The mining of limestone mines plays a crucial role in societal and economic advancement.However,mining activities have led to destructive variations in grassland ecology and soil,causing numerous environmental problem...The mining of limestone mines plays a crucial role in societal and economic advancement.However,mining activities have led to destructive variations in grassland ecology and soil,causing numerous environmental problems,and effective artificial restoration measures have been used to restore grasslands in the Shimenhe mining areas to different degrees.In this study,we investigated,examined and analyzed plant community structure and its correlation with soil properties across varying degrees of alpine grassland restoration in Qilian Mountains Shimenhe restoration mines using the sample method,and studied the changes in species diversity using five diversity indexes(Simpson index,Shannon index,Margalef index,Dominance index and Evenness index).This study showed that the plant community characteristics with high recovered degree(HRD)>middle recovered degree(MRD)>low recovered degree(LRD)>very low recovered degree(VLRD),11 plant genera comprising 11 species across 10 families were identified.Dominant families with robust ecological adaptability included Leguminosae,Rosaceae,Gramineae,Asteraceae,and Salicaceae.The highest Simpson,Shannon,Margalef and Evenness index of HRD grassland community species were 0.82,1.96,1.66 and 0.89,respectively.The highest Dominance index of VLRD grassland community species was 0.34,which required several restoration methods such as spraying and mulching.Soil pH and EC tended to decrease with increasing restoration,SOC,SMC,TP,AP,NH4-N,TN,AN and NO3-N tended to increase and the content of soil environmental factors contributed to vegetation growth across various restoration levels the mine grassland.In conclusion,our study indicated that the community structure gradually diversified and soil properties changed positively with the increase of restoration degrees in the Qilian Mountains Shimenhe mine,and the best results of HRD restoration were obtained.This study provides the theoretical basis for the restoration and conservation of grasslands in mining areas by demonstrating examined the correlation between plant characteristics and soil properties in restored grasslands in alpine mining areas.展开更多
Recovery of the coal buried under buildings,railways and water bodies and the residual coal in irregularly arranged fully mechanized mining faces is a common engineering problem facing underground coal mining.In this ...Recovery of the coal buried under buildings,railways and water bodies and the residual coal in irregularly arranged fully mechanized mining faces is a common engineering problem facing underground coal mining.In this study,a mining technology of continuous driving and gangue backfilling(CDGB)was proposed.The technology,which can not only alleviate ground subsidence and gangue discharge,but also release the above-mentioned coals,contributes to green and efficient sustainable development of mining.The stability of the system of the solidified body-reserved coal pillar combination(S-C combination)is crucial to the CDGB technology.Therefore,it is of great significance to explore the mechanical and damage characteristics of S-C combination in the synergistic bearing process.First,four sets of differentshaped S-C combination specimens were fabricated and a S-C combination bearing structure in CDGB was constructed to explore the differences in mechanical characteristics and damage modes of different-shaped S-C combination specimens during CDGB.Subsequently,their surface strain field evolutions and acoustic emission(AE)response characteristics in the load-bearing process were obtained with the aid of the digital image correlation technique and the AE signal monitoring system.Furthermore,a damage evolution model based on AE parameters and mechanical parameters was established to clarify the damage evolution law.The following results were obtained:(1)The free area of S-C combination can serve as a quantitative index to evaluate the stability of the overburden control system;(2)The concept of critical value k of the free area was first proposed.When the free area exceeds the critical value k(free area ratio greater than 1.13),the deformation resistance and the free area changes becomes negatively correlated;(3)As the free area expands,the failure of the S-C combination specimen evolves from tensile failure to shear failure.The distribution characteristics of the axial strain field also verified such a change in the failure mode;(4)When the free area expands,the peak AE count gradually changes from“double peaks”to“a single peak”.In this process,the expansion of free area shortens the time for accumulating and releasing energy during loading.Micro cracks generated in the specimen change from a phased steep growth to a continuous increase,and the process in which micro cracks develop,converge,intersect and connect to form macro cracks accelerates.The damage evolution law concluded based on AE parameters and mechanical parameters can well characterize the damage evolution process of S-C combination,providing certain reference for the study on the synergistic bearing of S-C combination during CDGB.展开更多
The microscopic characteristics and mechanical properties of rocks change after the action of acid on deep shale,which affects the fracturing effect.Accordingly,we designed and conducted indoor experiments related to ...The microscopic characteristics and mechanical properties of rocks change after the action of acid on deep shale,which affects the fracturing effect.Accordingly,we designed and conducted indoor experiments related to the changes in macro and microscopic characteristics after the interaction of acid with the shale of Wujiaping Formation,based on which the characteristic law of fracture volume modification after acid fracturing was studied using numerical simulation.The results demonstrate that the pores and fractures are enlarged and the structure is significantly loosened after the acid immersion.And a 15%concentration of hydrochloric acid can effectively dissolve shale.Furthermore,the degree of acid-etching reaction is highly variable because of the different carbonate content,which reveals the strong inhomogeneity of the shale system in the Wujiaping Group reservoir section.After the acid interacted with the shale rock samples,the triaxial compressive strength,elastic modulus,and Poisson’s ratio of shale decreased.Moreover,the evaluation of the effect after acid fracturing simulated by fracturing software revealed that the smaller the value of elastic modulus in shale-based reservoirs,the more favorable the fracture volume modification.This discovery not only provides a theoretical basis for the expansion and extension patterns of acid-fracturing in carbonaceous shale formations but also offers research methods and theoretical insights for the fundamental exploration of other deep-seated oil and gas resources.展开更多
Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic cha...Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil.展开更多
