The review is a comprehensive discussion of current research advances,commercial scale developments,challenges,and techno-eco nomics for the entire H_(2) value chain,including production,mainly focusing on sustainable...The review is a comprehensive discussion of current research advances,commercial scale developments,challenges,and techno-eco nomics for the entire H_(2) value chain,including production,mainly focusing on sustainable sources,storage,and transport.The challenges,advantages,and uses of H_(2) energy are included at length.Moreover,apart from the sustainable production approaches,the approaches and current developments for combating the carbon dioxide(CO_(2))emissions from existing H_(2) production facilities are highlighted in terms of ca rbon capture,utilization,and storage(CCUS).Concisely,the review discusses current material and recent technological adva ncements in developing pilot projects and large-scale establishments for viable and rapidly emerging sou rce-ba sed H_(2) productio n.Moreover,the review also aims to provide an in-depthdiscussion and explore current developments based on the advantages of H_(2) energy in terms of its utilization,based on its high energy density,and its ability to be used as a feedstock and fuel.On the other hand,the challenges of H_(2) are also elabo rated.Next,the role of CCUS in a carbon-neutral economy and value chain for minimization of emissions from existing facilities is thoroughly deliberated,and the recent commercial-scale implementation of CCUS technologies is highlighted.Extending the utilization and recycling of captured CO_(2) emissions along with H_(2) to produce e-fuels in terms of current advances is detailed in this review.Fu rthermore,the most applicable,efficient,a nd develo ping approaches are discussed for physical and chemical H_(2) storage,considering recent la rge-scale implementations of liquid carriers and liquid organic hydrogen carriers as storage options.Lastly,the review elaborates on recent insights into advances in H_(2) transport infrastructure,including compressed and liquid H_(2) delivery via roads,ships,pipelines,and flight cargo.The review gives precise insights into the recent scenario through an elaborated conclusion of each discussion topic separately and a discussion of future perspectives.The current review will help researchers to fully understand the ongoing research advancements and challenges in the H_(2) value chain for formulating new solutions for sustainable H_(2) production,alo ng with focusing on suitable approaches for its storage and tra nsport to make the production and utilization of H_(2) applicable on a large scale.展开更多
To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) s...To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) sequestration models do not adequately consider multiple transport mechanisms.Moreover,the evaluation of CO_(2) storage processes usually involves laborious and time-consuming numerical simulations unsuitable for practical prediction and decision-making.In this paper,an integrated model involving gas diffusion,adsorption,dissolution,slip flow,and Darcy flow is proposed to accurately characterize CO_(2) storage in depleted shale reservoirs,supporting the establishment of a training database.On this basis,a hybrid physics-informed data-driven neural network(HPDNN)is developed as a deep learning surrogate for prediction and inversion.By incorporating multiple sources of scientific knowledge,the HPDNN can be configured with limited simulation resources,significantly accelerating the forward and inversion processes.Furthermore,the HPDNN can more intelligently predict injection performance,precisely perform reservoir parameter inversion,and reasonably evaluate the CO_(2) storage capacity under complicated scenarios.The validation and test results demonstrate that the HPDNN can ensure high accuracy and strong robustness across an extensive applicability range when dealing with field data with multiple noise sources.This study has tremendous potential to replace traditional modeling tools for predicting and making decisions about CO_(2) storage projects in depleted shale reservoirs.展开更多
Considering the development of potato (Solanum tuberosum) industry in China, the existing technologies of potato storage and transportation in the produc- ing area were analyzed through investigation on four main po...Considering the development of potato (Solanum tuberosum) industry in China, the existing technologies of potato storage and transportation in the produc- ing area were analyzed through investigation on four main potato production areas. Unear classification was used to conduct the technology classification. According to the technical attributes and characteristics, the potato technologies of storage and transportation in producing area were classified with large classes, middle classes, small classes and subclasses, into the agricultural production area processing and storage engineering technology system, to reveal the structure and functions. Mean- while, the widely used technologies were integrated and summarized into 5 principal technology integration programs, which could be used for the technology integration of the new management subjects such as planting professional cooperatives, family farms, enterprises and so on.展开更多
To measure the void fraction online in oil-gas pipeline, an improved electrical capacitance tomography (ECT) system has been designed. The capacitance sensor with new structure has twelve internal electrodes and overc...To measure the void fraction online in oil-gas pipeline, an improved electrical capacitance tomography (ECT) system has been designed. The capacitance sensor with new structure has twelve internal electrodes and overcomes the influence of the pipe wall. The data collection system is improved by using high performance IC (integrated circuit). Static tests of bubble flow, stratified flow and annular flow regime are carried out. Measurements are taken on bubble flow, stratified flow and slug flow. Results show that the new ECT system performs well on void fraction measurement of bubble flow and stratified flow, but the error of measurement for slug flow is more than 10%.展开更多
