The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and p...The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and power system multidimensionally based on the operating characteristics of the cogeneration units,the hydraulic and thermodynamic characteristics of the heating network,and the energy loads.Taking a steam network supported by a gas-steam combined cycle cogeneration system as the research case,the interaction effect among the source-side prime movers,the heating networks,and the terminal demand thermal parameters were investigated based on the designed values,the plant testing data,and the validated simulation.The operating maps of the gas-steam combined cycle cogeneration units were obtained using THERMOFLEX,and the minimum source-side steam parameters of the steam network were solved using an inverse solution procedure based on the hydro-thermodynamic coupling model.The cogeneration operating maps indicate that the available operating domain considerably narrows with the rise of the extraction steam pressure and flow rate.The heating network inverse solution demonstrates that the source-side steam pressure and temperature can be optimized from the originally designed 1.11 MPa and 238.8°C to 1.074 MPa and 191.15°C,respectively.Under the operating strategy with the minimum source-side heating parameters,the power peak regulation depth remarkably increases to 18.30%whereas the comprehensive thermal efficiency decreases.The operation under the minimum source-side heating steam parameters can be superior to the originally designed one in the economy at a higher price of the heating steam.At a fuel price of$0.38/kg and the power to fuel price of 0.18 kg/(kW·h),the critical price ratio of heating steam to fuel is 119.1 kg/t.The influence of the power-fuel price ratio on the economic deviation appears relatively weak.展开更多
Steam flooding with the assistance of carbon dioxide (CO_(2)) and chemicals is an effective approach for enhancing super heavy oil recovery. However, the promotion and application of CO_(2) and chemical agent-assisted...Steam flooding with the assistance of carbon dioxide (CO_(2)) and chemicals is an effective approach for enhancing super heavy oil recovery. However, the promotion and application of CO_(2) and chemical agent-assisted steam flooding technology have been restricted by the current lack of research on the synergistic effect of CO_(2) and chemical agents on enhanced steam flooding heat transfer. The novel experiments on CO_(2)–chemicals cooperate affected steam condensation and seepage were conducted by adding CO_(2) and two chemicals (sodium dodecyl sulfate (SDS) and the betaine temperature-salt resistant foaming agent ZK-05200).According to the experimental findings, a “film” formed on the heat-transfer medium surface following the co-injection of CO_(2) and the chemical to impede the steam heat transfer, reducing the heat transfer efficiency of steam, heat flux and condensation heat transfer coefficient. The steam seepage experiment revealed that the temperature at the back end of the sandpack model was dramatically raised by 3.5–12.8 °C by adding CO_(2) and chemical agents, achieving the goal of driving deep-formation heavy oil. The combined effect of CO_(2) and SDS was the most effective for improving steam heat transfer, the steam heat loss was reduced by 6.2%, the steam condensation cycle was prolonged by 1.3 times, the condensation heat transfer coefficient was decreased by 15.5%, and the heavy oil recovery was enhanced by 9.82%. Theoretical recommendations are offered in this study for improving the CO_(2)–chemical-assisted steam flooding technique.展开更多
The technology that waste activated carbon after extracting gold is regenerated with steam under microwave heating was studied. The influence of the activation temperature, activation duration and steam flow rate on i...The technology that waste activated carbon after extracting gold is regenerated with steam under microwave heating was studied. The influence of the activation temperature, activation duration and steam flow rate on iodine adsorption value and regeneration yield of activated carbon was investigated. The response surface methodology (RSM) technique was utilized to optimize the process conditions. The optimum conditions for the preparation of activated carbon are identified to be activation temperature of 831 ℃, activation duration of 40 min and steam flow rate of 2.67 mL/min. The optimum conditions result in an activated carbon with an iodine number of 1048 mg/g and a yield of 40%, and the BET surface area evaluated using nitrogen adsorption isotherm is 1493 m2/g, with total pore volume of 1.242 cm3/g. And the pore structure of activated carbon regenerated is mainly composed of micropores and a small amount of mesopores.展开更多