The creep properties, microstructural characteristics and creep mechanisms of as-cast Mg-5Bi-5Sn(BT55) alloy without and with Mn(BTM550) addition were investigated via creep at 423, 448, and 473 K as well as stresses ...The creep properties, microstructural characteristics and creep mechanisms of as-cast Mg-5Bi-5Sn(BT55) alloy without and with Mn(BTM550) addition were investigated via creep at 423, 448, and 473 K as well as stresses of 30, 50 and 75 MPa. The results indicate that adding Mn can result in the formation of primary and the dynamic precipitated α-Mn phases. In addition, the morphology of the precipitated Mg_(3)Bi_(2) phase and the orientation relationship between Mg_(2)Sn precipitates and α-Mg can be effectively modified. Tailoring the microstructural characteristics is responsible for the improved creep performance of BTM550 alloy. The dominant creep mechanisms in BT55 and BTM550 alloys are dislocation cross-slip and climb, respectively. Furthermore, twinning and pyramidal slip play an assisting part in both alloys during creep process.展开更多
Wulingyuan is a world natural heritage property mainly dominated by rare quartz sandstone peak forest landscape at home and abroad and supplemented by karst landscapes,with a large number of geological and historical ...Wulingyuan is a world natural heritage property mainly dominated by rare quartz sandstone peak forest landscape at home and abroad and supplemented by karst landscapes,with a large number of geological and historical sites,biological and ecological landscape and unique cultural landscapes.Preserving the secluded and beautiful scenery environment,biological environment and ecosystem of subtropical zone,Wulingyuan presents a splendid and magnificent landscape,with high aesthetic value,and becomes an important practice base of aesthetic education.The aesthetic education value of Wulingyuan World Natural Heritage Property can be realized by systematically studying and presenting the aesthetic education value of Wulingyuan World Natural Heritage Property,developing a series of aesthetic education courses to lead tourists into the world of Wulingyuan aesthetic education,carrying out a series of popular science activities of“Wulingyuan World Natural Heritage Property Entering Campus”,and incorporating into the aesthetic education curriculum system of schools,etc.This paper analyzes the landscape aesthetic characteristics of Wulingyuan World Natural Heritage Property thoroughly,which indicates the direction for realizing the aesthetic education value of the property,and also provides a reference for realizing the aesthetic education value of similar world natural heritage property.展开更多
Cavity perturbation method was used to determine the dielectric properties (ε′,ε″, and tanδ) of zinc oxide dust in different apparent densities. The process was conducted to study the microwave-absorption prope...Cavity perturbation method was used to determine the dielectric properties (ε′,ε″, and tanδ) of zinc oxide dust in different apparent densities. The process was conducted to study the microwave-absorption properties of zinc oxide dust and the feasibility of microwave roasting zinc oxide dust to remove fluorine and chlorine. The dielectric constant, dielectric loss, and loss tangent were proportional to the apparent density of zinc oxide dust. The effects of sample mass and microwave power on the temperature increase characteristics under the microwave field were also studied. The results show that the apparent heating rate of the zinc oxide dust increases with the increase in microwave roasting power and decreases with the increase in the sample mass. The temperature of the samples reaches approximately 800 &#176;C after microwave treatment for 8 min, which indicates that the zinc oxide dust has strong microwave-absorption ability.展开更多
Comprehensively considering energy, volume and electronic structure of alloys, the ninth equation was determined as the interaction function of Nb-Mo alloys system in BCC structure on the basis of idea of systematic s...Comprehensively considering energy, volume and electronic structure of alloys, the ninth equation was determined as the interaction function of Nb-Mo alloys system in BCC structure on the basis of idea of systematic science of alloys, experimental lattice constants and heats of formation of disordered Nb(1-x)Mox alloys. The structural parameters and properties of Nb and Mo characteristic atoms sequences and corresponding characteristic crystals sequences were determined in Nb-Mo alloys system. The electronic structure and physical properties of disordered Nb(1-x)Mox alloys system were calculated according to concentration of characteristic atoms of disordered alloys. The change trend of physical properties is the same as that of electronic structure.展开更多
[Objective] This study aimed to investigate the functions and properties of the preliminarily determined characteristics listed in DUS test guideline of Tagetes L., and explore the representativeness and comprehensive...[Objective] This study aimed to investigate the functions and properties of the preliminarily determined characteristics listed in DUS test guideline of Tagetes L., and explore the representativeness and comprehensiveness of this group of characteristics in DUS test. [Method] Based on the functions and properties of the characteristics, the described plant part (s), observation stage, expression pattern and observation method of each characteristic were analyzed to illustrate the representativeness and comprehensiveness of the combination of this group of characteristics in above functions and properties. [Result] As for described plant part(s), there are 5 characteristics describing plant as a whole, 3 characteristics describing stem, 6 characteristics describing leaf, 23 characteristics describing flower and 1 characteristic describing physiological feature. As for observation stage, there are 1 characteristic needing to be observed in the stage of seedling, 1 characteristic in the stage of beginning of flowering and other 36 characteristics in the stage of fully flowering. As for the expression pattern, there are 10 qualitative characteristics, 9 pseudo-qualitative characteristics and 19 quantitative characteristics. As for the observation method, there are 30 characteristics using VG as the observation method, and 8 characteristics using MS. [Conclusion] In view of the variation and morphological properties of marigold, this group of characteristics are representative and comprehensive, and ensure the accuracy and easiness of DUS test of Tagetes L., thereby achieving the reasonable combination of characteristics in described plant parts, observation stages, expression patterns and observation methods.展开更多
Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson b...Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson bar was employed to explore the dynamic mechanical behaviors of coal at different confining pressures(0–20 MPa)and strain rates(40–220 s^(-1)).The results show that the dynamic peak stress is positively correlated with lateral static pre-stressσy andσz,but negatively correlated with axial static prestressσx.At approximate strain rates,increasing the lateral static pre-stress facilitates increasing the dynamic peak stress,but the minimum lateral static pre-stress is the primary factor limiting a significant increase in dynamic peak stress of coal.Furthermore,the dynamic differential stress is linearly related to the logarithm of strain rate,and the peak strain varies linearly with strain rate.However,there is no significant correlation between confining pressure and peak strain.Moreover,X-ray CT images and photographic fracture observations of coal samples show the failure patterns under uniaxial and triaxial conditions are splitting failure and shear failure,respectively.The device provides a viable approach for fully comprehending the dynamic mechanical behaviors of rock-like material in complex stress conditions.展开更多
