Based on the energy equation of gas-liquid flow in pipeline,the explicit temperature drop formula for gas-liquid steady state calculation was derived.This formula took into consideration the Joule-Thomson effect,impac...Based on the energy equation of gas-liquid flow in pipeline,the explicit temperature drop formula for gas-liquid steady state calculation was derived.This formula took into consideration the Joule-Thomson effect,impact of terrain undulation and heat transfer with the surroundings along the line.Elimination of temperature iteration loop and integration of the explicit temperature equation,instead of enthalpy energy equation,into the conjugated hydraulic and thermal computation have been found to improve the efficiency of algorithm.Then,the inner wall temperature of gas-liquid flow was calculated by using explicit temperature equation and inner wall convective heat transfer coefficient of mixed flow which can be obtained by liquid convective heat transfer coefficient and gas convective heat transfer coefficient on the basis of liquid holdup.The temperature results of gas-liquid flow and inner wall in the case example presented both agree well with those in professional multiphase computational software OLGA.展开更多
As one of the core components of aero-engine,the thermal protection scheme of combustion chamber has an important impact on its service life.In order to improve the design level of high-performance combustion chamber,...As one of the core components of aero-engine,the thermal protection scheme of combustion chamber has an important impact on its service life.In order to improve the design level of high-performance combustion chamber,the radiation heat transfer characteristics of combustion chamber are studied by experimental method.The following results are obtained:1)With the increase of oil-gas ratio,the gas temperature increases first and then tends to be stable,the radiant heat flow increases gradually,the convective heat flow increases gradually and then tends to be stable,and the proportion of radiant heat flow remains basically unchanged;2)With the increase of the inlet temperature,the gas temperature increases gradually,the radiant heat flow,especially in the flame barrel head area,increases significantly,the convective heat flow remains basically unchanged,and the proportion of radiant heat flow increases significantly;3)With the increase of the combustion chamber pressure,the gas temperature increases gradually.When the combustion chamber pressure is low,the radiant heat flow increases sharply with the increase of the pressure;When the combustion chamber pressure is high,the radiant heat flow increases slowly with the increase of the pressure.The convective heat flow gradually decreases and tends to be stable,and the proportion of radiant heat flow gradually increases and tends to be stable.This study is of great significance to improve the calculation accuracy of radiant heat flow of combustion chamber and the reliability design of thermal protection scheme of combustion chamber.展开更多
基金Project(2011ZX05000-026-004) supported by the National Science & Technology Specific Program of ChinaProject(2010D-5006-0604) supported by the China National Petroleum Corporation (CNPC) Innovation FoundationProject(51004167) supported by the National Natural Science Foundation of China
文摘Based on the energy equation of gas-liquid flow in pipeline,the explicit temperature drop formula for gas-liquid steady state calculation was derived.This formula took into consideration the Joule-Thomson effect,impact of terrain undulation and heat transfer with the surroundings along the line.Elimination of temperature iteration loop and integration of the explicit temperature equation,instead of enthalpy energy equation,into the conjugated hydraulic and thermal computation have been found to improve the efficiency of algorithm.Then,the inner wall temperature of gas-liquid flow was calculated by using explicit temperature equation and inner wall convective heat transfer coefficient of mixed flow which can be obtained by liquid convective heat transfer coefficient and gas convective heat transfer coefficient on the basis of liquid holdup.The temperature results of gas-liquid flow and inner wall in the case example presented both agree well with those in professional multiphase computational software OLGA.
基金National Science and Technology Major Project of China(No.2017-Ⅲ-0003-0027)。
文摘As one of the core components of aero-engine,the thermal protection scheme of combustion chamber has an important impact on its service life.In order to improve the design level of high-performance combustion chamber,the radiation heat transfer characteristics of combustion chamber are studied by experimental method.The following results are obtained:1)With the increase of oil-gas ratio,the gas temperature increases first and then tends to be stable,the radiant heat flow increases gradually,the convective heat flow increases gradually and then tends to be stable,and the proportion of radiant heat flow remains basically unchanged;2)With the increase of the inlet temperature,the gas temperature increases gradually,the radiant heat flow,especially in the flame barrel head area,increases significantly,the convective heat flow remains basically unchanged,and the proportion of radiant heat flow increases significantly;3)With the increase of the combustion chamber pressure,the gas temperature increases gradually.When the combustion chamber pressure is low,the radiant heat flow increases sharply with the increase of the pressure;When the combustion chamber pressure is high,the radiant heat flow increases slowly with the increase of the pressure.The convective heat flow gradually decreases and tends to be stable,and the proportion of radiant heat flow gradually increases and tends to be stable.This study is of great significance to improve the calculation accuracy of radiant heat flow of combustion chamber and the reliability design of thermal protection scheme of combustion chamber.