期刊文献+
共找到4,941篇文章
< 1 2 248 >
每页显示 20 50 100
产前超声诊断Binder综合征
1
作者 牛可雄 李天刚 +3 位作者 杨琼宇 苏晓荣 吴温瑞 张文栋 《中国介入影像与治疗学》 北大核心 2024年第1期60-62,共3页
Binder综合征是罕见的先天性面中部发育畸形[1],发病率约1/18000[2]。三维超声具有立体成像、动态可视化等优点,能实时、动态观察胎儿颜面部结构,已广泛应用于临床。本研究观察产前超声诊断Binder综合征的价值。1资料与方法1.1研究对象... Binder综合征是罕见的先天性面中部发育畸形[1],发病率约1/18000[2]。三维超声具有立体成像、动态可视化等优点,能实时、动态观察胎儿颜面部结构,已广泛应用于临床。本研究观察产前超声诊断Binder综合征的价值。1资料与方法1.1研究对象收集2019年10月—2022年10月于甘肃省妇幼保健院经产前超声诊断为Binder综合征的7胎胎儿,均为单胎,孕周22~24周、平均(22.9±0.7)周;孕妇年龄26~36岁、平均(30.0±3.3)岁,其中1名孕期有环境毒害物(甲醛)接触史,1名有孕早期服药史(布洛芬),1名孕期从事美甲工作并频繁接触甲醇、乙醛等化学溶剂。本研究经院伦理委员会批准[(2021)GSFY伦审[47]号];孕妇及其家属均知情同意。 展开更多
关键词 胎儿 先天畸形 超声检查 产前 上颌骨发育不良 binder
下载PDF
Simulation Research on Coal-Water Slurry Gasification of Oil-Based Drill Cuttings Based on Fluent
2
作者 Liang Hu Hailong Yu +4 位作者 Liuyang Huang Yayun Xu XuleiWu Yunlan Sun Baozhong Zhu 《Energy Engineering》 EI 2023年第9期1963-1977,共15页
In this paper,based on Fluent software,a five-nozzle gasifier reactor was established to simulate the gasification process of oil-based drill cuttings coal-water slurry.The influence of concentration and oxygen/carbon... In this paper,based on Fluent software,a five-nozzle gasifier reactor was established to simulate the gasification process of oil-based drill cuttings coal-water slurry.The influence of concentration and oxygen/carbon atomic ratio on the gasification process of oil-based drill cuttings coal-water slurry was investigated.The results show that when the oxygen flow is constant,the outlet temperature of gasifier decreases,the content of effective gas increases,and the carbon conversion rate decreases with the increase of concentration;When the ratio of oxygen to carbon atoms is constant,the effective gas content rises and the temperature rises with the increase of the concentration,and the carbon conversion rate reaches the maximum value when the concentration of oil-based drill cuttings coal-water slurry is 65%;When the concentration is constant,the effective gas content decreases and the outlet temperature rises with the increase of the oxygen/carbon atom ratio,and the carbon conversion rate reaches 99.80%when the oxygen/carbon atom ratio is 1.03.It shows that this method can effectively decompose the organic matter in oilbased drill cuttings and realize the efficient and cooperative treatment of oil-based drill cuttings. 展开更多
关键词 oil-base drill cuttings coal-water slurry gasification furnace numerical simulation FLUENT
下载PDF
Constructing high-toughness polyimide binder with robust polarity and ion-conductive mechanisms ensuring long-term operational stability of silicon-based anodes
3
作者 Yongjun Kang Nanxi Dong +5 位作者 Fangzhou Liu Daolei Lin Bingxue Liu Guofeng Tian Shengli Qi Dezhen Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期580-591,I0014,共13页
Silicon-based materials have demonstrated remarkable potential in high-energy-density batteries owing to their high theoretical capacity.However,the significant volume expansion of silicon seriously hinders its utiliz... Silicon-based materials have demonstrated remarkable potential in high-energy-density batteries owing to their high theoretical capacity.However,the significant volume expansion of silicon seriously hinders its utilization as a lithium-ion anode.Herein,a functionalized high-toughness polyimide(PDMI) is synthesized by copolymerizing the 4,4'-Oxydiphthalic anhydride(ODPA) with 4,4'-oxydianiline(ODA),2,3-diaminobenzoic acid(DABA),and 1,3-bis(3-aminopropyl)-tetramethyl disiloxane(DMS).The combination of rigid benzene rings and flexible oxygen groups(-O-) in the PDMI molecular chain via a rigidness/softness coupling mechanism contributes to high toughness.The plentiful polar carboxyl(-COOH) groups establish robust bonding strength.Rapid ionic transport is achieved by incorporating the flexible siloxane segment(Si-O-Si),which imparts high molecular chain motility and augments free volume holes to facilitate lithium-ion transport(9.8 × 10^(-10) cm^(2) s^(-1) vs.16 × 10^(-10) cm^(2) s~(-1)).As expected,the SiO_x@PDMI-1.5 electrode delivers brilliant long-term cycle performance with a remarkable capacity retention of 85% over 500 cycles at 1.3 A g^(-1).The well-designed functionalized polyimide also significantly enhances the electrochemical properties of Si nanoparticles electrode.Meanwhile,the assembled SiO_x@PDMI-1.5/NCM811 full cell delivers a high retention of 80% after 100 cycles.The perspective of the binder design strategy based on polyimide modification delivers a novel path toward high-capacity electrodes for high-energy-density batteries. 展开更多