To study the damage mechanisms of anhydrite rock under freeze-thaw cycles, the physicalmechanical properties and the microcracking activities of anhydrite rock were investigated through mass variation, nuclear magneti...To study the damage mechanisms of anhydrite rock under freeze-thaw cycles, the physicalmechanical properties and the microcracking activities of anhydrite rock were investigated through mass variation, nuclear magnetic resonance, scanning electron microscope tests, and uniaxial compression combined with acoustic emission(AE) tests. Results show that with the increase of freeze-thaw processes,the mass, uniaxial compression strength, and elastic modulus of the anhydrite specimens decrease while the porosity and plasticity characteristics increase.For example, after 120 cycles, the uniaxial compression strength and elastic modulus decrease by 46.54% and 60.16%, and the porosity increase by 75%. Combined with the evolution trend of stressstrain curves and the detected events, three stages were labeled to investigate the AE characteristics in freeze-thaw weathered anhydrite rock. It is found that with the increase of freeze-thaw cycles, the proportions of AE counts in stage Ⅰ and stage Ⅱ show a decaying exponential trend. Contrarily, the proportion of AE counts in stage Ⅲ displays an exponential ascending trend. Meanwhile, as the freeze-thaw cycles increase, the low-frequency AE signals increase while the intermediate-frequency AE signals decrease. After 120 cycles, the proportion of low-frequency AE signals increases by 168.95%, and the proportion of intermediate-frequency AE signals reduces by 81.14%. It is concluded that the microtensile cracking events occupy a dominant position during the loading process. With the increase of freeze-thaw cycles, the b value of samples decreases.After 120 cycles, b value decreases by 27.2%, which means that the proportion of cracking events in rocks with small amplitude decreases. Finally, it is proposed that the freeze-thaw damage mechanism of anhydrite is also characterized by the water chemical softening effect.展开更多
The drying characteristics,physico-chemical and functional properties,as well as starch digestibility,of purple potato slices dried using different methods(such as,vacuum freeze-drying,VFD;hot-air drying,HAD;air-impin...The drying characteristics,physico-chemical and functional properties,as well as starch digestibility,of purple potato slices dried using different methods(such as,vacuum freeze-drying,VFD;hot-air drying,HAD;air-impingement jet drying,AIJD;and far-infrared assisted heat-pump drying,FIHPD)were investigated.Drying rate was the highest(3.0 g 100 g^-1 min^-1)using AIJD,followed by FIHPD and HAD,and the rate of VFD was the lowest one(0.3 g 100 g^-1 min^-1).Drying data were fitted to 12 thin-layer drying models,with the Midilli model giving the best predictions.Moreover,AIJD showed higher diffusivity(5.5×10^-10 m^2 s^–1)and energy efficiency(55 J g^-1)than any other drying method used in this study.With reference to the samples dried by VFD,the starch granules of the samples obtained by HAD,FIHPD,and AIJD exhibited different extent of disruption,which significantly increased their water absorption capacity,swelling power,and in vitro digestibility,but decreased the peak viscosity.The sample resulting from AIJD had the greatest water absorption capacity(7.9 g g^-1)and solubility(21.6%),but the smallest syneresis rate(48%).Good correlation coefficients(R^2>0.98)implied that the pseudofirst order kinetic model adequately described the rate and extent of starch digestion of dried potato flours.Samples from AIJD and FIHPD showed the highest digestibility percentages,reaching to 72.4 and 72.5%.Based on the drying rate,specific energy consumption,functional properties and digestibility,AIJD appeared to be quite effective and suitable to be transferred on the industry scale.展开更多
The basic characteristics of Australian iron ore concentrate (Ore-A) and its effects on sinter properties during a high-limonite sintering process were studied using micro-sinter and sinter pot methods. The results sh...The basic characteristics of Australian iron ore concentrate (Ore-A) and its effects on sinter properties during a high-limonite sintering process were studied using micro-sinter and sinter pot methods. The results show that the Ore-A exhibits good granulation properties, strong liquid flow capability, high bonding phase strength and crystal strength, but poor assimilability. With increasing Ore-A ratio, the tumbler index and the reduction index (RI) of the sinter first increase and then decrease, whereas the softening interval (Delta T) and the softening start temperature (T (10%)) of the sinter exhibit the opposite behavior; the reduction degradation index (RDI+3.15) of the sinter increases linearly, but the sinter yield exhibits no obvious effects. With increasing Ore-A ratio, the distribution and crystallization of the minerals are improved, the main bonding phase first changes from silico-ferrite of calcium and aluminum (SFCA) to kirschsteinite, silicate, and SFCA and then transforms to 2CaO center dot SiO2 and SFCA. Given the utilization of Ore-A and the improvement of the sinter properties, the Ore-A ratio in the high-limonite sintering process is suggested to be controlled at approximately 6wt%.展开更多
The surface functional groups and pyrolysis characteristics of lignite irradiated by microwave were comparatively studied to evaluate the feasibility of using industrial 915 MHz for lignite drying. The drying kinetics...The surface functional groups and pyrolysis characteristics of lignite irradiated by microwave were comparatively studied to evaluate the feasibility of using industrial 915 MHz for lignite drying. The drying kinetics, micro structure, chemical functional groups, re-adsorption properties, and pyrolysis characteristics of the dried coal were respectively analyzed. Results indicated that for typical Chinese lignite studied in this paper, 915 MHz microwave drying was 7.8 times faster than that of the hot air drying. After industrial microwave drying, the sample possessed much higher total specific surface area and specific pore volume than that of air dried sample. The oxygen functional groups and re-adsorption ratio of microwave irradiated coal decreased, showing weakened hydrophilicity. Moreover, during the pyrolysis of the coal dried by hot air and microwave, the yield of tar largely increased from 1.3% to 8.5% and the gas production increased correspondingly. The composition of the tar was also furtherly analyzed, results indicated that Miscellaneous hydrocarbons(HCs) were the main component of the tar, and microwave irradiation can reduce the fraction of polycyclic aromatic hydrocarbons(PAHs) from 26.4% to 22.7%.展开更多
Based on a great number of experimental data on various mechanical properties of rock in the literature,six empirical equations between the characteristic impedance(product of density and P-wave velocity)and mechanica...Based on a great number of experimental data on various mechanical properties of rock in the literature,six empirical equations between the characteristic impedance(product of density and P-wave velocity)and mechanical properties of rock are proposed.These properties include uniaxial compressive strength,tensile strength,shear strength,mode I fracture toughness,Young’s modulus,and Poisson’s ratio.These empirical equations show that the values of the aforementioned properties increase with increase in characteristic impedance.It also implies that the characteristic impedance of rock may be considered as an index to represent the main properties of rock.In this sense,it is possible to consider using characteristic impedance to classify rock masses for studies in the future.展开更多
