With the acceleration of economic development and globalization and the rapid development of China’s foreign economy,the position of English education in higher vocational education has become increasingly prominent....With the acceleration of economic development and globalization and the rapid development of China’s foreign economy,the position of English education in higher vocational education has become increasingly prominent.Particularly in the multi-ethnic and multi-cultural areas of Guangxi Zhuang Autonomous Region,higher vocational education undertakes the responsibility of talent export for the construction of the China-ASEAN foreign trade exchange platform.However,the current phenomena and problems existing in higher vocational English education in Guangxi need to be deeply discussed and solved.Therefore,this paper discusses the development ideas of English education mode in Guangxi higher vocational education and studies the feasibility suggestions,in order to provide a reference for the future development of higher vocational English education in Guangxi.展开更多
The Santos Basin in Brazil has witnessed significant oil and gas discoveries in deepwater pre-salt since the 21^(st)century.Currently,the waters in eastern Brazil stand out as a hot area of deepwater exploration and p...The Santos Basin in Brazil has witnessed significant oil and gas discoveries in deepwater pre-salt since the 21^(st)century.Currently,the waters in eastern Brazil stand out as a hot area of deepwater exploration and production worldwide.Based on a review of the petroleum exploration and production history in Brazil,the challenges,researches and practices,strategic transformation,significant breakthroughs,and key theories and technologies for exploration from onshore to offshore and from shallow waters to deep-ultra-deep waters and then to pre-salt strata are systematically elaborated.Within 15 years since its establishment in 1953,Petrobras explored onshore Paleozoic cratonic and marginal rift basins,and obtained some small to medium petroleum discoveries in fault-block traps.In the 1970s,Petrobras developed seismic exploration technologies and several hydrocarbon accumulation models,for example,turbidite sandstones,allowing important discoveries in shallow waters,e.g.the Namorado Field and Enchova fields.Guided by these models/technologies,significant discoveries,e.g.the Marlim and Roncador fields,were made in deepwater post-salt in the Campos Basin.In the early 21^(st)century,the advancements in theories and technologies for pre-salt petroleum system,carbonate reservoirs,hydrocarbon accumulation and nuclear magnetic resonance(NMR)logging stimulated a succession of valuable discoveries in the Lower Cretaceous lacustrine carbonates in the Santos Basin,including the world-class ultra-deepwater super giant fields such as Tupi(Lula),Mero and Buzios.Petroleum development in complex deep water environments is extremely challenging.By establishing the Technological Capacitation Program in Deep Waters(PROCAP),Petrobras developed and implemented key technologies including managed pressure drilling(MPD)with narrow pressure window,pressurized mud cap drilling(PMCD),multi-stage intelligent completion,development with Floating Production Storage and Offloading units(FPSO),and flow assurance,which remarkably improved the drilling,completion,field development and transportation efficiency and safety.Additionally,under the limited FPSO capacity,Petrobras promoted the world-largest CCUS-EOR project,which contributed effectively to the reduction of greenhouse gas emissions and the enhancement of oil recovery.Development and application of these technologies provide valuable reference for deep and ultra-deepwater petroleum exploration and production worldwide.The petroleum exploration in Brazil will consistently focus on ultra-deep water pre-salt carbonates and post-salt turbidites,and seek new opportunities in Paleozoic gas.Technical innovation and strategic cooperation will be held to promote the sustainable development of Brazil's oil and gas industry.展开更多
The shale gas resources in China have great potential and the geological resources of shale gas is over 100×10^(12)m^(3),which includes about 20×10^(12)m^(3) of recoverable resources.Organic-rich shales can ...The shale gas resources in China have great potential and the geological resources of shale gas is over 100×10^(12)m^(3),which includes about 20×10^(12)m^(3) of recoverable resources.Organic-rich shales can be divided into three types according to their sedimentary environments,namely marine,marine-continental transitional,and continental shales,which are distributed in 13 stratigraphic systems from the Mesoproterozoic to the Cenozoic.The Sichuan Basin and its surrounding areas have the highest geological resources of shale gas,and the commercial development of shale gas has been achieved in the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in these areas,with a shale gas production of up to 20×10^(9)m^(3) in 2020.China has seen rapid shale gas exploration and development over the last five years,successively achieving breakthroughs and important findings in many areas and strata.The details are as follows.