The thermodynamic(energy and exergy)analysis of a condensate heating system,its segments,and components from a marine steam propulsion plant with steam reheating is performed in this paper.It is found that energy anal...The thermodynamic(energy and exergy)analysis of a condensate heating system,its segments,and components from a marine steam propulsion plant with steam reheating is performed in this paper.It is found that energy analysis of any condensate heating system should be avoided because it is highly influenced by the measuring equipment accuracy and precision.All the components from the observed marine condensate heating system have energy destructions lower than 3 kW,while the energy efficiencies of this system are higher than 99%.The exergy efficiency of closed condensate heaters continuously increases from the lowest to the highest steam pressures(from 70.10%to 92.29%).The ambient temperature variation between 5℃and 45℃notably influences the exergy efficiency change of both low pressure heaters and the low pressure segment equal to 31.61%,12.37%,and 18.35%,respectively.展开更多
One of ways of intensification of process of manufacture of heterogeneous tinned products of fruits and vegetables is the use of sated water steam (Patent of USSR No. 500792). This process at application as consumer...One of ways of intensification of process of manufacture of heterogeneous tinned products of fruits and vegetables is the use of sated water steam (Patent of USSR No. 500792). This process at application as consumer glass container for such products is especially effective. However, there are some questions which are connected with thermal influence on glass container at realization of such heating. The given research is devoted as the decision of practical questions arising at process engineers.展开更多
The aim of this study was investigate the effects of heat treatment on the contact angle of Chinese fir, and the indicators affecting the change of contact an-gle change. It was determined that the duration of treatme...The aim of this study was investigate the effects of heat treatment on the contact angle of Chinese fir, and the indicators affecting the change of contact an-gle change. It was determined that the duration of treatment had significant effect on the change curves of contact angle of Chinese fir wood due to the change curves of contact angle became more centralized and orderly after the specimens heat treated at 180 ℃. Compared with the untreated wood, the contact angle in-creased from 51° to 124° after 4 h treatment, and hydroxyl absorbance of hy-drophilic functional groups decreased from 2.08 to 1.63, while carbonyl absorbance from 0.92 to 0.62. The surface roughness has not significant influence on the con-tact angle. Heat treatment of the Chinese fir caused surface morphological change, which produced hol owed-out phenomenon. The increased surface contact angle caused by heat treatment can be used for outdoor and sauna facilities.展开更多
We conducted a transient experimental investigation of steam–water direct contact condensation in the absence of noncondensible gas in a laboratory-scale column with the inner diameter of 325 mm and the height of 104...We conducted a transient experimental investigation of steam–water direct contact condensation in the absence of noncondensible gas in a laboratory-scale column with the inner diameter of 325 mm and the height of 1045 mm. We applied a new analysis method for the steam state equation to analyze the molar quantity change in steam over the course of the experiment and determined the transient steam variation. We also investigated the influence of flow rates and temperatures ofcooling water on the efficiency ofsteam condensation. Our experimental results show that appropriate increasing of the cooling water flow rate can significantly accelerate the steam condensation. We achieved a rapid increase in the total volumetric heat transfer coefficient by increasing the flow rate of cooling water, which indicated a higher thermal convection between the steam and the cooling water with higher flow rates. We found that the temperature ofcooling water did not play an important role on steam condensation. This method was confirmed to be effective for rapid recovering ofsteam.展开更多
In loss-of-coolant accidents,a passive containment heat removal system protects the integrity of the containment by condensing steam.As a large amount of air exists in the containment,the steam condensation heat trans...In loss-of-coolant accidents,a passive containment heat removal system protects the integrity of the containment by condensing steam.As a large amount of air exists in the containment,the steam condensation heat transfer can be significantly reduced.Based on previous research,traditional methods for enhancing pure steam condensation may not be applicable to steam–air condensation.In the present study,new methods of enhancing condensation heat transfer were adopted and several potentially enhanced heat transfer tubes,including corrugated tubes,spiral fin tubes,and ring fin tubes were designed.STAR-CCM+was used to determine the effect of enhanced heat transfer tubes on the steam condensation heat transfer.According to the calculations,the gas pressure ranged from 0.2 to 1.6 MPa,and air mass fraction ranged from 0.1 to 0.9.The effective perturbation of the high-concentration air layer was identified as the key factor for enhancing steam–air condensation heat transfer.Further,the designed corrugated tube performed well at atmospheric pressure,with a maximum enhancement of 27.4%,and performed poorly at high pressures.In the design of spiral fin tubes,special attention should be paid to the locations that may accumulate high-concentration air.Nonetheless,the ring-fin tubes generally displayed good performance under all conditions of interest,with a maximum enhancement of 24.2%.展开更多