Presented is an experimental study on the performance of an oil-gas multiphase transportation system, especially on the multiphase flow patterns, multiphase pumping and multiphase metering of the system. A dynamic sim...Presented is an experimental study on the performance of an oil-gas multiphase transportation system, especially on the multiphase flow patterns, multiphase pumping and multiphase metering of the system. A dynamic simulation analysis is conducted to deduce simulation parameters of the system and similarity criteria under simplified conditions are obtained. The reliability and feasibility of two-phase flow experiment with oil and natural gas simulated by water and air are discussed by using the similarity criteria.展开更多
Nowadays, we are in great lack of the technology theory for the storage and transportation of gas hydrate. Under this condition, after checking out related theory of these, we established the technology roadmap of the...Nowadays, we are in great lack of the technology theory for the storage and transportation of gas hydrate. Under this condition, after checking out related theory of these, we established the technology roadmap of the storage and transportation of gas hydrate by LNG technology. Study has shown that the technology of LNG is more saving than that of pipeline. Then we came out with the new idea of storage and transportation of hydrate by LNG technology.展开更多
In the process of the constant development of the oil and gas storage and transportation technology, the maintenance of the large pipelines is an important task. At present, China vigorously promotes the use of the pi...In the process of the constant development of the oil and gas storage and transportation technology, the maintenance of the large pipelines is an important task. At present, China vigorously promotes the use of the pipeline robots, for the maintenance of the oil and gas pipelines by the unique characteristics of the robots. In this paper, the author carries out the detailed analysis on the current situation of the development of the pipeline robots in the oil and gas storage and transportation industry, and compares the different applications of the pipeline robots at home and abroad. Starting from the principles of the operation of the robots, the author analyzes the characteristics of the different types of the robots, and combined with the existing conditions of the oil and gas storage and transportation in our country, the author tries to find the most favorable way of the working of the pipeline robots, to continuously improve the development of the oil and gas storage and transportation industry using the robot technologies.展开更多
In recent years, our country is increasingly dependent on the use of the oil resources, and the degree of the oil mining is also continuously upgrading. After the completion of the tasks related to the oil mining in t...In recent years, our country is increasingly dependent on the use of the oil resources, and the degree of the oil mining is also continuously upgrading. After the completion of the tasks related to the oil mining in the lands, the technologies for the development of the offshore oil mining are particularly important. Among these problems, after the exploitation, the storage and transportation of the offshore oil and gas is worthy of the discussion of the technical personnel. From the experience of the oil and gas storage and transportation in the long years, in some environmentally degraded areas, there are problems in the efficiency and safety in the long pipeline transportation and the oil and gas mixed transportation, and in the transportation, there are also big shortcomings. In this paper, the author carries on the analysis of the existing questions encountering in our country's oil and gas storage and transportation~ and proposes the direction of the researches in the future oil and gas storage and transportation, and the purpose is to better improve the security of Cbina's oil and gas storage and transportation and to enhance the efficiency of the use of the oil and gas.展开更多
In recent years,the safety of oil and gas storage and transportation facilities has been paid more attention by the state and enterprises due to frequent accidents.The oil and gas storage and transportation facilities...In recent years,the safety of oil and gas storage and transportation facilities has been paid more attention by the state and enterprises due to frequent accidents.The oil and gas storage and transportation facilities safety courses in China University of Petroleum(Beijing)includes“Engineering mechanics”,“Strength design of pipelines and tanks”and“Safety and integrity management of oil and gas storage and transportation facilities”.The three courses lack relevance and the teaching mode is too rigid,resulting in students losing their initiative in learning.If students can’t use the knowledge flexibly,it will affect the achievement of the objectives of the training program.Therefore,oil and gas storage and transportation facilities safety courses are reformed,training plans are adjusted and teaching methods are improved.The practice shows that the reform enriches the teaching content,improves the teaching quality,stimulates classroom activity and gets a good evaluation of students.The reform of safety courses has a certain significance for cultivating compound talents who have the ability to solve practical problems in engineering.展开更多
This study was to investigate the effects of transport, storage temperature and time on parthenogenetical developmental competence of sheep oocyte. The ovaries were collected and randomly immersed in physiological sal...This study was to investigate the effects of transport, storage temperature and time on parthenogenetical developmental competence of sheep oocyte. The ovaries were collected and randomly immersed in physiological saline at ( 10 - 15 ) ℃, (20 - 25 ) ℃ and (30 - 35 ) ℃ and transported to the laboratory for culture. They were divided into three groups randomly in an optimized transport temperature, kept in physiological saline at4 ℃, (14 -18) ℃ and (25 -30) ℃ respectively; 15 - 17 h later, the ovaries were cutured for the maturation and parthenogenetic activation of oocytes. The results showed that the optimal transport temperature of ovaries was 20 -25 ℃, when the maturation rate and blastocysts rate reached 67.44% and 35.93% respectively. Incubating sheep ovaries at ( 14 - 18 ) ℃ for (15 -17) h did not reduce the maturation rate (61.81%) and blastocysts rate (29.03%) of oocyte significantly. However, incubating sheep ovaries at 4 ℃ or (25 -30) ℃ significantly reduced the maturation rate (41.90%, 18.40% ) and cleavage rate (9.09%, 13.04% ), and the ovaries could not develop into blastocysts at these two temperature ranges. It can be concluded that the optimal transport temperature of the sheep ovaries is 20 - 25 ℃, and incubation at 14 - 18 ℃ overnight in vivo does not affect the developmental competence of oocytes.展开更多