(1)Large-scale development of middle-shallow shale gas(burial depth:less than 3500 m)has been realized,with the productivity having rapidly increased;(2)breakthroughs have been constantly made in the development of deep shale gas(burial depth:3500-4500 m),and the ultradeep shale gas(burial depth:greater than 4500 m)is under testing;(3)breakthroughs have been made in the development of normal-pressure shale gas,and the assessment of the shale gas in complex tectonic areas is being accelerated;(4)shale gas has been frequently discovered in new areas and new strata,exhibiting a great prospect.Based on the exploration and development practice,three aspects of consensus have been gradually reached on the research progress in the geological theories of shale gas achieved in China.(1)in terms of deep-water fine-grained sediments,organic-rich shales are the base for the formation of shale gas;(2)in terms of high-quality reservoirs,the development of micro-nano organic matter-hosted pores serves as the core of shale gas accumulation;(3)in terms of preservation conditions,weak structural transformation,a moderate degree of thermal evolution,and a high pressure coefficient are the key to shale gas enrichment.As a type of important low-carbon fossil energy,shale gas will play an increasingly important role in achieving the strategic goals of peak carbon dioxide emissions and carbon neutrality.Based on the in-depth study of shale gas geological conditions and current exploration progress,three important directions for shale gas exploration in China in the next five years are put forward.展开更多
The purpose of the present study was to study the tectonics of the Yellow Sea. Although oilgas exploration has been undertaken for more than 30 years in the southern Yellow Sea, the exploration progress has achieved l...The purpose of the present study was to study the tectonics of the Yellow Sea. Although oilgas exploration has been undertaken for more than 30 years in the southern Yellow Sea, the exploration progress has achieved little. There are three tectonic periods with near N-S trending shortening and compression (260-200 Ma, 135-52 Ma and 23-0.78 Ma) and three tectonic periods with near E-W trending shortening and compression (200-135 Ma, 52--23 Ma and 0.78 Ma) at the Yellow Sea and adjacent areas during the Mesozoic and Cenozoic. The lndosinian tectonic period is the collision period between the Sino-Korean and Yangtze Plates, which formed the basic tectonic framework for the Yellow Sea area. There were strong intraplate deformations during the Yanshanian (200-135 Ma) and Sichuanian (135-52 Ma) periods with different tectonic models, which are also the main formation periods for endogenic metallic mineral deposits around the Yellow Sea. The three tectonic periods during the Cenozoic affect important influences for forming oil-gas reservoirs. The Eocene-Oligocene (52-23 Ma) is the main forming period for oil-gas sources. The Miocene-Early Pleistocene (23-0.78 Ma) was a period of favorable passage for oil-gas migration along NNE trending faults. Since the Middle Pleistocene (0.78 Ma) the NNE trending faults are closed and make good conditions for the reservation of oil-gas. The authors suggest that we pay more attention to the oil-gas exploration at the intersections between the NNE trending existing faults and Paleogene- Neogene systems in the southern Yellow Sea area.展开更多
Global energy structure is experiencing the third transition from fossil energy to non-fossil energy,to solve future energy problems,cope with climate change,and achieve net-zero emissions targets by 2050.Hydrogen is ...Global energy structure is experiencing the third transition from fossil energy to non-fossil energy,to solve future energy problems,cope with climate change,and achieve net-zero emissions targets by 2050.Hydrogen is considered to be the most potential clean energy in this century under the background of carbon neutrality.At present,the industrial methods for producing hydrogen are mainly by steam-hydrocarbon(such as coal and natural gas)reforming and by electrolysis of water,while the exploration and development of natural hydrogen had just started.According to this literature review:(1)Natural hydrogen can be divided into three categories,including free hydrogen,hydrogen in inclusions and dissolved hydrogen;(2)natural hydrogen could be mainly from abiotic origins such as by deep-seated hydrogen generation,water-rock reaction or water radiolysis;(3)natural hydrogen is widely distributed and presents great potential,and the potential natural hydrogen sources excluding deep source of hydrogen is about(254±91)×10^(9) m^(3)/a according to a latest estimate;(4)at present,natural hydrogen has been mined in Mali,and the exploration and development of natural hydrogen has also been carried out in Australia,Brazil,the United States and some European countries,to find many favorable areas and test some technical methods for natural hydrogen exploration.Natural hydrogen is expected to be an important part of hydrogen energy production in the future energy pattern.Based on a thorough literature review,this study introduced the origin,classification,and global discovery of natural hydrogen,as well as summarized the current global status and discussed the possibility of natural hydrogen exploration and development,aiming to provide reference for the future natural hydrogen exploration and development.展开更多
