The Bessel beam,characterized by its unique non-diffracting properties,holds promising applications.In this paper,we provide a detailed introduction and investigation into the theory and research of the Bessel beam,wi...The Bessel beam,characterized by its unique non-diffracting properties,holds promising applications.In this paper,we provide a detailed introduction and investigation into the theory and research of the Bessel beam,with a special focus on its generation and applications in the near-field region.We provide an introduction to the concepts,properties,and foundational theories of the Bessel beam.Additionally,the current study on generating Bessel beams and their applications is categorized and discussed,and potential research challenges are proposed in this paper.This review serves as a solid foundation for researchers to understand the concept of the Bessel beam and explore its potential applications.展开更多
Diamond is a highly valuable material with diverse industrial applications,particularly in the fields of semiconductor,optics,and high-power electronics.However,its high hardness and chemical stability make it difficu...Diamond is a highly valuable material with diverse industrial applications,particularly in the fields of semiconductor,optics,and high-power electronics.However,its high hardness and chemical stability make it difficult to realize high-efficiency and ultra-low damage machining of diamond.To address these challenges,several polishing methods have been developed for both single crystal diamond(SCD)and polycrystalline diamond(PCD),including mechanical,chemical,laser,and ion beam processing methods.In this review,the characteristics and application scope of various polishing technologies for SCD and PCD are highlighted.Specifically,various energy beam-based direct and assisted polishing technologies,such as laser polishing,ion beam polishing,plasma-assisted polishing,and laser-assisted polishing,are summarized.The current research progress,material removal mechanism,and infuencing factors of each polishing technology are analyzed.Although some of these methods can achieve high material removal rates or reduce surface roughness,no single method can meet all the requirements.Finally,the future development prospects and application directions of different polishing technologies are presented.展开更多
The application of mobile formwork cast-in-situ beam technology is conducive to providing quality assurance for bridge constructions.At the same time,it can improve the overall mechanization level of the construction ...The application of mobile formwork cast-in-situ beam technology is conducive to providing quality assurance for bridge constructions.At the same time,it can improve the overall mechanization level of the construction process and further accelerate the construction progress,so as to shorten the construction period and improve the economic benefits of enterprises.In fact,this construction method has been widely applied.In order to assure a positive outcome from the use of this technology,this paper analyzes the application of mobile formwork cast-in-situ beam technology in bridge construction to provide reference.展开更多
The prevention of hot cracking formation is of utmost importance in the production of the new Ni-Co based superalloys through the utilization of the electron beam smelting layered solidification technique(EBSL),as it ...The prevention of hot cracking formation is of utmost importance in the production of the new Ni-Co based superalloys through the utilization of the electron beam smelting layered solidification technique(EBSL),as it ensures exceptional homogeneity and dependable consistency of the specimens.In contrast to previous studies that focused on minimizing the liquid film and solidification range,our methodology adopts a distinct approach.In this research,a novel methodology was employed to mitigate internal stresses through the implementation of equiaxed grain layers via an alternately reduced cooling method.This ultimately resulted in the elimination of hot cracking.To be more specific,the transition from a columnar to an equiaxed structure was observed during the layer-by-layer construction process in the fabrication of the new Ni-Co based superalloy in EBSL.The EBSL-Ni-Co superalloy,when subjected to the alternating reduction cooling method,exhibited an internal stress of 49 MPa.This value represents a significant reduction of 83.8%compared to the internal stress observed when employing the linear reduction cooling method.Additionally,the solvus temperature of theγ-γ’eutectic phases in EBSL-Ni-Co superalloys produced by the alternating reduction cooling method is significantly higher.Intriguingly,the Nth layer of the EBSL-Ni-Co based superalloys produced by EBSL simultaneously heats treated with the preceding layers.And the low melting point phase gradually dissolved back into the matrix.The implementation of an alternating reduced cooling method successfully mitigated the formation of the liquid film in theγ-γ’eutectic phase and the buildup of internal stresses in the EBSL-Ni-Co superalloy during its manufacturing process.These discoveries open up a novel preparation procedure pathway for the manufacture of crack-free superalloys with superior mechanical characteristics using EBSL.展开更多
One of the major challenges in designing and fabricating Spintronic devices is the choice of both, Materials and the Technology, along with understanding the intricacies of the Designing aspects. In this communication...One of the major challenges in designing and fabricating Spintronic devices is the choice of both, Materials and the Technology, along with understanding the intricacies of the Designing aspects. In this communication, we have attempted to briefly discuss these factors, with an aim to draw the attention of the Materials Scientists and Technologists to this serious challenge, in the direction of which, though a lot of research and development work has been done, still needs more concerted efforts to be made in order to make the Spintronic devices that can offer good efficiency for maximizing their usefulness.展开更多
In order to improve the manufacturing quality of electron beam welding,some technologies are developed by using the special features of electron beam.Comparing with the conventional electron beam welding,the usage of ...In order to improve the manufacturing quality of electron beam welding,some technologies are developed by using the special features of electron beam.Comparing with the conventional electron beam welding,the usage of multi-beam technology and micro-beam technology are introduced.In addition.the development of beam diagnostic system is also presented.展开更多
文摘The Bessel beam,characterized by its unique non-diffracting properties,holds promising applications.In this paper,we provide a detailed introduction and investigation into the theory and research of the Bessel beam,with a special focus on its generation and applications in the near-field region.We provide an introduction to the concepts,properties,and foundational theories of the Bessel beam.Additionally,the current study on generating Bessel beams and their applications is categorized and discussed,and potential research challenges are proposed in this paper.This review serves as a solid foundation for researchers to understand the concept of the Bessel beam and explore its potential applications.