针对嵌入式系统与PC主机大量数据传输的需要,使用SD卡做为存储介质设计实现USB Mass Storage类设备。主机和存储设备之间的通讯严格按照USB2.0协议和USB Mass Storage类存储协议,该类存储设备构架于USB2.0协议之上,将存储命令嵌于USB协...针对嵌入式系统与PC主机大量数据传输的需要,使用SD卡做为存储介质设计实现USB Mass Storage类设备。主机和存储设备之间的通讯严格按照USB2.0协议和USB Mass Storage类存储协议,该类存储设备构架于USB2.0协议之上,将存储命令嵌于USB协议之中。采用MAX3421作为USB外设控制器,MCF52233作为主控制器,通过SPI接口实现两者的通讯试验结果表明,当MCF52233主频为60MHZ时,存储速度可以达到1.87 Mbyte/s,满足了设备与主机数据交换速度的要求。展开更多
Coal-fired power generation stands as the most economically viable modulating power source in present-day China.It holds the potential to offer prospective solutions to the challenges posed by the rapid expansion of i...Coal-fired power generation stands as the most economically viable modulating power source in present-day China.It holds the potential to offer prospective solutions to the challenges posed by the rapid expansion of intermittent,unpredictable,and unstable renewable energy sources.Solid particle thermal storage technology emerges as an effective means to enhance the flexibility of coal-fired circulating fluidized bed power units.To attain an optimized structure for the solid particle thermal storage and release system in circulating fluidized bed units,experimental research was conducted on a 0.1 MWth circulating fluidized bed test platform.This study delved into the impact of ash storage bin geometries and the shapes of their feed-discharge valves on the control properties of solid particle transportation.The experimental outcomes reveal that employing inverted m-shaped valve and dual U-shaped valves for feed control,alongside U-shaped valves and N-shaped valves for discharge control,both enable efficient and rapid storage and release of solid particles within the circulating fluidized bed.Under similar air distribution conditions,the inverted m-shaped valve exhibits lower conveying energy consumption than the dual U-shaped valves,while the N-shaped valve excels in control characteristics over the U-shaped valve.Furthermore,the inverted m-shaped valve and the N-shaped valve demonstrate optimal overflow port heights,and the ash storage bin exhibits an optimum height-to-diameter ratio.展开更多
Solid particle heat storage technology offers a potential solution to the challenges posed by the significant growth of renewable energy sources,particularly in terms of grid security and stability.Consequently,it has...Solid particle heat storage technology offers a potential solution to the challenges posed by the significant growth of renewable energy sources,particularly in terms of grid security and stability.Consequently,it has the capability to optimize the energy utilization efficiency of the power system.In order to investigate the transport regulation characteristics of solid particles in the thermal storage and release system of a circulating fluidized bed(CFB),a test rig with a capacity of 0.1 MW(th)was established.This rig was utilized to systematically study the transport regulation characteristics of solid particles under the double U-type valve feed structure and U-type valve discharge structure.The experimental findings indicate that the system's design enables efficient and rapid storage and release of solid particles in the CFB.The air distribution mode,specifically the double U-type valve feed structure and the U-type valve discharge structure,significantly influence the feed and discharge characteristics of the ash storage bin.It was observed that the impact of loose air on these characteristics is more substantial than that of the return air,irrespective of the feed structure or the return structure.When adjusting the feed and discharge rate,it is recommended to adopt a scheme that involves coarse adjustment through loose air and fine adjustment through return air.展开更多
Carbon dioxide capture,EOR-utilization and storage(CCUS-EOR)are the most practical and feasible large-scale carbon reduction technologies,and also the key technologies to greatly improve the recovery of low-permeabili...Carbon dioxide capture,EOR-utilization and storage(CCUS-EOR)are the most practical and feasible large-scale carbon reduction technologies,and also the key technologies to greatly improve the recovery of low-permeability oil fields.This paper sorts out the main course of CCUS-EOR technological development abroad and its industrialization progress.The progress of CCUS-EOR technological research and field tests in China are summarized,the development status,problems and challenges of the entire industry chain of CO_(2) capture,transportation,oil displacement,and storage are analyzed.The results show a huge potential of the large-scale application of CCUS-EOR in China in terms of carbon emission reduction and oil production increase.At present,CCUS-EOR in China is in a critical stage of development,from field pilot tests to industrialization.Aiming at the feature of continental sedimentary oil and gas reservoirs in China,and giving full play to the advantages of the abundant reserves for CO_(2) flooding,huge underground storage space,surface infrastructure,and wide distribution of wellbore injection channels,by cooperating with carbon emission enterprises,critical technological research and demonstration project construction should be accelerated,including the capture of low-concentration CO_(2) at low-cost and on large-scale,supercritical CO_(2) long-distance transportation,greatly enhancing oil recovery and storage rate,and CO_(2) large-scale and safe storage.CCUS-EOR theoretical and technical standard system should be constructed for the whole industrial chain to support and promote the industrial scale application,leading the rapid and profitable development of CCUS-EOR emerging industrial chain with innovation.展开更多