Through detailed analyses of the distribution characteristics of organic-rich shale, appearance features of high-quality shale, microscopic characteristics of shale reservoir rocks, fracability, and the relationship b...Through detailed analyses of the distribution characteristics of organic-rich shale, appearance features of high-quality shale, microscopic characteristics of shale reservoir rocks, fracability, and the relationship between preservation conditions and shale gas enrichment in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Sichuan Basin, theoretical understandings and specific suggestions with respect to the exploration and development of shale gas in China are summarized and proposed respectively. Important geological understandings in the exploration and development of shale gas of the Wufeng Formation–Longmaxi Formation in the Sichuan Basin can be summarized into the following aspects: depositional environment and depositional process control the distribution of organic-rich shale; high quality shale in "sweet spot segments" are commonly characterized by high content of organic carbon, high brittleness, high porosity and gas content; organic pores are important storage space for the enrichment of shale gas; preservation conditions are the key factor for the geological evaluation of shale gas in structurally complex regions; shale gas can be considered as "artificial gas reservoirs" and the fracability assessment is essential for high-production; nanoscale storage space and the mode of occurrence control the special seepage characteristics of shale gas. The following suggestions are proposed for the development of China's shale gas industry:(1) focus more on fundamental research to achieve new breakthrough in the geological theory of shale gas;(2) emphasize exploration practices to have all-round discoveries in multiple strata;(3) study the regularities of development and production to establish new models of shale gas development;(4) think creatively to invent new technologies to tackle key problems;(5) explore the management innovation to create new mechanisms in shale gas development.展开更多
China has made significant progress in the exploration and development of natural gas in the past 70 years,from the gas-poor country to the world’s sixth largest gas production country.In 1949,the annual gas output i...China has made significant progress in the exploration and development of natural gas in the past 70 years,from the gas-poor country to the world’s sixth largest gas production country.In 1949,the annual gas output in China was 1117×104 m3,the proved gas reserves were 3.85×108 m3,and the average annual gas consumption and available reserves of per person were 0.0206 m3 and 0.7107 m3,respectively.By 2018,the average domestic annual gas production per person was 114.8576 m3 and the reserves were 12011.08 m3,and the average domestic annual gas production and reserves per person in the past 70 years increased by 5575 times and 16900 times,respectively.The exploration and development of large gas fields is the main way to rapidly develop the natural gas industry.72 large gas fields have been discovered in China so far,mainly distributed in three basins,Sichuan(25),Ordos(13)and Tarim(10).In 2018,the total gas production of the large gas fields in these three basins was 1039.26×108 m3,accounting for 65%of the total gas production in China.By the end of 2018,the cumulative proved gas reserves of the 72 large gas fields had amounted to 124504×108 m3,accounting for 75%of the total national gas reserves(16.7×1012 m3).New theories of natural gas have promoted the development of China’s natural gas industry faster.Since 1979,the new theory of coal-derived gas has boosted the discovery of gas fields mainly from coal-measure source rocks in China.In 2018,the gas production of large coal-derived gas fields in China accounted for 50.93%and 75.47%of the total national gas production and total gas production of large gas fields,respectively.Guided by shale gas theories,shale gas fields such as Fuling,Changning,Weiyuan and Weirong have been discovered.In 2018,the total proved geological reserves of shale gas were 10455.67×108 m3,and the annual gas production was 108.8×108 m3,demonstrating a good prospect of shale gas in China.展开更多
Large-scale oil exploration has been done and large quantities of oil-gas fields have been found in the northern shelf basin of the South China Sea for more than 20 years. The tectonic oil-gas pools are the main type....Large-scale oil exploration has been done and large quantities of oil-gas fields have been found in the northern shelf basin of the South China Sea for more than 20 years. The tectonic oil-gas pools are the main type. With the exploration to be deepened, looking for atectonic oil-gas pools is listed in China's exploration strategy. There are advantages for the forming of atectonic oil-gas pools in the northern shelf basin of the South China Sea. Because the level of water has been frequently changing within all historical periods, lithozones are changed alternately in both vertical and lateral directions and formed lithologic deposition especially at low water level stages, such as the low-lying fans of basin-floor fans and slope fans. Due to frequent tectonic movement within all historical periods, many structural surfaces and structural unconformities were formed. At the same time, they also formed many kinds of structural unconformity oil-gas pools. According to our exploration and research, the promising areas of atectonic reservoirs within marine basins include: (1) the basin-floor fan of the deep water district, such as the central depression of the Southeast Qiong basin and Baiyun sag in the Zhujiangkou basin; (2) the frontal area of the large ancient delta, such as the Lingao structural belt in the Yingge Sea basin and Huizhou sag in the Zhujiangkou basin; (3) the unconformity pinchout belt or denudation belt in the slope area and the uplift area, for instance, the Yingdong slope belt in the Yingge Sea basin and Yacheng 13-1 structural belt in the southeast Qiong basin. All this proves that the prospects for atectonic oil-gas pools in the northern shelf basin of the South China Sea are very broad.展开更多