关键词 Polyimide binder High toughness Robust ionic transport Silicon-based anodes Lithium-ion batteries
下载PDF
Design of multifunctional polymeric binders in silicon anodes for lithium‐ion batteries
4
作者 Masytha Nuzula Ramdhiny Ju‐Won Jeon 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期140-163,共24页
Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anode... Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anodes exhibit severe volume change during lithiation/delithiation processes,resulting in anode pulverization and delamination with detrimental growth of solid electrolyte interface layers.As a result,the cycling stability of Si anodes is insufficient for commercialization in LIBs.Polymeric binders can play critical roles in Si anodes by affecting their cycling stability,although they occupy a small portion of the electrodes.This review introduces crucial factors influencing polymeric binders'properties and the electrochemical performance of Si anodes.In particular,we emphasize the structure–property relationships of binders in the context of molecular design strategy,functional groups,types of interactions,and functionalities of binders.Furthermore,binders with additional functionalities,such as electrical conductivity and self‐healability,are extensively discussed,with an emphasis on the binder design principle. 展开更多
关键词 CONDUCTIVITY lithium‐ion batteries molecular interactions polymeric binders self‐healability Si anodes
下载PDF
High energy density in ultra-thick and flexible electrodes enabled by designed conductive agent/binder composite
5
作者 Xiaoyu Shen Hailong Yu +6 位作者 Liubin Ben Wenwu Zhao Qiyu Wang Guanjun Cen Ronghan Qiao Yida Wu Xuejie Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期133-143,I0005,共12页
Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated us... Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes. 展开更多
关键词 Conductive agent/binder composite Dry process Ultra-thick electrodes High energy density CEI reconstruction ToF-SIMS
下载PDF
Dry Mix Slag—High-Calcium Fly Ash Binder. Part Two: Durability
6
作者 Alexey Brykov Mikhail Voronkov 《Materials Sciences and Applications》 2024年第3期37-51,共15页
This work investigates durability of cement-free mortars with a binder comprised of ground granulated blast furnace slag (GGBFS) activated by high-calcium fly ash (HCFA) and sodium carbonate (Na<sub>2</sub>... This work investigates durability of cement-free mortars with a binder comprised of ground granulated blast furnace slag (GGBFS) activated by high-calcium fly ash (HCFA) and sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>): the soundness, sulfate resistance, alkali-silica reactivity and efflorescence factors are considered. Results of tests show that such mortars are resistant to alkali-silica expansion. Mortars are also sulfate-resistant when the amount of HCFA in the complex binder is within a limit of 10 wt%. The fineness of fly ash determines its’ ability to activate GGBFS hydration, and influence soundness of the binder, early strength development, sulfate resistance and efflorescence behavior. The present article is a continuation of authors’ work, previously published in MSA, Vol. 14, 240-254. 展开更多
关键词 Ground Granulated Blast-Furnace Slag High-Calcium Fly-Ash Sodium Car-bonate Blast-Furnace Slag binder DURABILITY ASR Sulfate Attack SOUNDNESS EFFLORESCENCE
下载PDF
Gas-hydrate formation,agglomeration and inhibition in oil-based drilling fluids for deep-water drilling 被引量:9
7
作者 Fulong Ning Ling Zhang +2 位作者 YunzhongTu Guosheng Jiang Maoyong Shi 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第3期234-240,共7页
