition,are conducive to the development of sweet spot reservoirs.Third,the strike-slip pressurization trap covered by stable lake flooding mudstone is a necessary condition for oil and gas preservation,and the NE and nearly EW faults obliquely to the principal stress have the best control on traps.Fourth,the spatiotemporal configuration of high-quality source rocks,fault transport/sealing,and glutenite reservoirs controls the degree of hydrocarbon enrichment.From top to bottom,three hydrocarbon accumulation units,i.e.low-fill zone,transition zone,and high-fill zone,are recognized.The main area of the channel in the nearly pressurized source-connecting fault zone is favorable for large-scale hydrocarbon enrichment.The research results suggest a new direction for the exploration of large-scale glutenite-rich reservoirs in the Enping Formation of the Pearl River Mouth Basin,and present a major breakthrough in oil and gas exploration. 展开更多
关键词 Pearl River Mouth Basin Huizhou Sag Huizhou 26 subsag PALEOGENE Enping Formation GLUTENITE large-and medium-sized oil and gas field
下载PDF
Stress corrosion cracking behavior of buried oil and gas pipeline steel under the coexistence of magnetic field and sulfate-reducing bacteria
2
作者 Jian-Yu He Fei Xie +3 位作者 Dan Wang Guang-Xin Liu Ming Wu Yue Qin 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1320-1332,共13页
Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil env... Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence. 展开更多
关键词 Magnetic field Sulfate-reducing bacteria Film layer Stress corrosion cracking oil and gas pipelines
下载PDF
Origin of condensate oil and natural gas in Bozhong 19-6 gas field,Bohai Bay Basin
3
作者 Jianyong Xu Wei Li 《Energy Geoscience》 EI 2024年第1期54-62,共9页
The discovery of the Bozhong 19-6 gas field has opened a new frontier for deep gas exploration in the Bohai Bay Basin,with a great potential for further gas exploration.However,poor understanding of oil and gas origin... The discovery of the Bozhong 19-6 gas field has opened a new frontier for deep gas exploration in the Bohai Bay Basin,with a great potential for further gas exploration.However,poor understanding of oil and gas origin has been limiting the exploration progress in this area.To clarify the origin of condensate oil and gas in Bozhong 19-6 gas field,this study adequately utilized the organic geochemical analysis data to investigate the composition and geochemical characteristics of condensate oil and natural gas,and analyzed the relationship between condensate oil and the three sets of source rocks in the nearby subsags.Results show that the lighter components dominate the condensate oil,with a forward type predominance.The parent material of crude oil was primarily deposited in a shallow,clay-rich,low-salinity,weakly reducing aquatic environment.The condensate and natural gas have similar parent source characteristics and maturity,with Ro ranging from 1.4%to 1.6%.Both are products of high maturity stage,indicating that they are hydrocarbon compounds produced by the same group of source rocks in the same stage.Oil-sources correlation shows that condensate oil and gas mainly originate from the source rocks of the third member of Shahejie Formation in the nearby subsags of the Bozhong 19-6 structural belt. 展开更多
关键词 Bozhong Sag Natural gas Condensate oil Light hydrocarbon gas-source correlation oil-source correlation
下载PDF
Dynamic simulation of differential accumulation history of deep marine oil and gas in superimposed basin:A case study of Lower Paleozoic petroleum system of Tahe Oilfield,Tarim Basin,NW China
4
作者 LI Bin ZHONG Li +4 位作者 LYU Haitao YANG Suju XU Qinqi ZHANG Xin ZHENG Binsong 《Petroleum Exploration and Development》 SCIE 2024年第5期1217-1231,共15页
According to the complex differential accumulation history of deep marine oil and gas in superimposed basins,the Lower Paleozoic petroleum system in Tahe Oilfield of Tarim Basin is selected as a typical case,and the p... According to the complex differential accumulation history of deep marine oil and gas in superimposed basins,the Lower Paleozoic petroleum system in Tahe Oilfield of Tarim Basin is selected as a typical case,and the process of hydrocarbon generation and expulsion,migration and accumulation,adjustment and transformation of deep oil and gas is restored by means of reservoine-forming dynamics simulation.The thermal evolution history of the Lower Cambrian source rocks in Tahe Oilfield reflects the obvious differences in hydrocarbon generation and expulsion process and intensity in different tectonic