In kiln drying of softwood timber, external heat and moisture mass transfercoefficients are important in defining boundary temperature and moisture content at the woodsurface. In addition, superheated steam drying of ...In kiln drying of softwood timber, external heat and moisture mass transfercoefficients are important in defining boundary temperature and moisture content at the woodsurface. In addition, superheated steam drying of wood is a promising technology but this has notbeen widely accepted commercially, partially due to the lack of understanding of the dryingphenomena occurred during drying. In this work, experimental investigation was performed to quantifythe heat transfer between wood surface and surrounding moist air or superheated steam. In theexperiment, saturated radiata pine sapwood samples were dried using dry-bulb/wet-bulb temperaturesof 60℃/50℃, 90℃/60℃, 120℃/70℃, 140℃/90℃, 160℃/90℃, 140℃/100℃ and 160℃/100℃. The lasttwo schedules were for superheated steam drying as the wet-bulb temperature was set at 100℃. Thecirculation velocity over the board surface was controlled at 4.2m·s^(-1). Two additional runs(90℃/60℃) using air velocities of 2.4 m·s^(-1) and 4.8 m·s^(-1) were performed to check theeffect of the circulation velocity. During drying, sample weight and temperatures at wood surfaceand different depths were continuously measured. Prom these measurements, changes in woodtemperature and moisture content were calculated and external heat-transfer coefficient wasdetermined for both the moist air and the superheated steam drying.展开更多
This work evaluates the performance optimization of heat recovery steam generator system in Afam VI power plant, Rivers State. Nigeria. Steady state monitoring and direct collection of data from the plant was performe...This work evaluates the performance optimization of heat recovery steam generator system in Afam VI power plant, Rivers State. Nigeria. Steady state monitoring and direct collection of data from the plant was performed including logged data for a period of 12 months. The data were analysed using various energy equations. Hysys software was used to model the temperature across the heating surfaces, and MATLAB software was used to determine the heat transfer coefficient, heat duties, steam flow, effectiveness of the HRSG. The optimization technique was carried out by varying the exhaust gas flow, exhaust gas temperature, steam pressure and the theoretical introduction of duct burner for supplementary firing. The results show that between 490℃ and 526℃, the percentage increase in the overall heat absorbed in the HRSG is 37.39%. It also show that for an increase in the exhaust gas mass flow by 80 kg/s, the steam generation increase by 19.29% and 18.18% for the low and high pressure levels respectively. The overall result indicates an improvement in the HRSG energy efficiency and steam generation. As the exhaust gas mass flow and temperature increases, the steam generation and system effectiveness greatly improved under the various considerations, which satisfy the research objective.展开更多
Steam mining method was injecting hot steam into the borehole to heat the hydrate strata at the same time of depressurization mining,which could promote further decomposition and expand mining areas of gas hydrate. St...Steam mining method was injecting hot steam into the borehole to heat the hydrate strata at the same time of depressurization mining,which could promote further decomposition and expand mining areas of gas hydrate. Steam heat calculation would provide the basis for the design of heating device and the choice of the field test parameters. There were piping heat loss in the process of mining. The heat transfer of steam flowing in the pipe was steady,so the heat loss could be obtained easily by formula calculation. The power of stratum heating should be determined by numerical simulation for the process of heating was dynamic and the equations were usually nonlinear. The selected mining conditions were 500-millimeter mining radius,10 centigrade mining temperature and 180 centigrade steam temperature. Heat loss and best heating power,obtained by formula calculation and numerical simulation,were 21. 35 W/m and 20 kW.展开更多
This paper presents a frame figure of the recovery system concerning waste heat of steam condensate. When steam phase changes into liquid state in the condenser, the heat equilibium equation, gas state equation, mass ...This paper presents a frame figure of the recovery system concerning waste heat of steam condensate. When steam phase changes into liquid state in the condenser, the heat equilibium equation, gas state equation, mass flow calculating equation of the jet steam and incondensable gas equation are established. The coupling function between condensate unit and recovery pump of the hot condensate with ejector is studied. The paper sets up the fluid continuity equation, heat equilibium equation and efficiency equation of the ejector and points out the technical key how the prevent hot condensate change into steam phase. When fluid passes from circulation loop through pump to export, the energy equations are obtained here. At last, signal figure of the applied examples are given and settle the techanical questions of the jet system are discussed.展开更多
