The failure rate of crankpin bearing bush of diesel engine under complex working conditions such as high temperature,dynamic load and variable speed is high.After serious wear,it is easy to deteriorate the stress stat...The failure rate of crankpin bearing bush of diesel engine under complex working conditions such as high temperature,dynamic load and variable speed is high.After serious wear,it is easy to deteriorate the stress state of connecting rod body and connecting rod bolt,resulting in serious accidents such as connecting rod fracture and body damage.Based on the mixed lubrication characteristics of connecting rod big endbearing shell of diesel engine under high explosion pressure impact load,an improved mixed lubrication mechanism model is established,which considers the influence of viscoelastic micro deformation of bearing bush material,integrates the full film lubrication model and dry friction model,couples dynamic equation of connecting rod.Then the actual lubrication state of big end bearing shell is simulated numerically.Further,the correctness of the theoretical research results is verified by fault simulation experiments.The results show that the high-frequency impact signal with fixed angle domain characteristics will be generated after the serious wear of bearing bush and the deterioration of lubrication state.The fault feature capture and alarm can be realized through the condition monitoring system,which can be applied to the fault monitoring of connecting rod bearing bush of diesel engine in the future.展开更多
The influences of power spinning process parameters on the mechanical properties of spinning parts were analyzed with an SXD100/3-CNC numerical control power spinning machine.The unidirectional tensile tests were carr...The influences of power spinning process parameters on the mechanical properties of spinning parts were analyzed with an SXD100/3-CNC numerical control power spinning machine.The unidirectional tensile tests were carried out.Based on the experimental data,a ternary quadratic regression equation was established by orthogonal experiment.The Ramberg-Osgood constitutive model of tin-bronze connecting rod bushing was obtained.Referred to the constitutive relation of macroscopic incremental,the incremental elastoplastic constitutive relation of spinning parts was deduced based on the Mises yield criterion and kinematic hardening model.The results can be applied to the elastoplastic analysis in finite element numerical simulation.展开更多
As a prerequisite and a guarantee for safe and efficient natural gas hydrates(NGHs)exploitation,it is imperative to effectively determine the mechanical properties of NGHs reservoirs and clarify the law of the change ...As a prerequisite and a guarantee for safe and efficient natural gas hydrates(NGHs)exploitation,it is imperative to effectively determine the mechanical properties of NGHs reservoirs and clarify the law of the change in the mechanical properties with the dissociation of NGHs during NGHs production tests by depressurization.Based on the development of Japan’s two offshore NGHs production tests in vertical wells,this study innovatively proposed a new subsea communication technology-accurate directional connection using a wet-mate connector.This helps to overcome the technical barrier to the communication between the upper and lower completion of offshore wells.Using this new communication technology,this study explored and designed a mechanical monitoring scheme for lower completion(sand screens).This scheme can be used to monitor the tensile stress and radial compressive stress of sand screens caused by NGHs reservoirs in real time,thus promoting the technical development for the rapid assessment and real-time feedback of the in-situ mechanical response of NGHs reservoirs during offshore NGHs production tests by depressurization.展开更多
基金Supported by the National Natural Science Foundation of China(No.52101343)the Aeronautical Science Foundation(No.201834S9002).
文摘The failure rate of crankpin bearing bush of diesel engine under complex working conditions such as high temperature,dynamic load and variable speed is high.After serious wear,it is easy to deteriorate the stress state of connecting rod body and connecting rod bolt,resulting in serious accidents such as connecting rod fracture and body damage.Based on the mixed lubrication characteristics of connecting rod big endbearing shell of diesel engine under high explosion pressure impact load,an improved mixed lubrication mechanism model is established,which considers the influence of viscoelastic micro deformation of bearing bush material,integrates the full film lubrication model and dry friction model,couples dynamic equation of connecting rod.Then the actual lubrication state of big end bearing shell is simulated numerically.Further,the correctness of the theoretical research results is verified by fault simulation experiments.The results show that the high-frequency impact signal with fixed angle domain characteristics will be generated after the serious wear of bearing bush and the deterioration of lubrication state.The fault feature capture and alarm can be realized through the condition monitoring system,which can be applied to the fault monitoring of connecting rod bearing bush of diesel engine in the future.
基金Project(2012011023-2)supported by the Natural Science Foundation of Shanxi Province,China
文摘The influences of power spinning process parameters on the mechanical properties of spinning parts were analyzed with an SXD100/3-CNC numerical control power spinning machine.The unidirectional tensile tests were carried out.Based on the experimental data,a ternary quadratic regression equation was established by orthogonal experiment.The Ramberg-Osgood constitutive model of tin-bronze connecting rod bushing was obtained.Referred to the constitutive relation of macroscopic incremental,the incremental elastoplastic constitutive relation of spinning parts was deduced based on the Mises yield criterion and kinematic hardening model.The results can be applied to the elastoplastic analysis in finite element numerical simulation.
基金supported jointly by the major projects of Basic and Applied Basic Research in Guangdong Province“Key Basic Theory Research for Natural Gas Hydrate Trial Production in Shenhu Pilot Test Area”(2020B0301030003)the project from Southern Marine Science&Engineering Guangdong Laboratory in Guangzhou City“Research on New Closed Circulation Drilling Technology without Riser”(GML2019ZD0501).
文摘As a prerequisite and a guarantee for safe and efficient natural gas hydrates(NGHs)exploitation,it is imperative to effectively determine the mechanical properties of NGHs reservoirs and clarify the law of the change in the mechanical properties with the dissociation of NGHs during NGHs production tests by depressurization.Based on the development of Japan’s two offshore NGHs production tests in vertical wells,this study innovatively proposed a new subsea communication technology-accurate directional connection using a wet-mate connector.This helps to overcome the technical barrier to the communication between the upper and lower completion of offshore wells.Using this new communication technology,this study explored and designed a mechanical monitoring scheme for lower completion(sand screens).This scheme can be used to monitor the tensile stress and radial compressive stress of sand screens caused by NGHs reservoirs in real time,thus promoting the technical development for the rapid assessment and real-time feedback of the in-situ mechanical response of NGHs reservoirs during offshore NGHs production tests by depressurization.