The transition to a non-emitting energy mix for power generation will take decades. This transition will need to be sustainable, e.g.economically affordable. Fossil fuels which are abundant have an important role to p...The transition to a non-emitting energy mix for power generation will take decades. This transition will need to be sustainable, e.g.economically affordable. Fossil fuels which are abundant have an important role to play in this respect, provided that Carbon Capture and Storage(CCS) is progressively implemented. CCS is the only way to reduce emissions from energy intensive industries.Thus, the need for upgraded and new CCS research facilities is widely recognised among stakeholders across Europe, as emphasised by the Zero Emissions Platform(ZEP) [1] and the European Energy Research Alliance on CCS(EERA-CCS) [2].The European Carbon Dioxide Capture and Storage Laboratory Infrastructure, ECCSEL, provides funders, operators and researchers with significant benefits by offering access to world-class research facilities that, in many cases, are unlikely for a single nation to support in isolation.This implies creation of synergy and the avoidance of duplication as well as streamlining of funding for research facilities.ECCSEL offers open access to its advanced laboratories for talented scientists and visiting researchers to conduct cutting-edge research.In the planning of ECCSEL, gap analyses were performed and CCS technologies have been reviewed to underpin and envisage the future experimental setup; 1) Making use of readily available facilities, 2) Modifying existing facilities, and 3) Planning and building entirely new advanced facilities.The investments required for the first ten years(2015-2025) are expected to be in the range of €80-120 miilion. These investments show the current level of ambition, as proposed during the preparatory phase(2011-2014).Entering the implementation phase in 2015, 9 European countries signed Letter of Intent(LoI) to join a ECCSEL legal entity: France, United Kingdom, Netherlands, Italy, Spain, Poland, Greece, Norway and Switzerland(active observer). As the EU ERIC-regulation [3] would offer the most suitable legal framework for ECCSEL, the host country, Norway, will apply for establishing ERIC as the ECCSEL Research Infrastructure(RI)legal entity in 2017. Until the ECCSEL ERIC is approved by the European Commission(probably by summer 2017), an interim MoU agreement for the implementation phase of ECCSEL RI has been signed by 13 research institutions and universities representing the 9 countries. A consortium of these partners were granted 3 million EURO from Horizon 2020 to boost implementation of ECCSEL from September 2015 and two years onwards.?2016, Institute of Process Engineering, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).展开更多
Peculiarities of low temperature charge transport and enerpy accumulation in alu-minum devices are investigated by means of study of cylindrical conductors having a rudial cuerent fiow between inner and outer concentr...Peculiarities of low temperature charge transport and enerpy accumulation in alu-minum devices are investigated by means of study of cylindrical conductors having a rudial cuerent fiow between inner and outer concentric contracts. Azimuthal current and, connected with it, self magnetic field are investigated in a wide range of radial current density up to 6000 A/cm2 under an external magnetic field up to 8 T Electron scattering processes are investigated and it is shown that relaxation electron mechanisms are determined by strong temperature dependence on account of high sus-ceptibility of scattering to anisotropy of electron dispersion law. The role of thermal phonons is investigated through an effective averaged conductivity tensor of polycrystalline medium. Using data of self magnetic self distribution on sample surface an energy density of self magnetic field is estimated. It is shown that at T=4.2 K average energy of self field may achieve at least 1 J/cm3. Using data of relaxation processes at temperature of liquid hydrogen it is established that self magnetic field must be a third of helium magnitude with respective self magnetic enengy density, spiral motion of carriers in this geometry being regarded as a current coils in usual inductive element.展开更多
The efficiency of substance exchange may be decreased when the thickness and volume of such a tissue-engineered cartilage that is composed of cultured cells and porous scaffold increase. Moreover, during the transport...The efficiency of substance exchange may be decreased when the thickness and volume of such a tissue-engineered cartilage that is composed of cultured cells and porous scaffold increase. Moreover, during the transport of this construct with complicated shapes, excessive and focal mechanical loading may cause deformation. The establishment of incubation and transport methods is necessary for the three-dimensional tissue-engineered cartilage. Therefore, we investigated the preparation of an agarose mold with a concavity similar to the shape of 3-dimensional tissue-engineered cartilage to prevent excessive and focal concentration of stress, while avoiding interference with substance exchange as much as possible. Firstly, we investigated the preparation at 1% - 4% agarose concentrations. Since the mechanical strength was insufficient at 1%, 2% was regarded as appropriate. Using 2% agarose, we prepared a mold with a 5 × 5 × 5 mm concavity to accommodate tissue-engineered cartilage (5 × 5 × 5 mm mixture of 1.5 × 107 cells and collagen gel), and stored the regenerative cartilage in it for 2 and 24 hours. On comparison with storage in a plastic mold with the same shape in which substance exchanged from side and bottom was impossible, although no significant differences were noted in the number or viability of cells after 2 hours, these were markedly reduced in the plastic mold after 24 hours. It was confirmed that favorable cell numbers and viability were maintained by immediately retaining the regenerative cartilage in the culture medium in the agarose mold and keeping the temperature at 37°C. Since this agarose mold also buffers against mechanical forces loaded on the three-dimensional regenerative tissue, it may be useful as a container for storage and transport of large-sized three-dimensional regenerative tissue.展开更多