Under the requirement of high-quality development, the research method of integrated model planning for offshore oil and gas exploration and development suitable for the western South China Sea is put forward. Based o...Under the requirement of high-quality development, the research method of integrated model planning for offshore oil and gas exploration and development suitable for the western South China Sea is put forward. Based on the new round of resource evaluation and exploration and development research in the western South China Sea, the in-depth research on underground oil and gas resources, surface development facilities, external factors and economic indexes are carried out to clarify the industrial layout of oil and gas development. The potential and prospect of oil and gas exploration and development were implemented, and the main external factors and corresponding measures affecting the planning were clarified in this paper. The economic evaluation model suitable for the region is established based on the analysis of internal rate of return, comprehensive barrel oil cost, critical price, financial net present value and other important indicators, and a set of planning and research methods suitable for the integration of exploration and development in the western South China Sea is finally formed. This method has been applied to the replacement reserve study of Weizhou X and Weizhou Y oil fields. It is found that the planned reserves and production are consistent with the actual ones, and good practical results have been achieved.展开更多
Based on the investigation of tight oil exploration and development in North America, the successful cases of tight oil exploration and development in North America are summarized. The geological differences between c...Based on the investigation of tight oil exploration and development in North America, the successful cases of tight oil exploration and development in North America are summarized. The geological differences between continental tight oil in China and marine tight oil in North America is analyzed to explore the technical strategies for the industrial development of continental tight oil in China. The experiences of large-scale exploration and profitable development of tight oil in North America can be taken as references from the following 6 perspectives, namely exploring new profitable strata in mature exploration areas, strengthening the economic evaluation of sweet spots and focusing on the investment for high-profitability sweet spots, optimizing the producing of tight oil reserves by means of repetitive fracturing and 3 D fracturing, optimizing drilling and completion technologies to reduce the cost, adopting commodity hedging to ensure the sustainable profit, and strengthening other resources exploration to improve the profit of whole project. In light of the high abundance of tight oil in China, we can draw on successful experience from North America, four suggestions are proposed in sight of the geological setting of China's lacustrine tight oil:(1) Evaluating the potential of tight oil resources and optimizing the strategic area for tight oil exploration;(2) selecting "sweet spot zone" and "sweet spot interval" accurately for precise and high efficient development;(3) adopting advanced tight oil fracturing technology to realize economic development;(4) innovating management system to promote the large-scale profitable development of tight oil.展开更多
In recent years,with China's continuous investment in shale gas exploration and the continuous efforts of scientific workers,China’s shale gas exploration and development has achieved leap-forward development.In2011...In recent years,with China's continuous investment in shale gas exploration and the continuous efforts of scientific workers,China’s shale gas exploration and development has achieved leap-forward development.In2011,China's State Council approved shale gas as a new mineral resource.In 2014,shale gas was first proved at geological reserves of 106.8 billion m^3.展开更多
Since 1985,68 foreign enterprises from 17 countries and areas have investigated Jiangsu area and discussed the business with us.According to the prediction by domestic geologists,the marine strata of Mesozoic-Paleozoi...Since 1985,68 foreign enterprises from 17 countries and areas have investigated Jiangsu area and discussed the business with us.According to the prediction by domestic geologists,the marine strata of Mesozoic-Paleozoic in south Jiangsu could contain 1.393 billion cubic meters of oil and 763.4 billion cubic meters of gas,meanwhile the volume of oil resources in continental strata of upper Cretaceous-Lower Triassic in North Jia.ngsu is estimated to be 3.34-7.55 hundred million cubic meters.For this reason many foreign oil companies are greatly interested in the prospect of cooperative exploration and development of petro.leum resources in Jiangsu Province.展开更多