One of the main challenges in deep-water drilling is gas-hydrate plugs,which make the drilling unsafe.Some oil-based drilling fluids(OBDF) that would be used for deep-water drilling in the South China Sea were teste... One of the main challenges in deep-water drilling is gas-hydrate plugs,which make the drilling unsafe.Some oil-based drilling fluids(OBDF) that would be used for deep-water drilling in the South China Sea were tested to investigate the characteristics of gas-hydrate formation,agglomeration and inhibition by an experimental system under the temperature of 4 ?C and pressure of 20 MPa,which would be similar to the case of 2000 m water depth.The results validate the hydrate shell formation model and show that the water cut can greatly influence hydrate formation and agglomeration behaviors in the OBDF.The oleophobic effect enhanced by hydrate shell formation which weakens or destroys the interfacial films effect and the hydrophilic effect are the dominant agglomeration mechanism of hydrate particles.The formation of gas hydrates in OBDF is easier and quicker than in water-based drilling fluids in deep-water conditions of low temperature and high pressure because the former is a W/O dispersive emulsion which means much more gas-water interfaces and nucleation sites than the later.Higher ethylene glycol concentrations can inhibit the formation of gas hydrates and to some extent also act as an anti-agglomerant to inhibit hydrates agglomeration in the OBDF. 展开更多
关键词 oil-based drilling fluids gas hydrates water cut formation and agglomeration INHIBITOR
下载PDF
Synthesis of melamine-formaldehyde microcapsules containing oil-based fragrances via intermediate polyacrylate bridging layers 被引量:3
8
作者 Yanping He Shunzhi Yao +5 位作者 JunzhengHao HongWang Linhua Zhu TianSi Yanlin Sun Jianhao Lin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第10期2574-2580,共7页
A general and versatile strategy to prepare melamine-formaldehyde(MF)microcapsules encapsulating oil-based fragrances by combining solvent evaporation and in situ polymerization was proposed in this work.The oil-based... A general and versatile strategy to prepare melamine-formaldehyde(MF)microcapsules encapsulating oil-based fragrances by combining solvent evaporation and in situ polymerization was proposed in this work.The oil-based fragrance was pre-encapsulated by an inner polyacrylate membrane via solvent evaporation,followed by in situ polymerization of MF precondensates as an outer shell.The polyacrylate membrane is used as an intermediate bridging layer to stabilize the oil-based fragrance,and to provide driving forces for in situ polymerization of MF precondensates through electrostatic attractions between carboxyl groups and ammonium ions.It was demonstrated that MF microcapsules containing clove oil were prepared successfully.The amount and the composition of the intermediate polyacrylate bridging layer were critical.Smooth and sphere-shaped MF-clove oil microcapsules were prepared when the weight ratio of polyacrylate to clove oil was over 60 wt%and the concentration of acrylic acid(AA)increased to 10 wt%in polyacrylate.In addition,MF microcapsules containing sunflower oil and hexyl salicylate were prepared by using this method.The work suggests that this new approach can be potentially used to encapsulate various core materials,tuning the shell properties of microcapsules such as thickness,mechanical strength and release properties. 展开更多
关键词 Melamine formaldehyde MICROCAPSULE oil-based FRAGRANCE Particle Polymers Synthesis
下载PDF
Rheological properties of oil-based drilling fluids at high temperature and high pressure 被引量:3
9
作者 赵胜英 鄢捷年 +1 位作者 舒勇 张洪霞 《Journal of Central South University》 SCIE EI CAS 2008年第S1期457-461,共5页
The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental ... The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental results show that the apparent viscosity,plastic viscosity and yield point decrease with the increase of temperature,and increase with the increase of pressure.The effect of pressure on the apparent viscosity,plastic viscosity and yield point is considerable at ambient temperature.However,this effect gradually reduces with the increase of temperature.The major factor influencing the rheological properties of oil-based drilling fluids is temperature instead of pressure in the deep sections of oil wells.On the basis of numerous experiments,the model for predict the apparent viscosity,plastic viscosity and yield point of oil-based drilling fluids at high temperature and pressure was established using the method of regressive analysis.It is confirmed that the calculated data are in good agreement with the measured data,and the correlation coefficients are more than 0.98.The model is convenient for use and suitable for the application in drilling operations. 展开更多