A calculation method of heat transfer area for vertical natural circulated steam generator was introduced. According to the design requirements of steam generator 55/19 of CPR1000, its heat transfer area was calculate...A calculation method of heat transfer area for vertical natural circulated steam generator was introduced. According to the design requirements of steam generator 55/19 of CPR1000, its heat transfer area was calculated based on this method. The results show that the accuracy of partitional and overall calculation method is almost the same, but the result is different when using different calculation models. And the results are compared with the foreign companies for 55/19 steam generator.展开更多
Drum level sloshing is the latest discovery in the application of heat recovery steam generator (HRSG) in combined cycle, and shows certain negative influence on drum level controlling. In order to improve drum level ...Drum level sloshing is the latest discovery in the application of heat recovery steam generator (HRSG) in combined cycle, and shows certain negative influence on drum level controlling. In order to improve drum level controlling, influence factors on the drum level sloshing were investigated. Firstly, drum sub-modules were developed using the method of modularization modeling, and then the model of drum level sloshing was set up as well. Experiments were carried out on the experimental rig, and the model was validated using the obtained experimental results. Dynamic simulation was made based on the model to get a 3-D graph of drum level sloshing, which shows a vivid procedure of drum level sloshing. The effect of feed-water flow rate, main-steam flow rate and heating quantity on the drum level sloshing was analyzed. The simulation results indicate that the signals with frequency higher than 0.05 Hz are that of drum level sloshing, the signals with frequency of 0.0-0.05 Hz are that of drum level trendy and "false water level", and variation of the feed-water flow rates, main-steam flow rates and heating quantities can change the frequency of drum level sloshing, i.e., the frequency of sloshing increases with the increase of feed-water flow rate, or the decrease of the main-steam flow rate and the heating quantity. This research work is fundamental to improve signal-to-noise ratio of drum level signal and precise controlling of drum level.展开更多
This paper is devoted to development and study of models for operator training systems of heating power station processes management. It proposed a mathematical model describing the management processes of heating pow...This paper is devoted to development and study of models for operator training systems of heating power station processes management. It proposed a mathematical model describing the management processes of heating power units of the technological complex considering the relationship of technological variables in deviations effective in real time. A software complex is developed for the system of training of operators controlling processes in heating station units. Obtained results may be used in the course of development of computer training systems for operators of heating power stations with cross-linkage.展开更多
基金Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization(South China University of Technology)(2013A061401005)Research Fund(JMSWFW-2110-044)from Zhongshan Jiaming Electric Power Co.,Ltd.
文摘The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and power system multidimensionally based on the operating characteristics of the cogeneration units,the hydraulic and thermodynamic characteristics of the heating network,and the energy loads.Taking a steam network supported by a gas-steam combined cycle cogeneration system as the research case,the interaction effect among the source-side prime movers,the heating networks,and the terminal demand thermal parameters were investigated based on the designed values,the plant testing data,and the validated simulation.The operating maps of the gas-steam combined cycle cogeneration units were obtained using THERMOFLEX,and the minimum source-side steam parameters of the steam network were solved using an inverse solution procedure based on the hydro-thermodynamic coupling model.The cogeneration operating maps indicate that the available operating domain considerably narrows with the rise of the extraction steam pressure and flow rate.The heating network inverse solution demonstrates that the source-side steam pressure and temperature can be optimized from the originally designed 1.11 MPa and 238.8°C to 1.074 MPa and 191.15°C,respectively.Under the operating strategy with the minimum source-side heating parameters,the power peak regulation depth remarkably increases to 18.30%whereas the comprehensive thermal efficiency decreases.The operation under the minimum source-side heating steam parameters can be superior to the originally designed one in the economy at a higher price of the heating steam.At a fuel price of$0.38/kg and the power to fuel price of 0.18 kg/(kW·h),the critical price ratio of heating steam to fuel is 119.1 kg/t.The influence of the power-fuel price ratio on the economic deviation appears relatively weak.
