In this paper,based on Fluent software,a five-nozzle gasifier reactor was established to simulate the gasification process of oil-based drill cuttings coal-water slurry.The influence of concentration and oxygen/carbon...In this paper,based on Fluent software,a five-nozzle gasifier reactor was established to simulate the gasification process of oil-based drill cuttings coal-water slurry.The influence of concentration and oxygen/carbon atomic ratio on the gasification process of oil-based drill cuttings coal-water slurry was investigated.The results show that when the oxygen flow is constant,the outlet temperature of gasifier decreases,the content of effective gas increases,and the carbon conversion rate decreases with the increase of concentration;When the ratio of oxygen to carbon atoms is constant,the effective gas content rises and the temperature rises with the increase of the concentration,and the carbon conversion rate reaches the maximum value when the concentration of oil-based drill cuttings coal-water slurry is 65%;When the concentration is constant,the effective gas content decreases and the outlet temperature rises with the increase of the oxygen/carbon atom ratio,and the carbon conversion rate reaches 99.80%when the oxygen/carbon atom ratio is 1.03.It shows that this method can effectively decompose the organic matter in oilbased drill cuttings and realize the efficient and cooperative treatment of oil-based drill cuttings.展开更多
One of the main challenges in deep-water drilling is gas-hydrate plugs,which make the drilling unsafe.Some oil-based drilling fluids(OBDF) that would be used for deep-water drilling in the South China Sea were teste...One of the main challenges in deep-water drilling is gas-hydrate plugs,which make the drilling unsafe.Some oil-based drilling fluids(OBDF) that would be used for deep-water drilling in the South China Sea were tested to investigate the characteristics of gas-hydrate formation,agglomeration and inhibition by an experimental system under the temperature of 4 ?C and pressure of 20 MPa,which would be similar to the case of 2000 m water depth.The results validate the hydrate shell formation model and show that the water cut can greatly influence hydrate formation and agglomeration behaviors in the OBDF.The oleophobic effect enhanced by hydrate shell formation which weakens or destroys the interfacial films effect and the hydrophilic effect are the dominant agglomeration mechanism of hydrate particles.The formation of gas hydrates in OBDF is easier and quicker than in water-based drilling fluids in deep-water conditions of low temperature and high pressure because the former is a W/O dispersive emulsion which means much more gas-water interfaces and nucleation sites than the later.Higher ethylene glycol concentrations can inhibit the formation of gas hydrates and to some extent also act as an anti-agglomerant to inhibit hydrates agglomeration in the OBDF.展开更多
Oil-based drill cuttings(OBDCs)are hazardous wastes generated during shale gas exploration,and the rapid,efficient and safe disposal methods for OBDCs have attracted the attention of many researchers.Plasma pyrolysis ...Oil-based drill cuttings(OBDCs)are hazardous wastes generated during shale gas exploration,and the rapid,efficient and safe disposal methods for OBDCs have attracted the attention of many researchers.Plasma pyrolysis technology is widely used in solid waste treatment due to its extremely high temperature and reaction activity.A laboratory-scale thermal plasma pyrolysis system was built to investigate the plasma pyrolysis mechanism of simulated OBDCs.The thermal decomposition characteristics of OBDCs were studied by thermogravimetric-derivative thermo gravimetric-differential scanning calorimetry(TG-DTG-DSC)analysis in the range of 50–1300℃.The thermal decomposition process of OBDCs was divided into the following four stages:evaporation of water and light oil,evaporation and decomposition of heavy oil,carbonate decomposition,and phase change reaction from solid to liquid.The effects of the oil ratio,water content,and water/oil(W/O)ratio of OBDCs on the composition and gas selectivity of pyrolytic gas were investigated.The results show that thermal plasma can crack the mineral oil in the OBDCs into clean gases such as H_(2),CO and C_(2)H_(2),while water can promote the decomposition of the heavy oil molecules and enhance the H_(2)production.The energy consumption model calculation for the pyrolysis and melting of OBDCs shows that the highest energy utilization and the lowest molar energy consumption of H_(2)were achieved at a W/O ratio of 1:4.Based on the thermal plasma pyrolysis system used in this study,the commercial application prospects and economic benefits of the plasma pyrolysis of OBDCs were discussed.展开更多
基金This research was funded by the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(KYCX21_2815).