For development of passenger electrical transport, it is necessary to use energy more rationally. One of methods of vehicle power efficiency increase is installation of on-board energy storage systems. For studying of...For development of passenger electrical transport, it is necessary to use energy more rationally. One of methods of vehicle power efficiency increase is installation of on-board energy storage systems. For studying of system operation, it is necessary to carry out a lot of experiments, therefore it is favorable to use the test bench and its computer model for reduction of the number of physical experiments. In this article, the results of computer modeling for the optimization of traction drive test bench by adjusting of the operation parameters of supercapacitor energy storage are described. Test bench operation is considered in cases of the energy storage system working at various selected supercapacitor initial voltages. Maximal increase of possibility of vehicle test bench regenerative braking with minimal decrease of autonomous power supply mode possibility is investigated. There is estimated the energy storage system efficiency improving measures dependence from supercapacitor operational voltage ranges. Parameters at which the minimum losses of energy are observed are revealed. Dependence of energy storage system discharge power on the most admissible supercapacitor current is established.展开更多
基金part of a research project PIF Alfa HI initiative 726174Alfaisal University and its Office of Research&Innovation for their continuous support throughout this study。
文摘The review is a comprehensive discussion of current research advances,commercial scale developments,challenges,and techno-eco nomics for the entire H_(2) value chain,including production,mainly focusing on sustainable sources,storage,and transport.The challenges,advantages,and uses of H_(2) energy are included at length.Moreover,apart from the sustainable production approaches,the approaches and current developments for combating the carbon dioxide(CO_(2))emissions from existing H_(2) production facilities are highlighted in terms of ca rbon capture,utilization,and storage(CCUS).Concisely,the review discusses current material and recent technological adva ncements in developing pilot projects and large-scale establishments for viable and rapidly emerging sou rce-ba sed H_(2) productio n.Moreover,the review also aims to provide an in-depthdiscussion and explore current developments based on the advantages of H_(2) energy in terms of its utilization,based on its high energy density,and its ability to be used as a feedstock and fuel.On the other hand,the challenges of H_(2) are also elabo rated.Next,the role of CCUS in a carbon-neutral economy and value chain for minimization of emissions from existing facilities is thoroughly deliberated,and the recent commercial-scale implementation of CCUS technologies is highlighted.Extending the utilization and recycling of captured CO_(2) emissions along with H_(2) to produce e-fuels in terms of current advances is detailed in this review.Fu rthermore,the most applicable,efficient,a nd develo ping approaches are discussed for physical and chemical H_(2) storage,considering recent la rge-scale implementations of liquid carriers and liquid organic hydrogen carriers as storage options.Lastly,the review elaborates on recent insights into advances in H_(2) transport infrastructure,including compressed and liquid H_(2) delivery via roads,ships,pipelines,and flight cargo.The review gives precise insights into the recent scenario through an elaborated conclusion of each discussion topic separately and a discussion of future perspectives.The current review will help researchers to fully understand the ongoing research advancements and challenges in the H_(2) value chain for formulating new solutions for sustainable H_(2) production,alo ng with focusing on suitable approaches for its storage and tra nsport to make the production and utilization of H_(2) applicable on a large scale.
基金This work is funded by National Natural Science Foundation of China(Nos.42202292,42141011)the Program for Jilin University(JLU)Science and Technology Innovative Research Team(No.2019TD-35).The authors would also like to thank the reviewers and editors whose critical comments are very helpful in preparing this article.
文摘To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) sequestration models do not adequately consider multiple transport mechanisms.Moreover,the evaluation of CO_(2) storage processes usually involves laborious and time-consuming numerical simulations unsuitable for practical prediction and decision-making.In this paper,an integrated model involving gas diffusion,adsorption,dissolution,slip flow,and Darcy flow is proposed to accurately characterize CO_(2) storage in depleted shale reservoirs,supporting the establishment of a training database.On this basis,a hybrid physics-informed data-driven neural network(HPDNN)is developed as a deep learning surrogate for prediction and inversion.By incorporating multiple sources of scientific knowledge,the HPDNN can be configured with limited simulation resources,significantly accelerating the forward and inversion processes.Furthermore,the HPDNN can more intelligently predict injection performance,precisely perform reservoir parameter inversion,and reasonably evaluate the CO_(2) storage capacity under complicated scenarios.The validation and test results demonstrate that the HPDNN can ensure high accuracy and strong robustness across an extensive applicability range when dealing with field data with multiple noise sources.This study has tremendous potential to replace traditional modeling tools for predicting and making decisions about CO_(2) storage projects in depleted shale reservoirs.
基金Supported by the National Key Research and Development Program of China(2016YFD0401301)~~
文摘Considering the development of potato (Solanum tuberosum) industry in China, the existing technologies of potato storage and transportation in the produc- ing area were analyzed through investigation on four main potato production areas. Unear classification was used to conduct the technology classification. According to the technical attributes and characteristics, the potato technologies of storage and transportation in producing area were classified with large classes, middle classes, small classes and subclasses, into the agricultural production area processing and storage engineering technology system, to reveal the structure and functions. Mean- while, the widely used technologies were integrated and summarized into 5 principal technology integration programs, which could be used for the technology integration of the new management subjects such as planting professional cooperatives, family farms, enterprises and so on.
基金the National High Technology Research and Development Program of China (863 Program) (No. 2002AA616050).