Exploration for oil and deep gas in northern Songliao Basin,complex rift basin—Hailaer Basin,and Yi-Shu Graben in peripheral basin has technical challenge.Researches on supporting technology including seismic acquisi...Exploration for oil and deep gas in northern Songliao Basin,complex rift basin—Hailaer Basin,and Yi-Shu Graben in peripheral basin has technical challenge.Researches on supporting technology including seismic acquisition,processing and interpretation,logging and drilling are performed to establish high resolution 3D seismic technology for lithologic reservoir,deep volcanic rock and complex rift basin,reservoir evaluation and stimulation technology for low permeability reservoir,volcanic reservoir and complex rift reservoir,and drilling technology for deep volcanic rock,providing technical support for reserves increase in northern Songliao Basin,large gas reservoirs discovery in deep volcanic rock and exploration progress in complex rift basin.Next-step development trend of exploration technology is proposed to meet the demand of more technical challenges in the future.展开更多
ZTE Corporation released its 2002 annualreport on March 12, 2003, proclaimingthat its main business line revenue andnet profit reached 11 billion RMB and0.57 billion RMB respectively.As a major manufacturer of telecom...ZTE Corporation released its 2002 annualreport on March 12, 2003, proclaimingthat its main business line revenue andnet profit reached 11 billion RMB and0.57 billion RMB respectively.As a major manufacturer of telecommunica-tion equipment in China, ZTE constantly putsemphasis on R&D so as to forge competitiveedge.Establishing Scientific Management展开更多
基金2022 Guangxi Education Science Planning Project“The Inheritance and Discussion of National Culture in the Internationalization of Higher Vocational Education under the Background of the New Era”(2022ZJY3095)。
文摘With the acceleration of economic development and globalization and the rapid development of China’s foreign economy,the position of English education in higher vocational education has become increasingly prominent.Particularly in the multi-ethnic and multi-cultural areas of Guangxi Zhuang Autonomous Region,higher vocational education undertakes the responsibility of talent export for the construction of the China-ASEAN foreign trade exchange platform.However,the current phenomena and problems existing in higher vocational English education in Guangxi need to be deeply discussed and solved.Therefore,this paper discusses the development ideas of English education mode in Guangxi higher vocational education and studies the feasibility suggestions,in order to provide a reference for the future development of higher vocational English education in Guangxi.
文摘The Santos Basin in Brazil has witnessed significant oil and gas discoveries in deepwater pre-salt since the 21^(st)century.Currently,the waters in eastern Brazil stand out as a hot area of deepwater exploration and production worldwide.Based on a review of the petroleum exploration and production history in Brazil,the challenges,researches and practices,strategic transformation,significant breakthroughs,and key theories and technologies for exploration from onshore to offshore and from shallow waters to deep-ultra-deep waters and then to pre-salt strata are systematically elaborated.Within 15 years since its establishment in 1953,Petrobras explored onshore Paleozoic cratonic and marginal rift basins,and obtained some small to medium petroleum discoveries in fault-block traps.In the 1970s,Petrobras developed seismic exploration technologies and several hydrocarbon accumulation models,for example,turbidite sandstones,allowing important discoveries in shallow waters,e.g.the Namorado Field and Enchova fields.Guided by these models/technologies,significant discoveries,e.g.the Marlim and Roncador fields,were made in deepwater post-salt in the Campos Basin.In the early 21^(st)century,the advancements in theories and technologies for pre-salt petroleum system,carbonate reservoirs,hydrocarbon accumulation and nuclear magnetic resonance(NMR)logging stimulated a succession of valuable discoveries in the Lower Cretaceous lacustrine carbonates in the Santos Basin,including the world-class ultra-deepwater super giant fields such as Tupi(Lula),Mero and Buzios.Petroleum development in complex deep water environments is extremely challenging.By establishing the Technological Capacitation Program in Deep Waters(PROCAP),Petrobras developed and implemented key technologies including managed pressure drilling(MPD)with narrow pressure window,pressurized mud cap drilling(PMCD),multi-stage intelligent completion,development with Floating Production Storage and Offloading units(FPSO),and flow assurance,which remarkably improved the drilling,completion,field development and transportation efficiency and safety.Additionally,under the limited FPSO capacity,Petrobras promoted the world-largest CCUS-EOR project,which contributed effectively to the reduction of greenhouse gas emissions and the enhancement of oil recovery.Development and application of these technologies provide valuable reference for deep and ultra-deepwater petroleum exploration and production worldwide.The petroleum exploration in Brazil will consistently focus on ultra-deep water pre-salt carbonates and post-salt turbidites,and seek new opportunities in Paleozoic gas.Technical innovation and strategic cooperation will be held to promote the sustainable development of Brazil's oil and gas industry.