关键词 oil-based DRILLING FLUIDS HIGH temperature HIGH pressure RHEOLOGICAL property MATHEMATICAL model
下载PDF
Squeeze-Strengthening Effect of Silicone Oil-based Magnetorheological Fluid 被引量:2
10
作者 刘新华 CHEN Qingqing +2 位作者 LIU Hao WANG Zhongbin ZHAO Huadong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第3期523-527,共5页
In order to study the squeeze-strengthening effect of silicone oil-based magnetorheological fluid (MRF), theoretical basis of disc squeezing brake was presented and a squeezing braking characteristics test-bed for M... In order to study the squeeze-strengthening effect of silicone oil-based magnetorheological fluid (MRF), theoretical basis of disc squeezing brake was presented and a squeezing braking characteristics test-bed for MRF was designed. Moreover, relevant experiments were carded out and the relationship between squeezing pressure and braking torque was proposed. Experiments results showed that the yield stress of MRF improved linearly with the increasing of external squeezing pressure and the braking torque increased three times when external squeezing pressure achieved 2 MPa. 展开更多
关键词 silicone oil-based magnetorheological fluid squeeze-strengthening effect yield stress braking characteristic
下载PDF
Plant Oil-Based Waterborne Polyurethanes: A Brief Review 被引量:2
11
作者 VerónicaL.Mucci M.E.Victoria Hormaiztegui Mirta I.Aranguren 《Journal of Renewable Materials》 SCIE EI 2020年第6期579-601,共23页
The increasing pressure from consumers and policy makers to reduce the use of synthetic polymers,whose production contributes to the depletion of non-renewable resources and are usually non-biodegradable,has prompted ... The increasing pressure from consumers and policy makers to reduce the use of synthetic polymers,whose production contributes to the depletion of non-renewable resources and are usually non-biodegradable,has prompted the efforts to find suitable bio-based sources for the production of polymers.Vegetable oils have been a frequently spotted in this search because they are versatile,highly available and a low cost liquid biosource,which can be used in the synthesis of a wide plethora of different polymers and reactive monomers.Following the same idea of reducing the environmental stress,the traditional polyurethanes that are soluble in organic solvents have been targeted for replacement,particularly in applications such as adhesives and coatings,in which the solvent is released to the atmosphere increasing the air pollution.Instead,waterborne polyurethanes(WBPU),which are polyurethane dispersions(PUD)prepared in aqueous media,release benign water to the atmosphere during use as supported or self-standing films for different applications.In this brief review,the contributions to the development of WBPUs based on vegetable oils are discussed,focusing mainly on the contributions of the last decade.The synthesis of ionic and nonionic PUDs,their characterization and the properties of the resulting dried materials,as well as derived composite materials are considered. 展开更多
关键词 Vegetable oils polyurethane dispersions(PUD) waterborne polyurethane(WBPU) biopolyols biopolyurethanes COATINGS adhesives ink binders
下载PDF
Development of key additives for organoclay-free oil-based drilling mud and system performance evaluation 被引量:1
12
作者 SUN Jinsheng HUANG Xianbin +3 位作者 JIANG Guancheng LYU Kaihe LIU Jingping DAI Zhiwen 《Petroleum Exploration and Development》 2018年第4期764-769,共6页
Traditional oil-based drilling muds(OBMs) have a relatively high solid content, which is detrimental to penetration rate increase and reservoir protection. Aimed at solving this problem, an organoclay-free OBM system ... Traditional oil-based drilling muds(OBMs) have a relatively high solid content, which is detrimental to penetration rate increase and reservoir protection. Aimed at solving this problem, an organoclay-free OBM system was studied, the synthesis methods and functioning mechanism of key additives were introduced, and performance evaluation of the system was performed. The rheology modifier was prepared by reacting a dimer fatty acid with diethanolamine, the primary emulsifier was made by oxidation and addition reaction of fatty acids, the secondary emulsifier was made by amidation of a fatty acid, and finally the fluid loss additive of water-soluble acrylic resin was synthesized by introducing acrylic acid into