文摘To measure the void fraction online in oil-gas pipeline, an improved electrical capacitance tomography (ECT) system has been designed. The capacitance sensor with new structure has twelve internal electrodes and overcomes the influence of the pipe wall. The data collection system is improved by using high performance IC (integrated circuit). Static tests of bubble flow, stratified flow and annular flow regime are carried out. Measurements are taken on bubble flow, stratified flow and slug flow. Results show that the new ECT system performs well on void fraction measurement of bubble flow and stratified flow, but the error of measurement for slug flow is more than 10%.
基金9~(th) 5-year plan key project of the Chinese Academy of Sciences(KZ951-A1-405),NSFC(59476041)National 863 High Technology Youth Foundation(820-Q-013)
文摘Presented is an experimental study on the performance of an oil-gas multiphase transportation system, especially on the multiphase flow patterns, multiphase pumping and multiphase metering of the system. A dynamic simulation analysis is conducted to deduce simulation parameters of the system and similarity criteria under simplified conditions are obtained. The reliability and feasibility of two-phase flow experiment with oil and natural gas simulated by water and air are discussed by using the similarity criteria.
文摘Nowadays, we are in great lack of the technology theory for the storage and transportation of gas hydrate. Under this condition, after checking out related theory of these, we established the technology roadmap of the storage and transportation of gas hydrate by LNG technology. Study has shown that the technology of LNG is more saving than that of pipeline. Then we came out with the new idea of storage and transportation of hydrate by LNG technology.
文摘In the process of the constant development of the oil and gas storage and transportation technology, the maintenance of the large pipelines is an important task. At present, China vigorously promotes the use of the pipeline robots, for the maintenance of the oil and gas pipelines by the unique characteristics of the robots. In this paper, the author carries out the detailed analysis on the current situation of the development of the pipeline robots in the oil and gas storage and transportation industry, and compares the different applications of the pipeline robots at home and abroad. Starting from the principles of the operation of the robots, the author analyzes the characteristics of the different types of the robots, and combined with the existing conditions of the oil and gas storage and transportation in our country, the author tries to find the most favorable way of the working of the pipeline robots, to continuously improve the development of the oil and gas storage and transportation industry using the robot technologies.
文摘In recent years, our country is increasingly dependent on the use of the oil resources, and the degree of the oil mining is also continuously upgrading. After the completion of the tasks related to the oil mining in the lands, the technologies for the development of the offshore oil mining are particularly important. Among these problems, after the exploitation, the storage and transportation of the offshore oil and gas is worthy of the discussion of the technical personnel. From the experience of the oil and gas storage and transportation in the long years, in some environmentally degraded areas, there are problems in the efficiency and safety in the long pipeline transportation and the oil and gas mixed transportation, and in the transportation, there are also big shortcomings. In this paper, the author carries on the analysis of the existing questions encountering in our country's oil and gas storage and transportation~ and proposes the direction of the researches in the future oil and gas storage and transportation, and the purpose is to better improve the security of Cbina's oil and gas storage and transportation and to enhance the efficiency of the use of the oil and gas.
文摘In recent years,the safety of oil and gas storage and transportation facilities has been paid more attention by the state and enterprises due to frequent accidents.The oil and gas storage and transportation facilities safety courses in China University of Petroleum(Beijing)includes“Engineering mechanics”,“Strength design of pipelines and tanks”and“Safety and integrity management of oil and gas storage and transportation facilities”.The three courses lack relevance and the teaching mode is too rigid,resulting in students losing their initiative in learning.If students can’t use the knowledge flexibly,it will affect the achievement of the objectives of the training program.Therefore,oil and gas storage and transportation facilities safety courses are reformed,training plans are adjusted and teaching methods are improved.The practice shows that the reform enriches the teaching content,improves the teaching quality,stimulates classroom activity and gets a good evaluation of students.The reform of safety courses has a certain significance for cultivating compound talents who have the ability to solve practical problems in engineering.
基金Supported by Construction of Natural Science and Technology Platform in China(2005DKA21101)"863"Program(2006AA10Z198)Technical Development and Demonstration Program of Beijing Vocational College of Agriculture(XY-YF-14-20)
文摘This study was to investigate the effects of transport, storage temperature and time on parthenogenetical developmental competence of sheep oocyte. The ovaries were collected and randomly immersed in physiological saline at ( 10 - 15 ) ℃, (20 - 25 ) ℃ and (30 - 35 ) ℃ and transported to the laboratory for culture. They were divided into three groups randomly in an optimized transport temperature, kept in physiological saline at4 ℃, (14 -18) ℃ and (25 -30) ℃ respectively; 15 - 17 h later, the ovaries were cutured for the maturation and parthenogenetic activation of oocytes. The results showed that the optimal transport temperature of ovaries was 20 -25 ℃, when the maturation rate and blastocysts rate reached 67.44% and 35.93% respectively. Incubating sheep ovaries at ( 14 - 18 ) ℃ for (15 -17) h did not reduce the maturation rate (61.81%) and blastocysts rate (29.03%) of oocyte significantly. However, incubating sheep ovaries at 4 ℃ or (25 -30) ℃ significantly reduced the maturation rate (41.90%, 18.40% ) and cleavage rate (9.09%, 13.04% ), and the ovaries could not develop into blastocysts at these two temperature ranges. It can be concluded that the optimal transport temperature of the sheep ovaries is 20 - 25 ℃, and incubation at 14 - 18 ℃ overnight in vivo does not affect the developmental competence of oocytes.