The composition and structure of substrate materials have important influences on coating performance,especially in terms of bond-ing strength and coating hardness,which determine whether the coating can be used for a...The composition and structure of substrate materials have important influences on coating performance,especially in terms of bond-ing strength and coating hardness,which determine whether the coating can be used for a given application.In this study,a TiAlN coating is deposited on Ti(C,N)-based cermet(TC)substrates with 0wt%-20wt%WC by arc ion plating.The influence of cermet substrate characterist-ics on the structure and properties of the TiAlN coating is then researched.Results show that the TiAlN coating deposited on the TC substrate has a columnar grain structure.As WC increases,the strength ratio of I(111)/I(200)and adhesive strength of TiAlN gradually increases.In the ab-sence of WC in the substrate,the preferred orientation of the TiAlN coating is(200).As WC increases,the preferred orientation of the TiAlN coating becomes(111)and(200).Notable differences in adhesive strength between the coating and substrate could be attributed to the micro-structure and composition of the latter.Scratching results show that the adhesive strengths of the TiAlN coating on the 0wt%-20wt%WC cer-met substrate are 52-65 N.Among the coatings obtained that on the TC substrate with 15wt%WC presents the highest H/E and H3/E2,which indicates that this coating also features the best wear resistance.The failure mechanisms of the coated tools include coating peeling,adhesive wear,and abrasive wear.As the cutting speed increases,the degree of flank wear increases and the durability of the coating decreases accord-ingly.Increases in WC result in an initial decrease followed by a gradual increase in the flank wear of the coated cermet inserts.展开更多
The anatomical and chemical characteristics of a rolling leaf mutant (rlm) of rice (Oryza sativa L.) and its ecophysiological properties in photosynthesis and apoplastic transport were investigated. Compared with ...The anatomical and chemical characteristics of a rolling leaf mutant (rlm) of rice (Oryza sativa L.) and its ecophysiological properties in photosynthesis and apoplastic transport were investigated. Compared with the wild type (WT), the areas of whole vascular bundles and xylem as well as the ratios of xylem area/whole vascular bundles area and xylem area/phloem area were higher in rim, whereas the area and the width of foliar bulliform cell were lower. The Fourier transform infrared (FTIR) microspectroscopy spectra of foliar cell walls differed greatly between rim and WT. The rim exhibited lower protein and polysaccharide contents of foliar cell walls. An obvious reduction of pectin content was also found in rim by biochemical measurements. Moreover, the rate of photosynthesis was depressed while the conductance of stoma and the intercellular CO2 concentration were enhanced in rim. The PTS fluorescence, which represents the ability of apoplastic transport, was 11% higher in rim than in WT. These results suggest that the changes in anatomical and chemical characteristics of foliar vascular bundles, such as the reduction of proteins, pectins, and other polysaccharides of foliar cell walls, participate in the leaf rolling mutation, and consequently lead to the reduced photosynthetic dynamics and apoplastic transport ability in the mutant.展开更多
The nonlinear properties and frequency characteristics of ZnO-polypyrrole composites were investigated at 200 Hz-5 MHz frequency interval with different zinc oxide contents. Samples were prepared using hot press metho...The nonlinear properties and frequency characteristics of ZnO-polypyrrole composites were investigated at 200 Hz-5 MHz frequency interval with different zinc oxide contents. Samples were prepared using hot press method at 130 ℃. Results show an optimum point for breakdown voltage at ZnO content of 70%. Breakdown voltage decreases from 590 to 380 V and after that tends to increase from 450 to 740 V due to the absence of polypyrrole at grain boundaries. No matter how breakdown voltage behaves, nonlinear coefficient increases from 4.2 to 9 by increasing ZnO content because of the increase in acceptor-like states at grain boundaries by increasing ZnO content. The electrical parameters such as dielectric constant, dielectric loss and series resistance of samples show a strong dependence on frequency especially below 1 k Hz. These parameters fall off by increasing frequency up to 1 k Hz, which is related to charge transportation through the Schottky barrier at grain boundaries. The high dielectric constant of samples below 1 k Hz is related to the Maxwell-Wagner polarization at grain boundaries. The presence of different anomalies at different frequency intervals is related to interfacial polarization because of different structures of grains and intergranular layer with a huge difference in conductivity.展开更多
For a perspective set that is derived by finite consequences with probabilities, this paper introduces the conception of basis that is proved and the uniqueness of basis over a perspective set holds. These give the ch...For a perspective set that is derived by finite consequences with probabilities, this paper introduces the conception of basis that is proved and the uniqueness of basis over a perspective set holds. These give the characteristic properties of perspective sets and finite consequences with probabilities. These properties are applied to the utility defined by the consequences.展开更多
Based on uniaxial compression experimental results on fractured sandstone with grouting and anchorage, we studied the strength and deformation properties, the failure model, crack formation and evolution laws of fract...Based on uniaxial compression experimental results on fractured sandstone with grouting and anchorage, we studied the strength and deformation properties, the failure model, crack formation and evolution laws of fractured sandstone under different conditions of anchorage. The experimental results show that the strength and elastic modulus of fractured sandstone with different fracture angles are significantly lower than those of intact sandstone. Compared with the fractured samples without anchorage,the peak strength, residual strength, peak and ultimate axial strain of fractured sandstone under different anchorage increase by 64.5–320.0%, 62.8–493.0%, and 31.6–181.4%, respectively. The number of bolts and degree of pre-stress has certain effects on the peak strength and failure model of fractured sandstone. The peak strength of fractured sandstone under different anchorage increases to some extent, and the failure model of fractured sandstone also transforms from tensile failure to tensile–shear mixed failure with the number of bolts. The pre-stress can restrain the formation and evolution process of tensile cracks, delay the failure process of fractured sandstone under anchorage and impel the transformation of failure model from brittle failure to plastic failure.展开更多
基金supported by the National Key R&D Program of China(Nos.2022YFF1303301,2022YFF1302603)the National Natural Science Foundation of China(Nos.52179026,42001035,42101115)+5 种基金the Science and Technology Program of Gansu Province(Nos.22JR5RA072,22JR5RA068)the Postdoctoral Funding Program of Gansu Province(No.E339880139)the Natural Science Foundation of Gansu Province(No.E331040901)the Science and Technology Fund of Gansu Province(No.23JRRA640)the Consulting and Research Project of the Gansu Research Institute of Chinese Engineering Science and Technology Development Strategy(No.GS2022ZDI03)the Open Fund of Technology Innovation Center for Mine Geological Environment Restoration in the Alpine and Arid Regions(No.HHGCKK2204).