zones,which is the main reason controlling the differences in deep oil and gas phases.The complex transport system composed of strike-slip fault and unconformity,etc.controlled early migration and accumulation and late adjustment of deep oil and gas,while the Middle Cambrian gypsum-salt rock in inner carbonate platform prevented vertical migration and accumulation of deep oil and gas,resulting in an obvious"fault-controlled"feature of deep oil and gas,in which the low potential area superimposed by the NE-strike-slip fault zone and deep oil and gas migration was conducive to accumulation,and it is mainly beaded along the strike-slip fault zone in the northeast direction.The dynamic simulation of reservoir formation reveals that the spatio-temporal configuration of"source-fault-fracture-gypsum-preservation"controls the differential accumulation of deep oil and gas in Tahe Oilfield.The Ordovician has experienced the accumulation history of multiple periods of charging,vertical migration and accumulation,and lateral adjustment and transformation,and deep oil and gas have always been in the dynamic equilibrium of migration,accumulation and escape.The statistics of residual oil and gas show that the deep stratum of Tahe Oilfield still has exploration and development potential in the Ordovician Yingshan Formation and Penglaiba Formation,and the Middle and Upper Cambrian ultra-deep stratum has a certain oil and gas resource prospect.This study provides a reference for the dynamic quantitative evaluation of deep oil and gas in the Tarim Basin,and also provides a reference for the study of reservoir formation and evolution in carbonate reservoir of paleo-craton basin. 展开更多
关键词 superimposed basin Tarim Basin marine carbonate rock oil and gas differential accumulation dynamic accumulation simulation fluid potential technology Tahe oilfield Lower Paleozoic petroleum system simulation deep and ultra-deep strata
下载PDF
Geochemical characteristics and exploration significance of ultra-deep Sinian oil and gas from Well Tashen 5,Tarim Basin,NW China 被引量:3
5
作者 Zicheng Cao Anlai Ma +4 位作者 Qinqi Xu Quanyong Pan Kai Shang Fan Feng Yongli Liu 《Energy Geoscience》 EI 2024年第1期24-36,共13页
The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth ... The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth of 8780e8840 m,also the deepest in Asia in terms of oil discovery.In this paper,the geochemical characteristics of Sinian oil and gas from the well were investigated and compared with those of Cambrian oil and gas discovered in the same basin.The oil samples,with Pr/Ph ratio of 0.78 and a whole oil carbon isotopic value of31.6‰,have geochemical characteristics similar to those of Ordovician oils from the No.1 fault in the North Shuntuoguole area(also named Shunbei area)and the Middle Cambrian oil from wells Zhongshen 1(ZS1)and Zhongshen 5(ZS5)of Tazhong Uplift.The maturity of light hydrocarbons,diamondoids and aromatic fractions all suggest an approximate maturity of 1.5%e1.7%Ro for the samples.The(4-+3-)methyldiamantane concentration of the samples is 113.5 mg/g,indicating intense cracking with a cracking degree of about 80%,which is consistent with the high bottom hole temperature(179℃).The Sinian gas samples are dry with a dryness coefficient of 0.97.The gas is a mixture of kerogen-cracking gas and oil-cracking gas and has Ro values ranging between 1.5%and 1.7%,and methane carbon isotopic values of41.6‰.Based on the equivalent vitrinite reflectance(R_(eqv)=1.51%e1.61%)and the thermal evolution of source rocks from the Cambrian Yu'ertusi Formation of the same well,it is proposed that the Sinian oil and gas be mainly sourced from the Cambrian Yu'ertusi Formation during the Himalayan period but probably also be joined by hydrocarbon of higher maturity that migrated from other source rocks in deeper formations.The discovery of Sinian oil and gas from Well TS5 suggests that the ancient ultra-deep strata in the northern Tarim Basin have the potential for finding volatile oil or condensate reservoirs. 展开更多
关键词 Ultra-deep Sinian oil and gas oil-cracking Well Tashen 5 Tarim Basin
下载PDF
Geochemical prerequisites for the formation of oil and gas accumulation zones in the South Turgay basin,Kazakhstan 被引量:1
6
作者 Rima Kopbosynkyzy Madisheva Vassiliy Sergeevich Portnov +3 位作者 Gulmadina Bulatovna Amangeldiyeva Akmaral Bakhytbekovna Demeuova Yessimkhan Sherekhanovich Seitkhaziyev Dulat Kalimovich Azhgaliev 《Acta Geochimica》 EI CAS CSCD 2024年第3期520-534,共15页