基金supported by a project of shale gas in Southern China(DD20190561)initiated by the China Geological Surveythe project for High-level Innovative Talents in Science and Technology,Ministry of Natural Resources(12110600000018003918)。
文摘The shale gas resources in China have great potential and the geological resources of shale gas is over 100×10^(12)m^(3),which includes about 20×10^(12)m^(3) of recoverable resources.Organic-rich shales can be divided into three types according to their sedimentary environments,namely marine,marine-continental transitional,and continental shales,which are distributed in 13 stratigraphic systems from the Mesoproterozoic to the Cenozoic.The Sichuan Basin and its surrounding areas have the highest geological resources of shale gas,and the commercial development of shale gas has been achieved in the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in these areas,with a shale gas production of up to 20×10^(9)m^(3) in 2020.China has seen rapid shale gas exploration and development over the last five years,successively achieving breakthroughs and important findings in many areas and strata.The details are as follows.(1)Large-scale development of middle-shallow shale gas(burial depth:less than 3500 m)has been realized,with the productivity having rapidly increased;(2)breakthroughs have been constantly made in the development of deep shale gas(burial depth:3500-4500 m),and the ultradeep shale gas(burial depth:greater than 4500 m)is under testing;(3)breakthroughs have been made in the development of normal-pressure shale gas,and the assessment of the shale gas in complex tectonic areas is being accelerated;(4)shale gas has been frequently discovered in new areas and new strata,exhibiting a great prospect.Based on the exploration and development practice,three aspects of consensus have been gradually reached on the research progress in the geological theories of shale gas achieved in China.(1)in terms of deep-water fine-grained sediments,organic-rich shales are the base for the formation of shale gas;(2)in terms of high-quality reservoirs,the development of micro-nano organic matter-hosted pores serves as the core of shale gas accumulation;(3)in terms of preservation conditions,weak structural transformation,a moderate degree of thermal evolution,and a high pressure coefficient are the key to shale gas enrichment.As a type of important low-carbon fossil energy,shale gas will play an increasingly important role in achieving the strategic goals of peak carbon dioxide emissions and carbon neutrality.Based on the in-depth study of shale gas geological conditions and current exploration progress,three important directions for shale gas exploration in China in the next five years are put forward.
基金the National Natural Science Foundation of China (No. 40674046)
文摘The purpose of the present study was to study the tectonics of the Yellow Sea. Although oilgas exploration has been undertaken for more than 30 years in the southern Yellow Sea, the exploration progress has achieved little. There are three tectonic periods with near N-S trending shortening and compression (260-200 Ma, 135-52 Ma and 23-0.78 Ma) and three tectonic periods with near E-W trending shortening and compression (200-135 Ma, 52--23 Ma and 0.78 Ma) at the Yellow Sea and adjacent areas during the Mesozoic and Cenozoic. The lndosinian tectonic period is the collision period between the Sino-Korean and Yangtze Plates, which formed the basic tectonic framework for the Yellow Sea area. There were strong intraplate deformations during the Yanshanian (200-135 Ma) and Sichuanian (135-52 Ma) periods with different tectonic models, which are also the main formation periods for endogenic metallic mineral deposits around the Yellow Sea. The three tectonic periods during the Cenozoic affect important influences for forming oil-gas reservoirs. The Eocene-Oligocene (52-23 Ma) is the main forming period for oil-gas sources. The Miocene-Early Pleistocene (23-0.78 Ma) was a period of favorable passage for oil-gas migration along NNE trending faults. Since the Middle Pleistocene (0.78 Ma) the NNE trending faults are closed and make good conditions for the reservation of oil-gas. The authors suggest that we pay more attention to the oil-gas exploration at the intersections between the NNE trending existing faults and Paleogene- Neogene systems in the southern Yellow Sea area.
基金funded by the projects initiated by the China Geological Survey(DD20221794 and DD20190414).
文摘Global energy structure is experiencing the third transition from fossil energy to non-fossil energy,to solve future energy problems,cope with climate change,and achieve net-zero emissions targets by 2050.Hydrogen is considered to be the most potential clean energy in this century under the background of carbon neutrality.At present,the industrial methods for producing hydrogen are mainly by steam-hydrocarbon(such as coal and natural gas)reforming and by electrolysis of water,while the exploration and development of natural hydrogen had just started.According to this literature review:(1)Natural hydrogen can be divided into three categories,including free hydrogen,hydrogen in inclusions and dissolved hydrogen;(2)natural hydrogen could be mainly from abiotic origins such as by deep-seated hydrogen generation,water-rock reaction or water radiolysis;(3)natural hydrogen is widely distributed and presents great potential,and the potential natural hydrogen sources excluding deep source of hydrogen is about(254±91)×10^(9) m^(3)/a according to a latest estimate;(4)at present,natural hydrogen has been mined in Mali,and the exploration and development of natural hydrogen has also been carried out in Australia,Brazil,the United States and some European countries,to find many favorable areas and test some technical methods for natural hydrogen exploration.Natural hydrogen is expected to be an important part of hydrogen energy production in the future energy pattern.Based on a thorough literature review,this study introduced the origin,classification,and global discovery of natural hydrogen,as well as summarized the current global status and discussed the possibility of natural hydrogen exploration and development,aiming to provide reference for the future natural hydrogen exploration and development.