styrene/butyl acrylate polymerization. The rheology modifier could enhance the attraction between droplets, particles in the emulsion via intermolecular hydrogen bonding and improve the shear stress by forming a three-dimensional network structure in the emulsion. Lab experimental results show that the organoclay-free OBM could tolerate temperatures up to 220 ?C and HTHP filtration is less than 5 m L. Compared with the traditional OBMs, the organoclay-free OBM has low plastic viscosity, high shear stress, high ratio of dynamic shear force to plastic viscosity and high permeability recovery, which are beneficial to penetration rate increase, hole cleaning and reservoir protection. 展开更多
关键词 organoclay-free oil-based drilling MUD rheology MODIFIER EMULSIFIER fluid loss REDUCER weak gel reservoir protection
下载PDF
Comparison and application of different empirical correlations for estimating the hydrate safety margin of oil-based drilling fluids containing ethylene glycol
13
作者 Fulong Ning Ling Zhang +3 位作者 Guosheng Jiang Yunzhong Tu Xiang W u Yibing Yu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第1期25-33,共9页
As the oil and gas industries continue to increase their activity in deep water, gas hydrate hazards will become more serious and challenging, both at present and in the future. Accurate predictions of the hydrate-fre... As the oil and gas industries continue to increase their activity in deep water, gas hydrate hazards will become more serious and challenging, both at present and in the future. Accurate predictions of the hydrate-free zone and the suitable addition of salts and/or alcohols in preparing drilling fluids are particularly important both in preventing hydrate problems and decreasing the cost of drilling operations. In this paper, we compared several empirical correlations commonly used to estimate the hydrate inhibition effect of aqueous organic and electrolyte solutions using experiments with ethylene glycol (EG) as a hydrate inhibitor. The results show that the Najibi et al. correlation (for single and mixed thermodynamic inhibitors) and the Ostergaard et al. empirical correlation (for single thermodynamic inhibitors) are suitable for estimating the hydrate safety margin of oil-based drilling fluids (OBDFs) in the presence of thermodynamic hydrate inhibitors. According to the two correlations, the OBDF, composed of 1.6 L vaporizing oil, 2% emulsifying agent, 1% organobentonite, 0.5% SP-1, 1% LP-1, 10% water and 40% EG, can be safely used at a water depth of up to 1900 m. However, for more accurate predictions for drilling fluids, the effects of the solid phase, especially bentonite, on hydrate inhibition need to be considered and included in the application of these two empirical correlations. 展开更多
关键词 oil-based drilling fluid gas hydrates ethylene glycol inhibition prediction
下载PDF
Calculation and application of partition coefficients of light hydrocarbons in oil-based mud system
14
作者 BEN ABDALLAH Bacem Rabie AHMADI Riadh +1 位作者 LYNEN Frederic REKHISS Farhat 《Petroleum Exploration and Development》 CSCD 2022年第4期906-918,共13页
To find out the relationship between the oil-based mud,the formation fluid and the extracted gas,we use a thermodynamic approach based on static headspace gas chromatography technique to calculate the partition coeffi... To find out the relationship between the oil-based mud,the formation fluid and the extracted gas,we use a thermodynamic approach based on static headspace gas chromatography technique to calculate the partition coefficients of 47 kinds of light hydrocarbons compounds between nC5 and nC8 in two kinds of oil-based mud-air systems,and reconstruct the original formation fluid composition under thermodynamic equilibrium.The oil-based drilling mud has little effect on the formation fluid compositions in the range of nC5-nC8(less than 1%for low-toxicity oil-based mud and less than 10%for oil-based mud).For most light hydrocarbon compositions,the partition coefficients obtained by vapor phase calibration and the direct quantitative methods have errors of less than 10%,and the partition coefficients obtained by direct quantitative method are more accurate.The reconstructed compositions of the two kinds of crude oil have match degrees of 91%and 89%with their real compositions,proving the feasibility and accuracy of reconstructing the composition of original formation fluid by using partition coefficients of light hydrocarbon compositions between nC5 and nC8. 展开更多