This study predicts favorable oil and gas source-rock formation conditions in the Aryskum Depression of the South Turgay Basin,Kazakhstan.This study assesses the thermal maturity and characteristics of organic matter ... This study predicts favorable oil and gas source-rock formation conditions in the Aryskum Depression of the South Turgay Basin,Kazakhstan.This study assesses the thermal maturity and characteristics of organic matter by determining its environmental conditions using data from geochemical analysis of core(pyrolysis)and oil(biomarkers and carbon isotopic compositions)samples.According to the geochemical parameters obtained by pyrolysis,the oil generation potential of the original rocks of most studied samples varies from poor to rich.The facies–genetic organic matter is predominantly humic and less frequently humus–sapropel,indicating organic matter accumulation in the studied samples were under moderately reducing conditions(kerogenⅢand Ⅱ types)and coastal–marine environments(kerogen typeⅠ).The carbon isotopic compositions of oils derived from the Jurassic deposits of the Aryskum Depression also indicate the sapropelic and mixed humic–sapropelic type of organic matter(kerogenⅡandⅠ).Biomarker analysis of oils indicates original organic matter formation in an anoxic environment. 展开更多
关键词 South Turgay Basin oil and gas potential Source rock Organic matter KEROGEN
下载PDF
Risk assessment of oil and gas investment environment in countries along the Belt and Road Initiative 被引量:1
7
作者 Bao-Jun Tang Chang-Jing Ji +3 位作者 Yu-Xian Zheng Kang-Ning Liu Yi-Fei Ma Jun-Yu Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1429-1443,共15页
With the implementation of the Belt and Road Initiative, China is deepening its cooperation in oil and gas resources with countries along the Initiative. In order to better mitigate risks and enhance the safety of inv... With the implementation of the Belt and Road Initiative, China is deepening its cooperation in oil and gas resources with countries along the Initiative. In order to better mitigate risks and enhance the safety of investments, it is of significant importance to research the oil and gas investment environment in these countries for China's overseas investment macro-layout. This paper proposes an indicator system including 27 indicators from 6 dimensions. On this basis, game theory models combined with global entropy method and analytic hierarchy process are applied to determine the combined weights, and the TOPSIS-GRA model is utilized to assess the risks of oil and gas investment in 76 countries along the Initiative from 2014 to 2021. Finally, the GM(1,1) model is employed to predict risk values for 2022-2025. In conclusion, oil and gas resources and political factors have the greatest impact on investment environment risk, and 12 countries with greater investment potential are selected through cluster analysis in conjunction with the predicted results. The research findings may provide scientific decisionmaking recommendations for the Chinese government and oil enterprises to strengthen oil and gas investment cooperation with countries along the Belt and Road Initiative. 展开更多
关键词 Belt and Road Initiative oil and gas Investment Risk assessment
下载PDF
A review of methane leakage from abandoned oil and gas wells:A case study in Lubbock,Texas,within the Permian Basin 被引量:2
8
作者 Stanley U.Opara Chinedu J.Okere 《Energy Geoscience》 EI 2024年第3期1-12,共12页
In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned o... In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned oil and gas(AOG)wells,focusing particularly on Lubbock,a geographic area situated within the larger region known as the Permian Basin in West Texas,United States.The objective is to assess the extent and environmental implications of methane leakage from these wells.The analysis integrates pertinent literature,governmental and industry data,and prior Lubbock reports.Factors affecting methane leakage,including well integrity,geological characteristics,and human activities,are explored.Our research estimates 1781 drilled wells in Lubbock,forming a foundation for targeted assessments and monitoring due to historical drilling trends.The hierarchy of well statuses in Lubbock highlights the prevalence of“active oil wells,”trailed by“plugged and abandoned oil wells”and“inactive oil wells.”Methane leakage potential aligns with these well types,underscoring the importance of strategic monitoring and mitigation.The analysis notes a zenith in“drilled and completed”wells during 1980-1990.While our study's case analysis and literature review reiterate the critical significance of assessing and mitigating methane emissions from AOG wells,it's important to clarify that the research does not directly provide methane leakage data.Instead,it contextualizes the issue's magnitude and emphasizes the well type and status analysis's role in targeted mitigation efforts.In summary,our research deepens our understanding of methane leakage,aiding informed decision-making and policy formulation for environmental preservation.By clarifying well type implications and historical drilling patterns,we aim to contribute to effective strategies in mitigating methane emissions from AOG wells. 展开更多