基金Supported by the Chinese Academy of Engineering Consultancy Project(2018-xz-09-01)
文摘Through detailed analyses of the distribution characteristics of organic-rich shale, appearance features of high-quality shale, microscopic characteristics of shale reservoir rocks, fracability, and the relationship between preservation conditions and shale gas enrichment in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Sichuan Basin, theoretical understandings and specific suggestions with respect to the exploration and development of shale gas in China are summarized and proposed respectively. Important geological understandings in the exploration and development of shale gas of the Wufeng Formation–Longmaxi Formation in the Sichuan Basin can be summarized into the following aspects: depositional environment and depositional process control the distribution of organic-rich shale; high quality shale in "sweet spot segments" are commonly characterized by high content of organic carbon, high brittleness, high porosity and gas content; organic pores are important storage space for the enrichment of shale gas; preservation conditions are the key factor for the geological evaluation of shale gas in structurally complex regions; shale gas can be considered as "artificial gas reservoirs" and the fracability assessment is essential for high-production; nanoscale storage space and the mode of occurrence control the special seepage characteristics of shale gas. The following suggestions are proposed for the development of China's shale gas industry:(1) focus more on fundamental research to achieve new breakthrough in the geological theory of shale gas;(2) emphasize exploration practices to have all-round discoveries in multiple strata;(3) study the regularities of development and production to establish new models of shale gas development;(4) think creatively to invent new technologies to tackle key problems;(5) explore the management innovation to create new mechanisms in shale gas development.
基金Supported by the PetroChina Science and Technology Project(2013B-0601).
文摘China has made significant progress in the exploration and development of natural gas in the past 70 years,from the gas-poor country to the world’s sixth largest gas production country.In 1949,the annual gas output in China was 1117×104 m3,the proved gas reserves were 3.85×108 m3,and the average annual gas consumption and available reserves of per person were 0.0206 m3 and 0.7107 m3,respectively.By 2018,the average domestic annual gas production per person was 114.8576 m3 and the reserves were 12011.08 m3,and the average domestic annual gas production and reserves per person in the past 70 years increased by 5575 times and 16900 times,respectively.The exploration and development of large gas fields is the main way to rapidly develop the natural gas industry.72 large gas fields have been discovered in China so far,mainly distributed in three basins,Sichuan(25),Ordos(13)and Tarim(10).In 2018,the total gas production of the large gas fields in these three basins was 1039.26×108 m3,accounting for 65%of the total gas production in China.By the end of 2018,the cumulative proved gas reserves of the 72 large gas fields had amounted to 124504×108 m3,accounting for 75%of the total national gas reserves(16.7×1012 m3).New theories of natural gas have promoted the development of China’s natural gas industry faster.Since 1979,the new theory of coal-derived gas has boosted the discovery of gas fields mainly from coal-measure source rocks in China.In 2018,the gas production of large coal-derived gas fields in China accounted for 50.93%and 75.47%of the total national gas production and total gas production of large gas fields,respectively.Guided by shale gas theories,shale gas fields such as Fuling,Changning,Weiyuan and Weirong have been discovered.In 2018,the total proved geological reserves of shale gas were 10455.67×108 m3,and the annual gas production was 108.8×108 m3,demonstrating a good prospect of shale gas in China.
文摘Large-scale oil exploration has been done and large quantities of oil-gas fields have been found in the northern shelf basin of the South China Sea for more than 20 years. The tectonic oil-gas pools are the main type. With the exploration to be deepened, looking for atectonic oil-gas pools is listed in China's exploration strategy. There are advantages for the forming of atectonic oil-gas pools in the northern shelf basin of the South China Sea. Because the level of water has been frequently changing within all historical periods, lithozones are changed alternately in both vertical and lateral directions and formed lithologic deposition especially at low water level stages, such as the low-lying fans of basin-floor fans and slope fans. Due to frequent tectonic movement within all historical periods, many structural surfaces and structural unconformities were formed. At the same time, they also formed many kinds of structural unconformity oil-gas pools. According to our exploration and research, the promising areas of atectonic reservoirs within marine basins include: (1) the basin-floor fan of the deep water district, such as the central depression of the Southeast Qiong basin and Baiyun sag in the Zhujiangkou basin; (2) the frontal area of the large ancient delta, such as the Lingao structural belt in the Yingge Sea basin and Huizhou sag in the Zhujiangkou basin; (3) the unconformity pinchout belt or denudation belt in the slope area and the uplift area, for instance, the Yingdong slope belt in the Yingge Sea basin and Yacheng 13-1 structural belt in the southeast Qiong basin. All this proves that the prospects for atectonic oil-gas pools in the northern shelf basin of the South China Sea are very broad.