文摘In this paper,based on Fluent software,a five-nozzle gasifier reactor was established to simulate the gasification process of oil-based drill cuttings coal-water slurry.The influence of concentration and oxygen/carbon atomic ratio on the gasification process of oil-based drill cuttings coal-water slurry was investigated.The results show that when the oxygen flow is constant,the outlet temperature of gasifier decreases,the content of effective gas increases,and the carbon conversion rate decreases with the increase of concentration;When the ratio of oxygen to carbon atoms is constant,the effective gas content rises and the temperature rises with the increase of the concentration,and the carbon conversion rate reaches the maximum value when the concentration of oil-based drill cuttings coal-water slurry is 65%;When the concentration is constant,the effective gas content decreases and the outlet temperature rises with the increase of the oxygen/carbon atom ratio,and the carbon conversion rate reaches 99.80%when the oxygen/carbon atom ratio is 1.03.It shows that this method can effectively decompose the organic matter in oilbased drill cuttings and realize the efficient and cooperative treatment of oil-based drill cuttings.
基金supported by Project 863 (No. 2006AA09Z316)NSFC (No. 50704028 and 40974071)
文摘One of the main challenges in deep-water drilling is gas-hydrate plugs,which make the drilling unsafe.Some oil-based drilling fluids(OBDF) that would be used for deep-water drilling in the South China Sea were tested to investigate the characteristics of gas-hydrate formation,agglomeration and inhibition by an experimental system under the temperature of 4 ?C and pressure of 20 MPa,which would be similar to the case of 2000 m water depth.The results validate the hydrate shell formation model and show that the water cut can greatly influence hydrate formation and agglomeration behaviors in the OBDF.The oleophobic effect enhanced by hydrate shell formation which weakens or destroys the interfacial films effect and the hydrophilic effect are the dominant agglomeration mechanism of hydrate particles.The formation of gas hydrates in OBDF is easier and quicker than in water-based drilling fluids in deep-water conditions of low temperature and high pressure because the former is a W/O dispersive emulsion which means much more gas-water interfaces and nucleation sites than the later.Higher ethylene glycol concentrations can inhibit the formation of gas hydrates and to some extent also act as an anti-agglomerant to inhibit hydrates agglomeration in the OBDF.
基金supported by the National Natural Science Foundation of China(Contract No.51976186)the Applied Basic Research Program of Sichuan Province(CN)(Contract No.2020YFS0018).
文摘Oil-based drill cuttings(OBDCs)are hazardous wastes generated during shale gas exploration,and the rapid,efficient and safe disposal methods for OBDCs have attracted the attention of many researchers.Plasma pyrolysis technology is widely used in solid waste treatment due to its extremely high temperature and reaction activity.A laboratory-scale thermal plasma pyrolysis system was built to investigate the plasma pyrolysis mechanism of simulated OBDCs.The thermal decomposition characteristics of OBDCs were studied by thermogravimetric-derivative thermo gravimetric-differential scanning calorimetry(TG-DTG-DSC)analysis in the range of 50–1300℃.The thermal decomposition process of OBDCs was divided into the following four stages:evaporation of water and light oil,evaporation and decomposition of heavy oil,carbonate decomposition,and phase change reaction from solid to liquid.The effects of the oil ratio,water content,and water/oil(W/O)ratio of OBDCs on the composition and gas selectivity of pyrolytic gas were investigated.The results show that thermal plasma can crack the mineral oil in the OBDCs into clean gases such as H_(2),CO and C_(2)H_(2),while water can promote the decomposition of the heavy oil molecules and enhance the H_(2)production.The energy consumption model calculation for the pyrolysis and melting of OBDCs shows that the highest energy utilization and the lowest molar energy consumption of H_(2)were achieved at a W/O ratio of 1:4.Based on the thermal plasma pyrolysis system used in this study,the commercial application prospects and economic benefits of the plasma pyrolysis of OBDCs were discussed.