关键词 Net zero carbon emissions Climate change mitigation Methane emission control Abandoned oil and gas(AOG)well Permian Basin
下载PDF
Miscibility of light oil and flue gas under thermal action 被引量:1
9
作者 XI Changfeng WANG Bojun +7 位作者 ZHAO Fang HUA Daode QI Zongyao LIU Tong ZHAO Zeqi TANG Junshi ZHOU You WANG Hongzhuang 《Petroleum Exploration and Development》 SCIE 2024年第1期164-171,共8页
The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and hi... The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and high pressure,the miscible displacement of flue gas and light oil is possible.At the same temperature,there is a linear relationship between oil displacement efficiency and pressure.At the same pressure,the oil displacement efficiency increases gently and then rapidly to more than 90% to achieve miscible displacement with the increase of temperature.The rapid increase of oil displacement efficiency is closely related to the process that the light components of oil transit in phase state due to distillation with the rise of temperature.Moreover,at the same pressure,the lighter the oil,the lower the minimum miscibility temperature between flue gas and oil,which allows easier miscibility and ultimately better performance of thermal miscible flooding by air injection.The miscibility between flue gas and light oil at high temperature and high pressure is more typically characterized by phase transition at high temperature in supercritical state,and it is different from the contact extraction miscibility of CO_(2) under conventional high pressure conditions. 展开更多
关键词 light oil flue gas flooding thermal miscible flooding miscible law distillation phase transition minimum miscible pressure minimum miscible temperature
下载PDF
Daily Variation of Natural Emission of Methane to the Atmosphere and Source Identification in the Luntai Fault Region of the Yakela Condensed Oil/Gas Field in the Tarim Basin,Xinjiang,China 被引量:7
10
作者 TANG Junhong BAO Zhengyu +1 位作者 XIANG Wu GOU Qinghong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第5期771-778,共8页
The static flux chamber method was applied to study natural emissions of methane to the atmosphere in the Luntai fault region of Yakela Condensed Oil/Gas Field in the Tarim Basin, Xinjiang Municipality, northwestern C... The static flux chamber method was applied to study natural emissions of methane to the atmosphere in the Luntai fault region of Yakela Condensed Oil/Gas Field in the Tarim Basin, Xinjiang Municipality, northwestern China. Using an online method, which couples together a gas chromatography/high-temperature conversion/isotope ratio mass spectrometry (GC/C/MS), 13^C/12^C ratios of methane in flux chambers were measured and showed that methane gases are liable to migrate from deep oil/gas reservoirs to the surface through fault regions and that a part of the migrated methane, which remains unoxidized can be emitted into the atmosphere. Methane emission rates were found to be highest in the mornings, lowest in the afternoons and then increase gradually in the evenings. Methane emission rates varied dramatically in different locations in the fault region. The highest methane emission rate was 10.96 mg/m^2·d, the lowest 4.38 mg/m^2, and the average 7.55 mg/ m^2·d. The 13^C/12^C ratios of the methane in the flux chambers became heavier as the enclosed methane concentrations increased gradually, which reveals that methane released from the fault region might come from thermogenic methane of the deep condensed oil/gas reservoir. 展开更多
关键词 condensed oil/gas field fault-controlled methane emission carbon isotopes flux chamber XINJIANG
下载PDF
Geological emission of methane from the Yakela condensed oil/gas field in Talimu Basin, Xinjiang, China 被引量:6
11
作者 Tang Junhong Bao Zhengyu +1 位作者 Xiang Wu Gou Qinghong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第9期1055-1062,共8页