文摘The mining of limestone mines plays a crucial role in societal and economic advancement.However,mining activities have led to destructive variations in grassland ecology and soil,causing numerous environmental problems,and effective artificial restoration measures have been used to restore grasslands in the Shimenhe mining areas to different degrees.In this study,we investigated,examined and analyzed plant community structure and its correlation with soil properties across varying degrees of alpine grassland restoration in Qilian Mountains Shimenhe restoration mines using the sample method,and studied the changes in species diversity using five diversity indexes(Simpson index,Shannon index,Margalef index,Dominance index and Evenness index).This study showed that the plant community characteristics with high recovered degree(HRD)>middle recovered degree(MRD)>low recovered degree(LRD)>very low recovered degree(VLRD),11 plant genera comprising 11 species across 10 families were identified.Dominant families with robust ecological adaptability included Leguminosae,Rosaceae,Gramineae,Asteraceae,and Salicaceae.The highest Simpson,Shannon,Margalef and Evenness index of HRD grassland community species were 0.82,1.96,1.66 and 0.89,respectively.The highest Dominance index of VLRD grassland community species was 0.34,which required several restoration methods such as spraying and mulching.Soil pH and EC tended to decrease with increasing restoration,SOC,SMC,TP,AP,NH4-N,TN,AN and NO3-N tended to increase and the content of soil environmental factors contributed to vegetation growth across various restoration levels the mine grassland.In conclusion,our study indicated that the community structure gradually diversified and soil properties changed positively with the increase of restoration degrees in the Qilian Mountains Shimenhe mine,and the best results of HRD restoration were obtained.This study provides the theoretical basis for the restoration and conservation of grasslands in mining areas by demonstrating examined the correlation between plant characteristics and soil properties in restored grasslands in alpine mining areas.
基金the National Natural Science Foundation of China(Nos.U21A20108,52322403,52174108,and 51974105)the Support Plan for Science&Technology Innovation Talents in Universities of Henan Province(No.21HASTIT024)+1 种基金the Scientific and technological innovation research team of Henan Polytechnic University(No.T2021-5)the Henan Excellent Youth Science Foundation(No.222300420045).
文摘Recovery of the coal buried under buildings,railways and water bodies and the residual coal in irregularly arranged fully mechanized mining faces is a common engineering problem facing underground coal mining.In this study,a mining technology of continuous driving and gangue backfilling(CDGB)was proposed.The technology,which can not only alleviate ground subsidence and gangue discharge,but also release the above-mentioned coals,contributes to green and efficient sustainable development of mining.The stability of the system of the solidified body-reserved coal pillar combination(S-C combination)is crucial to the CDGB technology.Therefore,it is of great significance to explore the mechanical and damage characteristics of S-C combination in the synergistic bearing process.First,four sets of differentshaped S-C combination specimens were fabricated and a S-C combination bearing structure in CDGB was constructed to explore the differences in mechanical characteristics and damage modes of different-shaped S-C combination specimens during CDGB.Subsequently,their surface strain field evolutions and acoustic emission(AE)response characteristics in the load-bearing process were obtained with the aid of the digital image correlation technique and the AE signal monitoring system.Furthermore,a damage evolution model based on AE parameters and mechanical parameters was established to clarify the damage evolution law.The following results were obtained:(1)The free area of S-C combination can serve as a quantitative index to evaluate the stability of the overburden control system;(2)The concept of critical value k of the free area was first proposed.When the free area exceeds the critical value k(free area ratio greater than 1.13),the deformation resistance and the free area changes becomes negatively correlated;(3)As the free area expands,the failure of the S-C combination specimen evolves from tensile failure to shear failure.The distribution characteristics of the axial strain field also verified such a change in the failure mode;(4)When the free area expands,the peak AE count gradually changes from“double peaks”to“a single peak”.In this process,the expansion of free area shortens the time for accumulating and releasing energy during loading.Micro cracks generated in the specimen change from a phased steep growth to a continuous increase,and the process in which micro cracks develop,converge,intersect and connect to form macro cracks accelerates.The damage evolution law concluded based on AE parameters and mechanical parameters can well characterize the damage evolution process of S-C combination,providing certain reference for the study on the synergistic bearing of S-C combination during CDGB.
基金This study is supported by a Scientific Research Project of Sinopec(Program No.P21087-2)the Open Fund of Key Laboratory of Marine Oil&Gas Reservoirs Production,Sinopec(Grant No.33550000-22-FW2099-0004).
文摘The microscopic characteristics and mechanical properties of rocks change after the action of acid on deep shale,which affects the fracturing effect.Accordingly,we designed and conducted indoor experiments related to the changes in macro and microscopic characteristics after the interaction of acid with the shale of Wujiaping Formation,based on which the characteristic law of fracture volume modification after acid fracturing was studied using numerical simulation.The results demonstrate that the pores and fractures are enlarged and the structure is significantly loosened after the acid immersion.And a 15%concentration of hydrochloric acid can effectively dissolve shale.Furthermore,the degree of acid-etching reaction is highly variable because of the different carbonate content,which reveals the strong inhomogeneity of the shale system in the Wujiaping Group reservoir section.After the acid interacted with the shale rock samples,the triaxial compressive strength,elastic modulus,and Poisson’s ratio of shale decreased.Moreover,the evaluation of the effect after acid fracturing simulated by fracturing software revealed that the smaller the value of elastic modulus in shale-based reservoirs,the more favorable the fracture volume modification.This discovery not only provides a theoretical basis for the expansion and extension patterns of acid-fracturing in carbonaceous shale formations but also offers research methods and theoretical insights for the fundamental exploration of other deep-seated oil and gas resources.
基金supported by the Project of Qinghai Science&Technology Department(Grant No.2021-ZJ-956Q).
文摘Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil.