基金sponsored by the National Natural Science Foundation of China(Nos.51835004,U22A20198)the Major Science and Technology Projects in Henan Province(221100230300)the 111 Project(No.B23011)。
文摘Diamond is a highly valuable material with diverse industrial applications,particularly in the fields of semiconductor,optics,and high-power electronics.However,its high hardness and chemical stability make it difficult to realize high-efficiency and ultra-low damage machining of diamond.To address these challenges,several polishing methods have been developed for both single crystal diamond(SCD)and polycrystalline diamond(PCD),including mechanical,chemical,laser,and ion beam processing methods.In this review,the characteristics and application scope of various polishing technologies for SCD and PCD are highlighted.Specifically,various energy beam-based direct and assisted polishing technologies,such as laser polishing,ion beam polishing,plasma-assisted polishing,and laser-assisted polishing,are summarized.The current research progress,material removal mechanism,and infuencing factors of each polishing technology are analyzed.Although some of these methods can achieve high material removal rates or reduce surface roughness,no single method can meet all the requirements.Finally,the future development prospects and application directions of different polishing technologies are presented.
文摘The application of mobile formwork cast-in-situ beam technology is conducive to providing quality assurance for bridge constructions.At the same time,it can improve the overall mechanization level of the construction process and further accelerate the construction progress,so as to shorten the construction period and improve the economic benefits of enterprises.In fact,this construction method has been widely applied.In order to assure a positive outcome from the use of this technology,this paper analyzes the application of mobile formwork cast-in-situ beam technology in bridge construction to provide reference.
基金support from the National Key Research and Development Program of China(Grant No.2019YFA0705300)the National Natural Science Foundation of China(GrantNo.52004051)andthe Innovation Team Projectfor Key Fields of Dalian(Grant No.2019RT13).
文摘The prevention of hot cracking formation is of utmost importance in the production of the new Ni-Co based superalloys through the utilization of the electron beam smelting layered solidification technique(EBSL),as it ensures exceptional homogeneity and dependable consistency of the specimens.In contrast to previous studies that focused on minimizing the liquid film and solidification range,our methodology adopts a distinct approach.In this research,a novel methodology was employed to mitigate internal stresses through the implementation of equiaxed grain layers via an alternately reduced cooling method.This ultimately resulted in the elimination of hot cracking.To be more specific,the transition from a columnar to an equiaxed structure was observed during the layer-by-layer construction process in the fabrication of the new Ni-Co based superalloy in EBSL.The EBSL-Ni-Co superalloy,when subjected to the alternating reduction cooling method,exhibited an internal stress of 49 MPa.This value represents a significant reduction of 83.8%compared to the internal stress observed when employing the linear reduction cooling method.Additionally,the solvus temperature of theγ-γ’eutectic phases in EBSL-Ni-Co superalloys produced by the alternating reduction cooling method is significantly higher.Intriguingly,the Nth layer of the EBSL-Ni-Co based superalloys produced by EBSL simultaneously heats treated with the preceding layers.And the low melting point phase gradually dissolved back into the matrix.The implementation of an alternating reduced cooling method successfully mitigated the formation of the liquid film in theγ-γ’eutectic phase and the buildup of internal stresses in the EBSL-Ni-Co superalloy during its manufacturing process.These discoveries open up a novel preparation procedure pathway for the manufacture of crack-free superalloys with superior mechanical characteristics using EBSL.
文摘One of the major challenges in designing and fabricating Spintronic devices is the choice of both, Materials and the Technology, along with understanding the intricacies of the Designing aspects. In this communication, we have attempted to briefly discuss these factors, with an aim to draw the attention of the Materials Scientists and Technologists to this serious challenge, in the direction of which, though a lot of research and development work has been done, still needs more concerted efforts to be made in order to make the Spintronic devices that can offer good efficiency for maximizing their usefulness.
基金Project (50505019) supported by Natural Science Foundation of China.
文摘In order to improve the manufacturing quality of electron beam welding,some technologies are developed by using the special features of electron beam.Comparing with the conventional electron beam welding,the usage of multi-beam technology and micro-beam technology are introduced.In addition.the development of beam diagnostic system is also presented.