关键词 oil-based mud drilling mud gas light hydrocarbon compositions partition coefficients reservoir fluid
下载PDF
Effects of binder components and PVA modifier on bonding performance of phosphate binder for sand core-making
15
作者 Wei-hua Liu Xin Jia +1 位作者 Lai Song Ying-min Li 《China Foundry》 SCIE CAS CSCD 2023年第2期134-138,共5页
A type of heat-curing phosphate binder was proposed,and orthogonal experiments based on the tensile strength of sand samples determined that the optimal composition of the binder was phosphoric acid:water:aluminum hyd... A type of heat-curing phosphate binder was proposed,and orthogonal experiments based on the tensile strength of sand samples determined that the optimal composition of the binder was phosphoric acid:water:aluminum hydroxide:magnesium oxide:boric acid=300:70:60:9:8.Adding 10%polyvinyl alcohol(PVA)solution during the sand mixture process can significantly improve the 24 h tensile strength of sand samples.When adding 30 g phosphate binder and 8 g 10%PVA solution,the initial tensile strength of the sample is 0.76 MPa,the room temperature tensile strength is 2.29 MPa,and the 24 h tensile strength is 1.73 MPa.The heat-curing modified phosphate sand mold has high tensile strength and low gas generation,which can meet general casting production requirements. 展开更多
关键词 phosphate binder heat curing MODIFIER tensile strength
下载PDF
Development of a High Temperature and High Pressure Oil-Based Drilling Fluid Emulsion Stability Tester
16
作者 Huaiyuan Long Wu Chen +3 位作者 Dichen Tan Lanping Yang Shunyuan Zhang Song Wang 《Open Journal of Yangtze Oil and Gas》 2021年第2期25-35,共11页
When drilling deep wells and ultra-deep wells, the downhole high temperature and high pressure environment will affect the emulsion stability of oil-based drilling fluids. Moreover, neither the demulsification voltage... When drilling deep wells and ultra-deep wells, the downhole high temperature and high pressure environment will affect the emulsion stability of oil-based drilling fluids. Moreover, neither the demulsification voltage method nor the centrifugal method currently used to evaluate the stability of oil-based drilling fluids can reflect the emulsification stability of drilling fluids under high temperature and high pressure on site. Therefore, a high-temperature and high-pressure oil-based drilling fluid emulsion stability evaluation instrument is studied, which is mainly composed of a high-temperature autoclave body, a test electrode, a temperature control system, a pressure control system, and a test system. The stability test results of the instrument show that the instrument can achieve stable testing and the test data has high reliability. This instrument is used to analyze the factors affecting the emulsion stability of oil-based drilling fluids. The experimental results show that under the same conditions, the higher the stirring speed, the better the emulsion stability of the drilling fluid;the longer the stirring time, the better the emulsion stability of the drilling fluid;the greater the oil-water ratio, the better the emulsion stability of the drilling fluid. And the test results of the emulsification stability of oil-based drilling fluids at high temperature and high pressure show that under the same pressure, as the temperature rises, the emulsion stability of oil-based drilling fluids is significantly reduced;at the same temperature, the With the increase in pressure, the emulsion stability of oil-based drilling fluids is in a downward trend, but the decline is not large. Relatively speaking, the influence of temperature on the emulsion stability of oil-based drilling fluids is greater than that of pressure. 展开更多
关键词 oil-based Drilling Fluid EMULSIFICATION Demulsification Voltage TESTER High Temperature and High Pressure
下载PDF
Novel polyimide binder for achieving high-rate capability and long-term cycling stability of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cathode via constructing polar and micro-branched crosslinking network structure
17
作者 Yueming Xu Yali Wang +5 位作者 Nanxi Dong Chuanzhi Pu Bingxue Liu Guofeng Tian Shengli Qi Dezhen Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期19-31,I0002,共14页
LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)material,as the promising cathode candidate for next-generation highenergy lithium-ion batteries,has gained considerable attention for extremely high theoretical capacity and low... LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)material,as the promising cathode candidate for next-generation highenergy lithium-ion batteries,has gained considerable attention for extremely high theoretical capacity and low cost.Nevertheless,the intrinsic drawbacks of NCM811 such as unstable structure and inevitable interface side reaction result in severe capacity decay and thermal runaway.Herein,a novel polyimide(denoted as PI-Om DT)constructed with the highly polar and micro-branched crosslinking network is reported as a binder material for NCM811 cathode.The micro-branched crosslinking network is achieved by using 1,3,5-Tris(4-aminophenoxy)benzene(TAPOB)as a crosslinker via condensation reaction,which endows excellent mechanical properties and large free volume.Meanwhile,the massive polar carboxyl(-COOH)groups provide strong adhesion sites to active NCM811 particles.These functions of PIOm DT binder collaboratively benefit to forming the mechanically robust and homogeneous coating layer with rapid Li+diffusion on the surface of NCM811,significantly stabilizing the cathode structure,suppressing the detrimental interface side reaction and guaranteeing the shorter ion-diffusion and electron-transfer paths,consequently enhancing electrochemical performance.As compared to the NCM811 with PVDF binder,the NCM811 using PI-Om DT binder delivers a superior high-rate capacity(121.07 vs.145.38 m Ah g^(-1))at 5 C rate and maintains a higher capacity retention(80.38%vs.91.6%)after100 cycles at 2.5–4.3 V.Particularly,at the high-voltage conditions up to 4.5 and 4.7 V,the NCM811 with PI-Om DT binder still maintains the remarkable capacity retention of 88.86%and 72.5%after 100 cycles,respectively,paving the way for addressing the high-voltage operating stability of the NCM811 cathode.Moreover,the full-charged NCM811 cathode with PI-Om DT binder exhibits a significantly enhanced thermal stability,improving the safety performance of batteries.This work opens a new avenue for developing high-energy NCM811 based lithium-ion batteries with long cycle-life and superior safety performance using a novel and effective binder. 展开更多
关键词 POLYIMIDE binder Micro-branched crosslinking network NCM811 cathode Lithium-ion battery
下载PDF
Silk fibroin-based biopolymer composite binders with gradient binding energy and strong adhesion force for high-performance micro-sized silicon anodes
18
作者 Panpan Dong Xiahui Zhang +2 位作者 Julio Zamora John McCloy Min-Kyu Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期442-451,I0010,共11页
Micro-sized silicon anodes have shown much promise in large-scale industrial production of high-energy lithium batteries.However,large volume change(>300%)of silicon anodes causes severe particle pulverization and ... Micro-sized silicon anodes have shown much promise in large-scale industrial production of high-energy lithium batteries.However,large volume change(>300%)of silicon anodes causes severe particle pulverization and the formation of unstable solid electrolyte interphases during cycling,leading to rapid capacity decay and short cycle life of lithium-ion batteries.When addressing such issues,binder plays key roles in obtaining good structural integrity of silicon anodes.Herein,we report a biopolymer composite binder composed of rigid poly(acrylic acid)(PAA)and flexible silk fibroin(SF)tailored for micro-sized silicon anodes.The PAA/SF binder shows robust gradient binding energy via chemical interactions between carboxyl and amide groups,which can effectively accommodate large volume change of silicon.This PAA/SF binder also shows much stronger adhesion force and improved binding towards high-surface/defective carbon additives,resulting in better electrochemical stability and higher coulombic efficiency,than conventional PAA binder.As such,micro-sized silicon/carbon anodes fabricated with novel PAA/SF binder exhibit much better cyclability(up to 500 cycles at 0.5 C)and enhanced rate capability compared with conventional PAA-based anodes.This work provides new insights into the design of functional binders for high-capacity electrodes suffering from large volume change for the development of nextgeneration lithium batteries. 展开更多