A static flux chamber method was applied to study natural emissions of methane into the atmosphere in the Yakela condensed oil/gas field in Talimu Basin, Xinjiang, China. Using an online method, which couples a gas ch... A static flux chamber method was applied to study natural emissions of methane into the atmosphere in the Yakela condensed oil/gas field in Talimu Basin, Xinjiang, China. Using an online method, which couples a gas chromatography/high-temperature conversion/isotope ratio mass spectrometry (GC/C/MS) together, the 13C/12C ratios of methane in the flux chambers were measured. The results demonstrated that methane gases were liable to migrate from deep oil/gas reservoir to the surface through microseepage and p... 展开更多
关键词 the Yakela condensed oil/gas field methane emission stable carbon isotopes flux chamber
下载PDF
Research on thermal insulation materials properties under HTHP conditions for deep oil and gas reservoir rock ITP-Coring 被引量:1
12
作者 Zhi-Qiang He He-Ping Xie +4 位作者 Ling Chen Jian-Ping Yang Bo Yu Zi-Jie Wei Ming-Zhong Gao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2625-2637,共13页
Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability... Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development. 展开更多
关键词 Deep oil and gas reservoir rock In situ temperature-preserved coring(ITPCoring) Hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials) High-temperature and high-pressure(HTHP) Physical and mechanical properties
下载PDF
Formation and distribution characteristics of Proterozoic–Lower Paleozoic marine giant oil and gas fields worldwide 被引量:3
13
作者 Xiao-Ping Liu Zhi-Jun Jin +5 位作者 Guo-Ping Bai Ming Guan Jie Liu Qing-Hua Pan Ting Li Yu-Jie Xing 《Petroleum Science》 SCIE CAS CSCD 2017年第2期237-260,共24页
There are rich oil and gas resources in marine carbonate strata worldwide.Although most of the oil and gas reserves discovered so far are mainly distributed in Mesozoic,Cenozoic,and upper Paleozoic strata,oil and gas ... There are rich oil and gas resources in marine carbonate strata worldwide.Although most of the oil and gas reserves discovered so far are mainly distributed in Mesozoic,Cenozoic,and upper Paleozoic strata,oil and gas exploration in the Proterozoic–Lower Paleozoic(PLP)strata—the oldest marine strata—has been very limited.To more clearly understand the oil and gas formation conditions and distributions in the PLP marine carbonate strata,we analyzed and characterized the petroleum geological conditions,oil and gas reservoir types,and their distributions in thirteen giant oil and gas fields worldwide.This study reveals the main factors controlling their formation and distribution.Our analyses show that the source rocks for these giant oil and gas fields are mainly shale with a great abundance of type I–II organic matter and a high thermal evolution extent.The reservoirs are mainly gas reservoirs,and the reservoir rocks are dominated by dolomite.The reservoir types are mainly karst and reef–shoal bodies with well-developed dissolved pores and cavities,intercrystalline pores,and fractures.These reservoirs arehighly heterogeneous.The burial depth of the reservoirs is highly variable and somewhat negatively correlated to the porosity.The cap rocks are mainly thick evaporites and shales,with the thickness of the cap rocks positively correlated to the oil and gas reserves.The development of high-quality evaporite cap rock is highly favorable for oil and gas preservation.We identified four hydrocarbon generation models,and that the major source rocks have undergone a long period of burial and thermal evolution and are characterized by early and long periods of hydrocarbon generation.These giant oil and gas fields have diverse types of reservoirs and are mainly distributed in paleo-uplifts,slope zones,and platform margin reef-shoal bodies.The main factors that control their formation and distribution were identified,enabling the prediction of new favorable areas for oil and gas exploration. 展开更多
关键词 Giant oil and gas field Proterozoic and LowerPaleozoic Marine carbonate rocks Petroleum geologicalconditions oil and gas distribution
下载PDF
Effect of HCO_3^- concentration on CO_2 corrosion in oil and gas fields 被引量:5
14
作者 Guoan Zhang Minxu Lu Chengwen Chai Yinshun Wu 《Journal of University of Science and Technology Beijing》 CSCD 2006年第1期44-49,共6页