基金financial support of the National Nature Science Foundation of China(Grant No.U20B6003)the Natural Science Foundation of Shandong Province,China(ZR2020QE106).
文摘Steam flooding with the assistance of carbon dioxide (CO_(2)) and chemicals is an effective approach for enhancing super heavy oil recovery. However, the promotion and application of CO_(2) and chemical agent-assisted steam flooding technology have been restricted by the current lack of research on the synergistic effect of CO_(2) and chemical agents on enhanced steam flooding heat transfer. The novel experiments on CO_(2)–chemicals cooperate affected steam condensation and seepage were conducted by adding CO_(2) and two chemicals (sodium dodecyl sulfate (SDS) and the betaine temperature-salt resistant foaming agent ZK-05200).According to the experimental findings, a “film” formed on the heat-transfer medium surface following the co-injection of CO_(2) and the chemical to impede the steam heat transfer, reducing the heat transfer efficiency of steam, heat flux and condensation heat transfer coefficient. The steam seepage experiment revealed that the temperature at the back end of the sandpack model was dramatically raised by 3.5–12.8 °C by adding CO_(2) and chemical agents, achieving the goal of driving deep-formation heavy oil. The combined effect of CO_(2) and SDS was the most effective for improving steam heat transfer, the steam heat loss was reduced by 6.2%, the steam condensation cycle was prolonged by 1.3 times, the condensation heat transfer coefficient was decreased by 15.5%, and the heavy oil recovery was enhanced by 9.82%. Theoretical recommendations are offered in this study for improving the CO_(2)–chemical-assisted steam flooding technique.
基金Project(2013AA064003)supported by the National High Technology Research and Development Program of ChinaProject(2012HB008)supported by Young and Middle-aged Academic Technology Leader Backup Talent Cultivation Program in Yunnan Province,China
文摘The technology that waste activated carbon after extracting gold is regenerated with steam under microwave heating was studied. The influence of the activation temperature, activation duration and steam flow rate on iodine adsorption value and regeneration yield of activated carbon was investigated. The response surface methodology (RSM) technique was utilized to optimize the process conditions. The optimum conditions for the preparation of activated carbon are identified to be activation temperature of 831 ℃, activation duration of 40 min and steam flow rate of 2.67 mL/min. The optimum conditions result in an activated carbon with an iodine number of 1048 mg/g and a yield of 40%, and the BET surface area evaluated using nitrogen adsorption isotherm is 1493 m2/g, with total pore volume of 1.242 cm3/g. And the pore structure of activated carbon regenerated is mainly composed of micropores and a small amount of mesopores.
基金This research is supported by the Croatian Science Foundation under the project IP-2018-01-3739,CEEPUS network CIII-HR-0108,European Regional Development Fund under the grant KK.01.1.1.01.0009(DATACROSS)project CEKOM under the grant KK.01.2.2.03.0004,CEI project“COVIDAi”(305.6019-20)University of Rijeka Scientific Grants uniri-tehnic-18-275-1447,uniritehnic-18-18-1146 and uniri-tehnic-18-14.
文摘The thermodynamic(energy and exergy)analysis of a condensate heating system,its segments,and components from a marine steam propulsion plant with steam reheating is performed in this paper.It is found that energy analysis of any condensate heating system should be avoided because it is highly influenced by the measuring equipment accuracy and precision.All the components from the observed marine condensate heating system have energy destructions lower than 3 kW,while the energy efficiencies of this system are higher than 99%.The exergy efficiency of closed condensate heaters continuously increases from the lowest to the highest steam pressures(from 70.10%to 92.29%).The ambient temperature variation between 5℃and 45℃notably influences the exergy efficiency change of both low pressure heaters and the low pressure segment equal to 31.61%,12.37%,and 18.35%,respectively.