文摘Under the requirement of high-quality development, the research method of integrated model planning for offshore oil and gas exploration and development suitable for the western South China Sea is put forward. Based on the new round of resource evaluation and exploration and development research in the western South China Sea, the in-depth research on underground oil and gas resources, surface development facilities, external factors and economic indexes are carried out to clarify the industrial layout of oil and gas development. The potential and prospect of oil and gas exploration and development were implemented, and the main external factors and corresponding measures affecting the planning were clarified in this paper. The economic evaluation model suitable for the region is established based on the analysis of internal rate of return, comprehensive barrel oil cost, critical price, financial net present value and other important indicators, and a set of planning and research methods suitable for the integration of exploration and development in the western South China Sea is finally formed. This method has been applied to the replacement reserve study of Weizhou X and Weizhou Y oil fields. It is found that the planned reserves and production are consistent with the actual ones, and good practical results have been achieved.
基金Supported by the China National Science and Technology Major Project(2016ZX05046,2017ZX05001)the National Key Basic Research and Development Program(973 Program),China(2014CB239000)
文摘Based on the investigation of tight oil exploration and development in North America, the successful cases of tight oil exploration and development in North America are summarized. The geological differences between continental tight oil in China and marine tight oil in North America is analyzed to explore the technical strategies for the industrial development of continental tight oil in China. The experiences of large-scale exploration and profitable development of tight oil in North America can be taken as references from the following 6 perspectives, namely exploring new profitable strata in mature exploration areas, strengthening the economic evaluation of sweet spots and focusing on the investment for high-profitability sweet spots, optimizing the producing of tight oil reserves by means of repetitive fracturing and 3 D fracturing, optimizing drilling and completion technologies to reduce the cost, adopting commodity hedging to ensure the sustainable profit, and strengthening other resources exploration to improve the profit of whole project. In light of the high abundance of tight oil in China, we can draw on successful experience from North America, four suggestions are proposed in sight of the geological setting of China's lacustrine tight oil:(1) Evaluating the potential of tight oil resources and optimizing the strategic area for tight oil exploration;(2) selecting "sweet spot zone" and "sweet spot interval" accurately for precise and high efficient development;(3) adopting advanced tight oil fracturing technology to realize economic development;(4) innovating management system to promote the large-scale profitable development of tight oil.
文摘In recent years,with China's continuous investment in shale gas exploration and the continuous efforts of scientific workers,China’s shale gas exploration and development has achieved leap-forward development.In2011,China's State Council approved shale gas as a new mineral resource.In 2014,shale gas was first proved at geological reserves of 106.8 billion m^3.
文摘Since 1985,68 foreign enterprises from 17 countries and areas have investigated Jiangsu area and discussed the business with us.According to the prediction by domestic geologists,the marine strata of Mesozoic-Paleozoic in south Jiangsu could contain 1.393 billion cubic meters of oil and 763.4 billion cubic meters of gas,meanwhile the volume of oil resources in continental strata of upper Cretaceous-Lower Triassic in North Jia.ngsu is estimated to be 3.34-7.55 hundred million cubic meters.For this reason many foreign oil companies are greatly interested in the prospect of cooperative exploration and development of petro.leum resources in Jiangsu Province.
文摘Exploration for oil and deep gas in northern Songliao Basin,complex rift basin—Hailaer Basin,and Yi-Shu Graben in peripheral basin has technical challenge.Researches on supporting technology including seismic acquisition,processing and interpretation,logging and drilling are performed to establish high resolution 3D seismic technology for lithologic reservoir,deep volcanic rock and complex rift basin,reservoir evaluation and stimulation technology for low permeability reservoir,volcanic reservoir and complex rift reservoir,and drilling technology for deep volcanic rock,providing technical support for reserves increase in northern Songliao Basin,large gas reservoirs discovery in deep volcanic rock and exploration progress in complex rift basin.Next-step development trend of exploration technology is proposed to meet the demand of more technical challenges in the future.
文摘ZTE Corporation released its 2002 annualreport on March 12, 2003, proclaimingthat its main business line revenue andnet profit reached 11 billion RMB and0.57 billion RMB respectively.As a major manufacturer of telecommunica-tion equipment in China, ZTE constantly putsemphasis on R&D so as to forge competitiveedge.Establishing Scientific Management