The effect of HCO3^- concentration on CO2 corrosion was investigated by polarization measurement of potentiodynamic scans and weight-loss method, Under the conditions of high pressure and high temperature, the corrosi... The effect of HCO3^- concentration on CO2 corrosion was investigated by polarization measurement of potentiodynamic scans and weight-loss method, Under the conditions of high pressure and high temperature, the corrosion rate of steel X65 decreased with the increase of HCO3^- concentration, while pH of solution increased. SEM, EDS, and XRD results of the corrosion scales indir cated that the typical FeCO3 crystallite was found at low HCO3^- concentration but Ca(Fe,Mg)(CO3)2 was found at high HCO3^- con- centration. Ca^2+ and Mg^2+ are precipitated preferential to Fe^2+ at high pH value. Potentiodynamic polarization curves showed that the cathodic current density decreases with the increase of HCO3^- concentration at low HCO3^- concentration. When the HCO3^- concentration reaches 0.126 mol/L, increasing HCO3^- concentration promotes cathodic reactions. Anodic behavior is an active process at low HCO3^- concentration and the anodic current density decreases with the increase of HCO3^- concentration. An evident active-passive behavior is exhibited in anodic process at 0.126 mol/L HCO3^-. 展开更多
关键词 oil and gas fields carbon dioxide corrosion bicarbonate concentration polarization curves
下载PDF
Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field,Tarim Basin,NW China 被引量:8
15
作者 MA Yongsheng CAI Xunyu +4 位作者 YUN Lu LI Zongjie LI Huili DENG Shang ZHAO Peirong 《Petroleum Exploration and Development》 CSCD 2022年第1期1-20,共20页
In this review on the exploration and development process of the Shunbei ultra-deep carbonate oil and gas field in the Tarim Basin, the progress of exploration and development technologies during the National 13th Fiv... In this review on the exploration and development process of the Shunbei ultra-deep carbonate oil and gas field in the Tarim Basin, the progress of exploration and development technologies during the National 13th Five-Year Plan of China has been summarized systematically, giving important guidance for the exploration and development of ultra-deep marine carbonate reservoirs in China and abroad. Through analyzing the primary geological factors of “hydrocarbon generation-reservoir formation-hydrocarbon accumulation” of ancient and superposed basin comprehensively and dynamically, we point out that because the Lower Cambrian Yuertusi Formation high-quality source rocks have been located in a low-temperature environment for a long time, they were capable of generating hydrocarbon continuously in late stage, providing ideal geological conditions for massive liquid hydrocarbon accumulation in ultra-deep layers. In addition, strike-slip faults developed in tectonically stable areas have strong control on reservoir formation and hydrocarbon accumulation in this region. With these understandings, the exploration focus shifted from the two paleo-uplifts located in the north and the south to the Shuntuoguole lower uplift located in between and achieved major hydrocarbon discoveries. Through continuing improvement of seismic exploration technologies for ultra-deep carbonates in desert, integrated technologies including seismic acquisition in ultra-deep carbonates,seismic imaging of strike-slip faults and the associated cavity-fracture systems, detailed structural interpretation of strike-slip faults, characterization and quantitative description of fault-controlled cavities and fractures, description of fault-controlled traps and target optimization have been established. Geology-engineering integration including well trajectory optimization,high efficiency drilling, completion and reservoir reformation technologies has provided important support for exploration and development of the Shunbei oil and gas field. 展开更多
关键词 ultra-deep carbonates fault-controlled fracture-vug reservoir strike-slip fault Shunbei oil and gas field ORDOVICIAN Tarim Basin
下载PDF
Distribution and treatment of harmful gas from heavy oil production in the Liaohe Oilfield, Northeast China 被引量:6
16
作者 Zhu Guangyou Zhang Shuichang +5 位作者 Liu Qicheng Zhang Jingyan YangJunyin Wu Tuo Huang Yi Meng Shucui 《Petroleum Science》 SCIE CAS CSCD 2010年第3期422-427,共6页