文摘One of ways of intensification of process of manufacture of heterogeneous tinned products of fruits and vegetables is the use of sated water steam (Patent of USSR No. 500792). This process at application as consumer glass container for such products is especially effective. However, there are some questions which are connected with thermal influence on glass container at realization of such heating. The given research is devoted as the decision of practical questions arising at process engineers.
基金Supported by Science and Technology Programs of Liangqing District of Nanning City(201304A)Science and Technology Program of Guangxi University(XJZ120270)~~
文摘The aim of this study was investigate the effects of heat treatment on the contact angle of Chinese fir, and the indicators affecting the change of contact an-gle change. It was determined that the duration of treatment had significant effect on the change curves of contact angle of Chinese fir wood due to the change curves of contact angle became more centralized and orderly after the specimens heat treated at 180 ℃. Compared with the untreated wood, the contact angle in-creased from 51° to 124° after 4 h treatment, and hydroxyl absorbance of hy-drophilic functional groups decreased from 2.08 to 1.63, while carbonyl absorbance from 0.92 to 0.62. The surface roughness has not significant influence on the con-tact angle. Heat treatment of the Chinese fir caused surface morphological change, which produced hol owed-out phenomenon. The increased surface contact angle caused by heat treatment can be used for outdoor and sauna facilities.
文摘We conducted a transient experimental investigation of steam–water direct contact condensation in the absence of noncondensible gas in a laboratory-scale column with the inner diameter of 325 mm and the height of 1045 mm. We applied a new analysis method for the steam state equation to analyze the molar quantity change in steam over the course of the experiment and determined the transient steam variation. We also investigated the influence of flow rates and temperatures ofcooling water on the efficiency ofsteam condensation. Our experimental results show that appropriate increasing of the cooling water flow rate can significantly accelerate the steam condensation. We achieved a rapid increase in the total volumetric heat transfer coefficient by increasing the flow rate of cooling water, which indicated a higher thermal convection between the steam and the cooling water with higher flow rates. We found that the temperature ofcooling water did not play an important role on steam condensation. This method was confirmed to be effective for rapid recovering ofsteam.
基金supported by the National Key R&D Program of China(No. 2020YFB1901405)
文摘In loss-of-coolant accidents,a passive containment heat removal system protects the integrity of the containment by condensing steam.As a large amount of air exists in the containment,the steam condensation heat transfer can be significantly reduced.Based on previous research,traditional methods for enhancing pure steam condensation may not be applicable to steam–air condensation.In the present study,new methods of enhancing condensation heat transfer were adopted and several potentially enhanced heat transfer tubes,including corrugated tubes,spiral fin tubes,and ring fin tubes were designed.STAR-CCM+was used to determine the effect of enhanced heat transfer tubes on the steam condensation heat transfer.According to the calculations,the gas pressure ranged from 0.2 to 1.6 MPa,and air mass fraction ranged from 0.1 to 0.9.The effective perturbation of the high-concentration air layer was identified as the key factor for enhancing steam–air condensation heat transfer.Further,the designed corrugated tube performed well at atmospheric pressure,with a maximum enhancement of 27.4%,and performed poorly at high pressures.In the design of spiral fin tubes,special attention should be paid to the locations that may accumulate high-concentration air.Nonetheless,the ring-fin tubes generally displayed good performance under all conditions of interest,with a maximum enhancement of 24.2%.
文摘In kiln drying of softwood timber, external heat and moisture mass transfercoefficients are important in defining boundary temperature and moisture content at the woodsurface. In addition, superheated steam drying of wood is a promising technology but this has notbeen widely accepted commercially, partially due to the lack of understanding of the dryingphenomena occurred during drying. In this work, experimental investigation was performed to quantifythe heat transfer between wood surface and surrounding moist air or superheated steam. In theexperiment, saturated radiata pine sapwood samples were dried using dry-bulb/wet-bulb temperaturesof 60℃/50℃, 90℃/60℃, 120℃/70℃, 140℃/90℃, 160℃/90℃, 140℃/100℃ and 160℃/100℃. The lasttwo schedules were for superheated steam drying as the wet-bulb temperature was set at 100℃. Thecirculation velocity over the board surface was controlled at 4.2m·s^(-1). Two additional runs(90℃/60℃) using air velocities of 2.4 m·s^(-1) and 4.8 m·s^(-1) were performed to check theeffect of the circulation velocity. During drying, sample weight and temperatures at wood surfaceand different depths were continuously measured. Prom these measurements, changes in woodtemperature and moisture content were calculated and external heat-transfer coefficient wasdetermined for both the moist air and the superheated steam drying.