基金jointly supported by the National Natural Science Foundation of China (Grant Nos: 51704209,51701060,51901153)Natural Science Foundation of Shanxi province (Nos: 201801D121088,201901D211096)the Science and Technology Major Project of Shanxi province (Nos: 20191102007,20191102008)。
文摘The creep properties, microstructural characteristics and creep mechanisms of as-cast Mg-5Bi-5Sn(BT55) alloy without and with Mn(BTM550) addition were investigated via creep at 423, 448, and 473 K as well as stresses of 30, 50 and 75 MPa. The results indicate that adding Mn can result in the formation of primary and the dynamic precipitated α-Mn phases. In addition, the morphology of the precipitated Mg_(3)Bi_(2) phase and the orientation relationship between Mg_(2)Sn precipitates and α-Mg can be effectively modified. Tailoring the microstructural characteristics is responsible for the improved creep performance of BTM550 alloy. The dominant creep mechanisms in BT55 and BTM550 alloys are dislocation cross-slip and climb, respectively. Furthermore, twinning and pyramidal slip play an assisting part in both alloys during creep process.
文摘Wulingyuan is a world natural heritage property mainly dominated by rare quartz sandstone peak forest landscape at home and abroad and supplemented by karst landscapes,with a large number of geological and historical sites,biological and ecological landscape and unique cultural landscapes.Preserving the secluded and beautiful scenery environment,biological environment and ecosystem of subtropical zone,Wulingyuan presents a splendid and magnificent landscape,with high aesthetic value,and becomes an important practice base of aesthetic education.The aesthetic education value of Wulingyuan World Natural Heritage Property can be realized by systematically studying and presenting the aesthetic education value of Wulingyuan World Natural Heritage Property,developing a series of aesthetic education courses to lead tourists into the world of Wulingyuan aesthetic education,carrying out a series of popular science activities of“Wulingyuan World Natural Heritage Property Entering Campus”,and incorporating into the aesthetic education curriculum system of schools,etc.This paper analyzes the landscape aesthetic characteristics of Wulingyuan World Natural Heritage Property thoroughly,which indicates the direction for realizing the aesthetic education value of the property,and also provides a reference for realizing the aesthetic education value of similar world natural heritage property.
基金Project(51104073)supported by the National Natural Science Foundation of ChinaProject(2014CB643404)supported by the National Basic Research Program of China+1 种基金Project(2013AA064003)supported by the Hi-tech Research and Development Program of ChinaProject(2012HB008)supported by the Yunnan Provincial Young Academic Technology Leader Reserve Talents,China
文摘Cavity perturbation method was used to determine the dielectric properties (ε′,ε″, and tanδ) of zinc oxide dust in different apparent densities. The process was conducted to study the microwave-absorption properties of zinc oxide dust and the feasibility of microwave roasting zinc oxide dust to remove fluorine and chlorine. The dielectric constant, dielectric loss, and loss tangent were proportional to the apparent density of zinc oxide dust. The effects of sample mass and microwave power on the temperature increase characteristics under the microwave field were also studied. The results show that the apparent heating rate of the zinc oxide dust increases with the increase in microwave roasting power and decreases with the increase in the sample mass. The temperature of the samples reaches approximately 800 &#176;C after microwave treatment for 8 min, which indicates that the zinc oxide dust has strong microwave-absorption ability.
基金Project (50954006) supported by the National Natural Science Foundation of ChinaProject (2009GK3152) supported by the Hunan Science and Technology Department, China+1 种基金Project (201012) supported by the Hunan Provincial Construction Department, ChinaProject (K1003048-11) supported by the Changsha City Science and Technology Department, China
文摘Comprehensively considering energy, volume and electronic structure of alloys, the ninth equation was determined as the interaction function of Nb-Mo alloys system in BCC structure on the basis of idea of systematic science of alloys, experimental lattice constants and heats of formation of disordered Nb(1-x)Mox alloys. The structural parameters and properties of Nb and Mo characteristic atoms sequences and corresponding characteristic crystals sequences were determined in Nb-Mo alloys system. The electronic structure and physical properties of disordered Nb(1-x)Mox alloys system were calculated according to concentration of characteristic atoms of disordered alloys. The change trend of physical properties is the same as that of electronic structure.
基金Supported by Special R&D Fund for National Public Service Sectors(Agriculture)of China(200903008-14)National 948 Project of China(2009-Z11)~~
文摘[Objective] This study aimed to investigate the functions and properties of the preliminarily determined characteristics listed in DUS test guideline of Tagetes L., and explore the representativeness and comprehensiveness of this group of characteristics in DUS test. [Method] Based on the functions and properties of the characteristics, the described plant part (s), observation stage, expression pattern and observation method of each characteristic were analyzed to illustrate the representativeness and comprehensiveness of the combination of this group of characteristics in above functions and properties. [Result] As for described plant part(s), there are 5 characteristics describing plant as a whole, 3 characteristics describing stem, 6 characteristics describing leaf, 23 characteristics describing flower and 1 characteristic describing physiological feature. As for observation stage, there are 1 characteristic needing to be observed in the stage of seedling, 1 characteristic in the stage of beginning of flowering and other 36 characteristics in the stage of fully flowering. As for the expression pattern, there are 10 qualitative characteristics, 9 pseudo-qualitative characteristics and 19 quantitative characteristics. As for the observation method, there are 30 characteristics using VG as the observation method, and 8 characteristics using MS. [Conclusion] In view of the variation and morphological properties of marigold, this group of characteristics are representative and comprehensive, and ensure the accuracy and easiness of DUS test of Tagetes L., thereby achieving the reasonable combination of characteristics in described plant parts, observation stages, expression patterns and observation methods.
基金the National Key Research and Development Program of China(Nos.2019YFE0118500 and 2019YFC1904304)National Natural Science Foundation of China(Nos.52104107 and U22A20598)Natural Science Foundation of Jiangsu Province(No.BK20200634).
文摘Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson bar was employed to explore the dynamic mechanical behaviors of coal at different confining pressures(0–20 MPa)and strain rates(40–220 s^(-1)).The results show that the dynamic peak stress is positively correlated with lateral static pre-stressσy andσz,but negatively correlated with axial static prestressσx.At approximate strain rates,increasing the lateral static pre-stress facilitates increasing the dynamic peak stress,but the minimum lateral static pre-stress is the primary factor limiting a significant increase in dynamic peak stress of coal.Furthermore,the dynamic differential stress is linearly related to the logarithm of strain rate,and the peak strain varies linearly with strain rate.However,there is no significant correlation between confining pressure and peak strain.Moreover,X-ray CT images and photographic fracture observations of coal samples show the failure patterns under uniaxial and triaxial conditions are splitting failure and shear failure,respectively.The device provides a viable approach for fully comprehending the dynamic mechanical behaviors of rock-like material in complex stress conditions.