关键词 Micro-sized silicon binder Silk fbroin Strong adhesion force Rate capability CYCLABILITY
下载PDF
Rational Design of Robust and Universal Aqueous Binders to Enable Highly Stable Cyclability of High-Capacity Conversion and Alloy-Type Anodes
19
作者 Yuzhu Yao Xiaolei Qu +7 位作者 Linming Zhou Yongfeng Liu Zijian Hong Yongjun Wu Zhenguo Huang Jianjiang Hu Mingxia Gao Hongge Pan 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期260-268,共9页
The development of high-performance binders is a simple but effective approach to address the rapid capacity decay of high-capacity anodes caused by large volume change upon lithiation/delithiation.Herein,we demonstra... The development of high-performance binders is a simple but effective approach to address the rapid capacity decay of high-capacity anodes caused by large volume change upon lithiation/delithiation.Herein,we demonstrate a unique organic/inorganic hybrid binder system that enables an efficient in situ crosslinking of aqueous binders(e.g.,sodium alginate(SA)and carboxymethyl cellulose(CMC))by reacting with an inorganic crosslinker(sodium metaborate hydrate(SMH))upon vacuum drying.The resultant 3D interconnected networks endow the binders with strong adhesion and outstanding self-healing capability,which effectively improve the electrode integrity by preventing fracturing and exfoliation during cycling and facilitate Li^(+)ion transfer.SiO anodes fabricated from the commercial microsized powders with the SA/0.2SMH binder maintain 1470 mAh g^(-1)of specific capacity at 100 mA g^(-1)after 200 cycles,which is 5 times higher than that fabricated with SA binder alone(293 mAh g^(-1)).Nearly,no capacity loss was observed over 500 cycles when limiting discharge capacity at 1500 mAh g^(-1).The new binders also dramatically improved the performance of Fe_(2)O_(3),Fe_(3)O_(4),NiO,and Si electrodes,indicating the excellent applicability.This finding represents a novel strategy in developing high-performance aqueous binders and improves the prospect of using high-capacity anode materials in Li-ion batteries. 展开更多
关键词 anode materials binders cycling stability in situ crosslinking lithium-ion batteries
下载PDF
Rational design of stretchable and conductive hydrogel binder for highly reversible SiP2 anode
20
作者 Xuhao Liu Runzhe Yao +7 位作者 Siqi Wang Yaqing Wei Bin Chen Wei Liang Caiyun Tian Chengyu Nie De Li Yong Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期564-573,I0013,共11页
The emerging SiP2with large capacity and suitable plateau is proposed to be the alternative anode for Li-ion batteries.However,typical SiP2still suffers from serious volume expansion and structural destruction,resulti... The emerging SiP2with large capacity and suitable plateau is proposed to be the alternative anode for Li-ion batteries.However,typical SiP2still suffers from serious volume expansion and structural destruction,resulting in much Li-consumption and capacity fading.Herein,a novel stretchable and conductive Li-PAA@PEDOT:PSS binder is rationally designed to improve the cyclability and reversibility of SiP2.Interestingly,such Li-PAA@PEDOT:PSS hydrogel enables a better accommodation of volume expansion than PVDF binder(e.g.5.94% vs.68.73% of expansivity).More specially,the SiP2electrode with LiPAA@PEDOT:PSS binder is surprisingly found to enable unexpected structural recombination and selfhealing Li-storage processes,endowing itself with a high initial Coulombic efficiency(ICE) up to 93.8%,much higher than PVDF binder(ICE=70.7%) as well.Such unusual phenomena are investigated in detail for Li-PAA@PEDOT:PSS,and the possible mechanism shows that its Li-PAA component enables to prevent the pulverization of SiP2nanoparticles while the PEDOT:PSS greatly bridges fast electronic connection for the whole electrode.Consequently,after being further composited with carbon matrix,the SiP2/C with LiPAA@PEDOT:PSS hydrogel exhibits high reversibility(ICE> 93%),superior cyclability(>450 cycles),and rate capability(1520 mAh/g at 2000 mA/g) for LIBs.This highly stretchable and conductive binder design can be easily extended to other alloying materials toward advanced energy storage. 展开更多
关键词 SiP_(2) binder Initial Coulombic efficiency Anode material Lithium ion batteries
下载PDF
上一页 1 2 248 下一页 到第
使用帮助 返回顶部