文摘针对嵌入式系统与PC主机大量数据传输的需要,使用SD卡做为存储介质设计实现USB Mass Storage类设备。主机和存储设备之间的通讯严格按照USB2.0协议和USB Mass Storage类存储协议,该类存储设备构架于USB2.0协议之上,将存储命令嵌于USB协议之中。采用MAX3421作为USB外设控制器,MCF52233作为主控制器,通过SPI接口实现两者的通讯试验结果表明,当MCF52233主频为60MHZ时,存储速度可以达到1.87 Mbyte/s,满足了设备与主机数据交换速度的要求。
基金supported by the“High efficiency and low nitrogen combustion technology and demonstration of coal-fired industrial boiler”,Strategic Priority Research Program of the Chinese Academy of Sciences(grant No.Y82C0532G1).
文摘Coal-fired power generation stands as the most economically viable modulating power source in present-day China.It holds the potential to offer prospective solutions to the challenges posed by the rapid expansion of intermittent,unpredictable,and unstable renewable energy sources.Solid particle thermal storage technology emerges as an effective means to enhance the flexibility of coal-fired circulating fluidized bed power units.To attain an optimized structure for the solid particle thermal storage and release system in circulating fluidized bed units,experimental research was conducted on a 0.1 MWth circulating fluidized bed test platform.This study delved into the impact of ash storage bin geometries and the shapes of their feed-discharge valves on the control properties of solid particle transportation.The experimental outcomes reveal that employing inverted m-shaped valve and dual U-shaped valves for feed control,alongside U-shaped valves and N-shaped valves for discharge control,both enable efficient and rapid storage and release of solid particles within the circulating fluidized bed.Under similar air distribution conditions,the inverted m-shaped valve exhibits lower conveying energy consumption than the dual U-shaped valves,while the N-shaped valve excels in control characteristics over the U-shaped valve.Furthermore,the inverted m-shaped valve and the N-shaped valve demonstrate optimal overflow port heights,and the ash storage bin exhibits an optimum height-to-diameter ratio.
基金financially supported by the"High efficiency and low nitrogen combustion technology and demonstration of coal-fired industrial boiler",Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.Y82C0532G1)。
文摘Solid particle heat storage technology offers a potential solution to the challenges posed by the significant growth of renewable energy sources,particularly in terms of grid security and stability.Consequently,it has the capability to optimize the energy utilization efficiency of the power system.In order to investigate the transport regulation characteristics of solid particles in the thermal storage and release system of a circulating fluidized bed(CFB),a test rig with a capacity of 0.1 MW(th)was established.This rig was utilized to systematically study the transport regulation characteristics of solid particles under the double U-type valve feed structure and U-type valve discharge structure.The experimental findings indicate that the system's design enables efficient and rapid storage and release of solid particles in the CFB.The air distribution mode,specifically the double U-type valve feed structure and the U-type valve discharge structure,significantly influence the feed and discharge characteristics of the ash storage bin.It was observed that the impact of loose air on these characteristics is more substantial than that of the return air,irrespective of the feed structure or the return structure.When adjusting the feed and discharge rate,it is recommended to adopt a scheme that involves coarse adjustment through loose air and fine adjustment through return air.
基金Supported by the Major Science and Technology Project of PetroChina(2021ZZ01).
文摘Carbon dioxide capture,EOR-utilization and storage(CCUS-EOR)are the most practical and feasible large-scale carbon reduction technologies,and also the key technologies to greatly improve the recovery of low-permeability oil fields.This paper sorts out the main course of CCUS-EOR technological development abroad and its industrialization progress.The progress of CCUS-EOR technological research and field tests in China are summarized,the development status,problems and challenges of the entire industry chain of CO_(2) capture,transportation,oil displacement,and storage are analyzed.The results show a huge potential of the large-scale application of CCUS-EOR in China in terms of carbon emission reduction and oil production increase.At present,CCUS-EOR in China is in a critical stage of development,from field pilot tests to industrialization.Aiming at the feature of continental sedimentary oil and gas reservoirs in China,and giving full play to the advantages of the abundant reserves for CO_(2) flooding,huge underground storage space,surface infrastructure,and wide distribution of wellbore injection channels,by cooperating with carbon emission enterprises,critical technological research and demonstration project construction should be accelerated,including the capture of low-concentration CO_(2) at low-cost and on large-scale,supercritical CO_(2) long-distance transportation,greatly enhancing oil recovery and storage rate,and CO_(2) large-scale and safe storage.CCUS-EOR theoretical and technical standard system should be constructed for the whole industrial chain to support and promote the industrial scale application,leading the rapid and profitable development of CCUS-EOR emerging industrial chain with innovation.