The distribution and treatment of harmful gas (H2S) in the Liaohe Oilfield, Northeast China, were investigated in this study. It was found that abundant toxic gas (H2S) is generated in thermal recovery of heavy oi... The distribution and treatment of harmful gas (H2S) in the Liaohe Oilfield, Northeast China, were investigated in this study. It was found that abundant toxic gas (H2S) is generated in thermal recovery of heavy oil. The H2S gas is mainly formed during thermochemical sulfate reduction (TSR) occurring in oil reservoirs or the thermal decomposition of sulfocompounds (TDS) in crude oil. H2S generation is controlled by thermal recovery time, temperature and the injected chemical compounds. The quantity of SO4^2- in the injected compounds is the most influencing factor for the rate of TSR reaction. Therefore, for prevention of H2S formation, periodic and effective monitoring should be undertaken and adequate H2S absorbent should also be provided during thermal recovery of heavy oil. The result suggests that great efforts should be made to reduce the SO4^2- source in heavy oil recovery, so as to restrain H2S generation in reservoirs. In situ burning or desulfurizer adsorption are suggested to reduce H2S levels. Prediction and prevention of H2S are important in heavy oil production. This will minimize environmental and human health risks, as well as equipment corrosion. 展开更多
关键词 Toxic gas H2S heavy oil production TSR Liaohe oilfield
下载PDF
Geologic characteristics,exploration and production progress of shale oil and gas in the United States:An overview
17
作者 MCMAHON T P LARSON T E +1 位作者 ZHANG T SHUSTER M 《Petroleum Exploration and Development》 SCIE 2024年第4期925-948,共24页
We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins o... We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins of the United States are mainly developed in six geological periods:Middle Ordovician,Middle-Late Devonian,Early Carboniferous(Middle-Late Mississippi),Early Permian,Late Jurassic,and Late Cretaceous(Cenomanian-Turonian).Depositional environments for these shales include intra-cratonic basins,foreland basins,and passive continental margins.Paleozoic hydrocarbon-rich shales are mainly developed in six basins,including the Appalachian Basin(Utica and Marcellus shales),Anadarko Basin(Woodford Shale),Williston Basin(Bakken Shale),Arkoma Basin(Fayetteville Shale),Fort Worth Basin(Barnett Shale),and the Wolfcamp and Leonardian Spraberry/Bone Springs shale plays of the Permian Basin.The Mesozoic hydrocarbon-rich shales are mainly developed on the margins of the Gulf of Mexico Basin(Haynesville and Eagle Ford)or in various Rocky Mountain basins(Niobrara Formation,mainly in the Denver and Powder River basins).The detailed analysis of shale plays reveals that the shales are different in facies and mineral components,and"shale reservoirs"are often not shale at all.The United States is abundant in shale oil and gas,with the in-place resources exceeding 0.246×10^(12)t and 290×10^(12)m^(3),respectively.Before the emergence of horizontal well hydraulic fracturing technology to kick off the"shale revolution",the United States had experienced two decades of exploration and production practices,as well as theory and technology development.In 2007-2023,shale oil and gas production in the United States increased from approximately 11.2×10^(4)tons of oil equivalent per day(toe/d)to over 300.0×10^(4)toe/d.In 2017,the shale oil and gas production exceeded the conventional oil and gas production in the country.In 2023,the contribution from shale plays to the total U.S.oil and gas production remained above 60%.The development of shale oil and gas has largely been driven by improvements in drilling and completion technologies,with much of the recent effort focused on“cube development”or“co-development”.Other efforts to improve productivity and efficiency include refracturing,enhanced oil recovery,and drilling of“U-shaped”wells.Given the significant resources base and continued technological improvements,shale oil and gas production will continue to contribute significant volumes to total U.S.hydrocarbon production. 展开更多
关键词 United States shale oil shale gas shale reservoirs unconventional reservoirs oil and gas production resource assessment
下载PDF
Characteristics of carbon isotopic composition of alkane gas in large gas fields in China
18
作者 DAI Jinxing NI Yunyan +4 位作者 GONG Deyu HUANG Shipeng LIU Quanyou HONG Feng ZHANG Yanling 《Petroleum Exploration and Development》 SCIE 2024年第2期251-261,共11页
Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry.From 1991 to 2020,China discovered 68 new large gas fields,boosting its annual gas output t... Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry.From 1991 to 2020,China discovered 68 new large gas fields,boosting its annual gas output to 1925×108m3in 2020,making it the fourth largest gas-producing country in the world.Based on 1696 molecular components and carbon isotopic composition data of alkane gas in 70 large gas fields in China,the characteristics of carbon isotopic composition of alkane gas in large gas fields in China were obtained.The lightest and average values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become heavier with increasing carbon number,while the heaviest values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become lighter with increasing carbon number.Theδ^(13)C_(1)values of large gas fields in China range from-71.2‰to-11.4‰(specifically,from-71.2‰to-56.4‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-18.9‰for coal-derived gas,and from-35.6‰to-11.4‰for abiogenic gas).Based on these data,theδ^(13)C_(1)chart of large gas fields in China was plotted.Moreover,theδ^(13)C_(1)values of natural gas in China range from-107.1‰to-8.9‰,specifically,from-1071%o to-55.1‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-13.3‰for coal-derived gas,and from-36.2‰to-8.9‰for abiogenic gas.Based on these data,theδ^(13)C_(1)chart of natural gas in China was plotted. 展开更多
关键词 China large gas field bacterial gas oil-related gas coal-derived gas abiogenic gas alkane gas carbon isotopic composition δ^(13)C_(1)chart
下载PDF
Research progress and potential of new enhanced oil recovery methods in oilfield development
19
作者 YUAN Shiyi HAN Haishui +5 位作者 WANG Hongzhuang LUO Jianhui WANG Qiang LEI Zhengdong XI Changfeng LI Junshi 《Petroleum Exploration and Development》 SCIE 2024年第4期963-980,共18页
This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the probl... This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the problems of EOR methods,and proposes the relevant research prospects.The basic research means for oilfield development include in-situ acquisition of formation rock/fluid samples and non-destructive testing.The EOR methods for conventional and shale oil development are classified as improved water flooding(e.g.nano-water flooding),chemical flooding(e.g.low-concentration middle-phase micro-emulsion flooding),gas flooding(e.g.micro/nano bubble flooding),thermal recovery(e.g.air injection thermal-aided miscible flooding),and multi-cluster uniform fracturing/water-free fracturing,which are discussed in this paper for their mechanisms,approaches,and key technique researches and field tests.These methods have been studied with remarkable progress,and some achieved ideal results in field tests.Nonetheless,some problems still exist,such as inadequate research on mechanisms,imperfect matching technologies,and incomplete industrial chains.It is proposed to further strengthen the basic researches and expand the field tests,thereby driving the formation,promotion and application of new technologies. 展开更多
关键词 oilfield development enhanced oil recovery mature oilfield shale oil improved water flooding chemical flooding gas flooding thermal recovery
下载PDF
A STAMP-Game model for accident analysis in oil and gas industry
20
作者 Huixing Meng Xu An +4 位作者 Daiwei Li Shijun Zhao Enrico Zio Xuan Liu Jinduo Xing 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期2154-2167,共14页
Accidents in engineered systems are usually generated by complex socio-technical factors.It is beneficial to investigate the increasing complexity and coupling of these factors from the perspective of system safety.Ba... Accidents in engineered systems are usually generated by complex socio-technical factors.It is beneficial to investigate the increasing complexity and coupling of these factors from the perspective of system safety.Based on system and control theories,System-Theoretic Accident Model and Processes(STAMP)is a widely recognized approach for accident analysis.In this paper,we propose a STAMP-Game model to analyze accidents in oil and gas storage and transportation systems.Stakeholders in accident analysis by STAMP can be regarded as players of a game.Game theory can,thus,be adopted in accident analysis to depict the competition and cooperation between stakeholders.Subsequently,we established a game model to study the strategies of both supervisory and supervised entities.The obtained results demonstrate that the proposed game model allows for identifying the effectiveness deficiency of the supervisory entity,and the safety and protection altitudes of the supervised entity.The STAMP-Game model can generate quantitative parameters for supporting the behavior and strategy selections of the supervisory and supervised entities.The quantitative data obtained can be used to guide the safety improvement,to reduce the costs of safety regulation violation and accident risk. 展开更多
关键词 Accident analysis STAMP System engineering Gametheory oil and gas storage and transportation SYSTEMS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部