基金the Fundamental Research Funds for the Central Universities(Project No.2022CDJKYJH037)the National Key R&D Program of China(Grant No.2021YFB3901402)。
文摘To study the damage mechanisms of anhydrite rock under freeze-thaw cycles, the physicalmechanical properties and the microcracking activities of anhydrite rock were investigated through mass variation, nuclear magnetic resonance, scanning electron microscope tests, and uniaxial compression combined with acoustic emission(AE) tests. Results show that with the increase of freeze-thaw processes,the mass, uniaxial compression strength, and elastic modulus of the anhydrite specimens decrease while the porosity and plasticity characteristics increase.For example, after 120 cycles, the uniaxial compression strength and elastic modulus decrease by 46.54% and 60.16%, and the porosity increase by 75%. Combined with the evolution trend of stressstrain curves and the detected events, three stages were labeled to investigate the AE characteristics in freeze-thaw weathered anhydrite rock. It is found that with the increase of freeze-thaw cycles, the proportions of AE counts in stage Ⅰ and stage Ⅱ show a decaying exponential trend. Contrarily, the proportion of AE counts in stage Ⅲ displays an exponential ascending trend. Meanwhile, as the freeze-thaw cycles increase, the low-frequency AE signals increase while the intermediate-frequency AE signals decrease. After 120 cycles, the proportion of low-frequency AE signals increases by 168.95%, and the proportion of intermediate-frequency AE signals reduces by 81.14%. It is concluded that the microtensile cracking events occupy a dominant position during the loading process. With the increase of freeze-thaw cycles, the b value of samples decreases.After 120 cycles, b value decreases by 27.2%, which means that the proportion of cracking events in rocks with small amplitude decreases. Finally, it is proposed that the freeze-thaw damage mechanism of anhydrite is also characterized by the water chemical softening effect.
基金supported by the Shanghai Municipal Agricultural Commission, China (2016NY001)
文摘The drying characteristics,physico-chemical and functional properties,as well as starch digestibility,of purple potato slices dried using different methods(such as,vacuum freeze-drying,VFD;hot-air drying,HAD;air-impingement jet drying,AIJD;and far-infrared assisted heat-pump drying,FIHPD)were investigated.Drying rate was the highest(3.0 g 100 g^-1 min^-1)using AIJD,followed by FIHPD and HAD,and the rate of VFD was the lowest one(0.3 g 100 g^-1 min^-1).Drying data were fitted to 12 thin-layer drying models,with the Midilli model giving the best predictions.Moreover,AIJD showed higher diffusivity(5.5×10^-10 m^2 s^–1)and energy efficiency(55 J g^-1)than any other drying method used in this study.With reference to the samples dried by VFD,the starch granules of the samples obtained by HAD,FIHPD,and AIJD exhibited different extent of disruption,which significantly increased their water absorption capacity,swelling power,and in vitro digestibility,but decreased the peak viscosity.The sample resulting from AIJD had the greatest water absorption capacity(7.9 g g^-1)and solubility(21.6%),but the smallest syneresis rate(48%).Good correlation coefficients(R^2>0.98)implied that the pseudofirst order kinetic model adequately described the rate and extent of starch digestion of dried potato flours.Samples from AIJD and FIHPD showed the highest digestibility percentages,reaching to 72.4 and 72.5%.Based on the drying rate,specific energy consumption,functional properties and digestibility,AIJD appeared to be quite effective and suitable to be transferred on the industry scale.
基金financially supported by the National Basic Research Program of China (No. 2012CB720401)the National Natural Science Foundation of China (U1260202)
文摘The basic characteristics of Australian iron ore concentrate (Ore-A) and its effects on sinter properties during a high-limonite sintering process were studied using micro-sinter and sinter pot methods. The results show that the Ore-A exhibits good granulation properties, strong liquid flow capability, high bonding phase strength and crystal strength, but poor assimilability. With increasing Ore-A ratio, the tumbler index and the reduction index (RI) of the sinter first increase and then decrease, whereas the softening interval (Delta T) and the softening start temperature (T (10%)) of the sinter exhibit the opposite behavior; the reduction degradation index (RDI+3.15) of the sinter increases linearly, but the sinter yield exhibits no obvious effects. With increasing Ore-A ratio, the distribution and crystallization of the minerals are improved, the main bonding phase first changes from silico-ferrite of calcium and aluminum (SFCA) to kirschsteinite, silicate, and SFCA and then transforms to 2CaO center dot SiO2 and SFCA. Given the utilization of Ore-A and the improvement of the sinter properties, the Ore-A ratio in the high-limonite sintering process is suggested to be controlled at approximately 6wt%.
基金Supported by the National Natural Science Foundation of China(51621005)the Fundamental Research Funds for the Central Universities(2017FZA4013)
文摘The surface functional groups and pyrolysis characteristics of lignite irradiated by microwave were comparatively studied to evaluate the feasibility of using industrial 915 MHz for lignite drying. The drying kinetics, micro structure, chemical functional groups, re-adsorption properties, and pyrolysis characteristics of the dried coal were respectively analyzed. Results indicated that for typical Chinese lignite studied in this paper, 915 MHz microwave drying was 7.8 times faster than that of the hot air drying. After industrial microwave drying, the sample possessed much higher total specific surface area and specific pore volume than that of air dried sample. The oxygen functional groups and re-adsorption ratio of microwave irradiated coal decreased, showing weakened hydrophilicity. Moreover, during the pyrolysis of the coal dried by hot air and microwave, the yield of tar largely increased from 1.3% to 8.5% and the gas production increased correspondingly. The composition of the tar was also furtherly analyzed, results indicated that Miscellaneous hydrocarbons(HCs) were the main component of the tar, and microwave irradiation can reduce the fraction of polycyclic aromatic hydrocarbons(PAHs) from 26.4% to 22.7%.