文摘The transition to a non-emitting energy mix for power generation will take decades. This transition will need to be sustainable, e.g.economically affordable. Fossil fuels which are abundant have an important role to play in this respect, provided that Carbon Capture and Storage(CCS) is progressively implemented. CCS is the only way to reduce emissions from energy intensive industries.Thus, the need for upgraded and new CCS research facilities is widely recognised among stakeholders across Europe, as emphasised by the Zero Emissions Platform(ZEP) [1] and the European Energy Research Alliance on CCS(EERA-CCS) [2].The European Carbon Dioxide Capture and Storage Laboratory Infrastructure, ECCSEL, provides funders, operators and researchers with significant benefits by offering access to world-class research facilities that, in many cases, are unlikely for a single nation to support in isolation.This implies creation of synergy and the avoidance of duplication as well as streamlining of funding for research facilities.ECCSEL offers open access to its advanced laboratories for talented scientists and visiting researchers to conduct cutting-edge research.In the planning of ECCSEL, gap analyses were performed and CCS technologies have been reviewed to underpin and envisage the future experimental setup; 1) Making use of readily available facilities, 2) Modifying existing facilities, and 3) Planning and building entirely new advanced facilities.The investments required for the first ten years(2015-2025) are expected to be in the range of €80-120 miilion. These investments show the current level of ambition, as proposed during the preparatory phase(2011-2014).Entering the implementation phase in 2015, 9 European countries signed Letter of Intent(LoI) to join a ECCSEL legal entity: France, United Kingdom, Netherlands, Italy, Spain, Poland, Greece, Norway and Switzerland(active observer). As the EU ERIC-regulation [3] would offer the most suitable legal framework for ECCSEL, the host country, Norway, will apply for establishing ERIC as the ECCSEL Research Infrastructure(RI)legal entity in 2017. Until the ECCSEL ERIC is approved by the European Commission(probably by summer 2017), an interim MoU agreement for the implementation phase of ECCSEL RI has been signed by 13 research institutions and universities representing the 9 countries. A consortium of these partners were granted 3 million EURO from Horizon 2020 to boost implementation of ECCSEL from September 2015 and two years onwards.?2016, Institute of Process Engineering, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).
文摘Peculiarities of low temperature charge transport and enerpy accumulation in alu-minum devices are investigated by means of study of cylindrical conductors having a rudial cuerent fiow between inner and outer concentric contracts. Azimuthal current and, connected with it, self magnetic field are investigated in a wide range of radial current density up to 6000 A/cm2 under an external magnetic field up to 8 T Electron scattering processes are investigated and it is shown that relaxation electron mechanisms are determined by strong temperature dependence on account of high sus-ceptibility of scattering to anisotropy of electron dispersion law. The role of thermal phonons is investigated through an effective averaged conductivity tensor of polycrystalline medium. Using data of self magnetic self distribution on sample surface an energy density of self magnetic field is estimated. It is shown that at T=4.2 K average energy of self field may achieve at least 1 J/cm3. Using data of relaxation processes at temperature of liquid hydrogen it is established that self magnetic field must be a third of helium magnitude with respective self magnetic enengy density, spiral motion of carriers in this geometry being regarded as a current coils in usual inductive element.
文摘The efficiency of substance exchange may be decreased when the thickness and volume of such a tissue-engineered cartilage that is composed of cultured cells and porous scaffold increase. Moreover, during the transport of this construct with complicated shapes, excessive and focal mechanical loading may cause deformation. The establishment of incubation and transport methods is necessary for the three-dimensional tissue-engineered cartilage. Therefore, we investigated the preparation of an agarose mold with a concavity similar to the shape of 3-dimensional tissue-engineered cartilage to prevent excessive and focal concentration of stress, while avoiding interference with substance exchange as much as possible. Firstly, we investigated the preparation at 1% - 4% agarose concentrations. Since the mechanical strength was insufficient at 1%, 2% was regarded as appropriate. Using 2% agarose, we prepared a mold with a 5 × 5 × 5 mm concavity to accommodate tissue-engineered cartilage (5 × 5 × 5 mm mixture of 1.5 × 107 cells and collagen gel), and stored the regenerative cartilage in it for 2 and 24 hours. On comparison with storage in a plastic mold with the same shape in which substance exchanged from side and bottom was impossible, although no significant differences were noted in the number or viability of cells after 2 hours, these were markedly reduced in the plastic mold after 24 hours. It was confirmed that favorable cell numbers and viability were maintained by immediately retaining the regenerative cartilage in the culture medium in the agarose mold and keeping the temperature at 37°C. Since this agarose mold also buffers against mechanical forces loaded on the three-dimensional regenerative tissue, it may be useful as a container for storage and transport of large-sized three-dimensional regenerative tissue.
文摘For development of passenger electrical transport, it is necessary to use energy more rationally. One of methods of vehicle power efficiency increase is installation of on-board energy storage systems. For studying of system operation, it is necessary to carry out a lot of experiments, therefore it is favorable to use the test bench and its computer model for reduction of the number of physical experiments. In this article, the results of computer modeling for the optimization of traction drive test bench by adjusting of the operation parameters of supercapacitor energy storage are described. Test bench operation is considered in cases of the energy storage system working at various selected supercapacitor initial voltages. Maximal increase of possibility of vehicle test bench regenerative braking with minimal decrease of autonomous power supply mode possibility is investigated. There is estimated the energy storage system efficiency improving measures dependence from supercapacitor operational voltage ranges. Parameters at which the minimum losses of energy are observed are revealed. Dependence of energy storage system discharge power on the most admissible supercapacitor current is established.