基金support from China Scholarship Council(CSC)(Grant No.201706430058)。
文摘Based on a great number of experimental data on various mechanical properties of rock in the literature,six empirical equations between the characteristic impedance(product of density and P-wave velocity)and mechanical properties of rock are proposed.These properties include uniaxial compressive strength,tensile strength,shear strength,mode I fracture toughness,Young’s modulus,and Poisson’s ratio.These empirical equations show that the values of the aforementioned properties increase with increase in characteristic impedance.It also implies that the characteristic impedance of rock may be considered as an index to represent the main properties of rock.In this sense,it is possible to consider using characteristic impedance to classify rock masses for studies in the future.
基金the National Nat-ural Science Foundation of China(Nos.51634006 and 51901195)the National Science and Technology Major Project of China(No.2019ZX04007001)+1 种基金the Science and Technology Major Project of Sichuan Province(No.2020ZDZX0022)the SCU-Zi Gong Project(No.2019CDZG-1).
文摘The composition and structure of substrate materials have important influences on coating performance,especially in terms of bond-ing strength and coating hardness,which determine whether the coating can be used for a given application.In this study,a TiAlN coating is deposited on Ti(C,N)-based cermet(TC)substrates with 0wt%-20wt%WC by arc ion plating.The influence of cermet substrate characterist-ics on the structure and properties of the TiAlN coating is then researched.Results show that the TiAlN coating deposited on the TC substrate has a columnar grain structure.As WC increases,the strength ratio of I(111)/I(200)and adhesive strength of TiAlN gradually increases.In the ab-sence of WC in the substrate,the preferred orientation of the TiAlN coating is(200).As WC increases,the preferred orientation of the TiAlN coating becomes(111)and(200).Notable differences in adhesive strength between the coating and substrate could be attributed to the micro-structure and composition of the latter.Scratching results show that the adhesive strengths of the TiAlN coating on the 0wt%-20wt%WC cer-met substrate are 52-65 N.Among the coatings obtained that on the TC substrate with 15wt%WC presents the highest H/E and H3/E2,which indicates that this coating also features the best wear resistance.The failure mechanisms of the coated tools include coating peeling,adhesive wear,and abrasive wear.As the cutting speed increases,the degree of flank wear increases and the durability of the coating decreases accord-ingly.Increases in WC result in an initial decrease followed by a gradual increase in the flank wear of the coated cermet inserts.
基金supported by the National Natural Science Foundation of China (Grant No. 30470274)the Zhejiang Natural Science Foundation of China (Grant No. Y306087)the Zijin Program of Zhejiang University for Young Teachers, China.
文摘The anatomical and chemical characteristics of a rolling leaf mutant (rlm) of rice (Oryza sativa L.) and its ecophysiological properties in photosynthesis and apoplastic transport were investigated. Compared with the wild type (WT), the areas of whole vascular bundles and xylem as well as the ratios of xylem area/whole vascular bundles area and xylem area/phloem area were higher in rim, whereas the area and the width of foliar bulliform cell were lower. The Fourier transform infrared (FTIR) microspectroscopy spectra of foliar cell walls differed greatly between rim and WT. The rim exhibited lower protein and polysaccharide contents of foliar cell walls. An obvious reduction of pectin content was also found in rim by biochemical measurements. Moreover, the rate of photosynthesis was depressed while the conductance of stoma and the intercellular CO2 concentration were enhanced in rim. The PTS fluorescence, which represents the ability of apoplastic transport, was 11% higher in rim than in WT. These results suggest that the changes in anatomical and chemical characteristics of foliar vascular bundles, such as the reduction of proteins, pectins, and other polysaccharides of foliar cell walls, participate in the leaf rolling mutation, and consequently lead to the reduced photosynthetic dynamics and apoplastic transport ability in the mutant.
文摘The nonlinear properties and frequency characteristics of ZnO-polypyrrole composites were investigated at 200 Hz-5 MHz frequency interval with different zinc oxide contents. Samples were prepared using hot press method at 130 ℃. Results show an optimum point for breakdown voltage at ZnO content of 70%. Breakdown voltage decreases from 590 to 380 V and after that tends to increase from 450 to 740 V due to the absence of polypyrrole at grain boundaries. No matter how breakdown voltage behaves, nonlinear coefficient increases from 4.2 to 9 by increasing ZnO content because of the increase in acceptor-like states at grain boundaries by increasing ZnO content. The electrical parameters such as dielectric constant, dielectric loss and series resistance of samples show a strong dependence on frequency especially below 1 k Hz. These parameters fall off by increasing frequency up to 1 k Hz, which is related to charge transportation through the Schottky barrier at grain boundaries. The high dielectric constant of samples below 1 k Hz is related to the Maxwell-Wagner polarization at grain boundaries. The presence of different anomalies at different frequency intervals is related to interfacial polarization because of different structures of grains and intergranular layer with a huge difference in conductivity.
文摘For a perspective set that is derived by finite consequences with probabilities, this paper introduces the conception of basis that is proved and the uniqueness of basis over a perspective set holds. These give the characteristic properties of perspective sets and finite consequences with probabilities. These properties are applied to the utility defined by the consequences.
基金Financial support for this work, provided by the National Natural Science Foundation of China (Nos. 50774082, 50804046 and 51109209)
文摘Based on uniaxial compression experimental results on fractured sandstone with grouting and anchorage, we studied the strength and deformation properties, the failure model, crack formation and evolution laws of fractured sandstone under different conditions of anchorage. The experimental results show that the strength and elastic modulus of fractured sandstone with different fracture angles are significantly lower than those of intact sandstone. Compared with the fractured samples without anchorage,the peak strength, residual strength, peak and ultimate axial strain of fractured sandstone under different anchorage increase by 64.5–320.0%, 62.8–493.0%, and 31.6–181.4%, respectively. The number of bolts and degree of pre-stress has certain effects on the peak strength and failure model of fractured sandstone. The peak strength of fractured sandstone under different anchorage increases to some extent, and the failure model of fractured sandstone also transforms from tensile failure to tensile–shear mixed failure with the number of bolts. The pre-stress can restrain the formation and evolution process of tensile cracks, delay the failure process of fractured sandstone under anchorage and impel the transformation of failure model from brittle failure to plastic failure.