文摘This work evaluates the performance optimization of heat recovery steam generator system in Afam VI power plant, Rivers State. Nigeria. Steady state monitoring and direct collection of data from the plant was performed including logged data for a period of 12 months. The data were analysed using various energy equations. Hysys software was used to model the temperature across the heating surfaces, and MATLAB software was used to determine the heat transfer coefficient, heat duties, steam flow, effectiveness of the HRSG. The optimization technique was carried out by varying the exhaust gas flow, exhaust gas temperature, steam pressure and the theoretical introduction of duct burner for supplementary firing. The results show that between 490℃ and 526℃, the percentage increase in the overall heat absorbed in the HRSG is 37.39%. It also show that for an increase in the exhaust gas mass flow by 80 kg/s, the steam generation increase by 19.29% and 18.18% for the low and high pressure levels respectively. The overall result indicates an improvement in the HRSG energy efficiency and steam generation. As the exhaust gas mass flow and temperature increases, the steam generation and system effectiveness greatly improved under the various considerations, which satisfy the research objective.
基金Supported by project of China Geological Surrey(No.GZHL20110326)
文摘Steam mining method was injecting hot steam into the borehole to heat the hydrate strata at the same time of depressurization mining,which could promote further decomposition and expand mining areas of gas hydrate. Steam heat calculation would provide the basis for the design of heating device and the choice of the field test parameters. There were piping heat loss in the process of mining. The heat transfer of steam flowing in the pipe was steady,so the heat loss could be obtained easily by formula calculation. The power of stratum heating should be determined by numerical simulation for the process of heating was dynamic and the equations were usually nonlinear. The selected mining conditions were 500-millimeter mining radius,10 centigrade mining temperature and 180 centigrade steam temperature. Heat loss and best heating power,obtained by formula calculation and numerical simulation,were 21. 35 W/m and 20 kW.
文摘This paper presents a frame figure of the recovery system concerning waste heat of steam condensate. When steam phase changes into liquid state in the condenser, the heat equilibium equation, gas state equation, mass flow calculating equation of the jet steam and incondensable gas equation are established. The coupling function between condensate unit and recovery pump of the hot condensate with ejector is studied. The paper sets up the fluid continuity equation, heat equilibium equation and efficiency equation of the ejector and points out the technical key how the prevent hot condensate change into steam phase. When fluid passes from circulation loop through pump to export, the energy equations are obtained here. At last, signal figure of the applied examples are given and settle the techanical questions of the jet system are discussed.
文摘A calculation method of heat transfer area for vertical natural circulated steam generator was introduced. According to the design requirements of steam generator 55/19 of CPR1000, its heat transfer area was calculated based on this method. The results show that the accuracy of partitional and overall calculation method is almost the same, but the result is different when using different calculation models. And the results are compared with the foreign companies for 55/19 steam generator.
基金Project(51276023) supported by the National Natural Science Foundation of ChinaProject(09k069) supported by the Open Project Funded by Universities Innovation Platform, Hunan Province, ChinaProject(2011GK311) supported by the Office of Science and Technology of Hunan Province, China
文摘Drum level sloshing is the latest discovery in the application of heat recovery steam generator (HRSG) in combined cycle, and shows certain negative influence on drum level controlling. In order to improve drum level controlling, influence factors on the drum level sloshing were investigated. Firstly, drum sub-modules were developed using the method of modularization modeling, and then the model of drum level sloshing was set up as well. Experiments were carried out on the experimental rig, and the model was validated using the obtained experimental results. Dynamic simulation was made based on the model to get a 3-D graph of drum level sloshing, which shows a vivid procedure of drum level sloshing. The effect of feed-water flow rate, main-steam flow rate and heating quantity on the drum level sloshing was analyzed. The simulation results indicate that the signals with frequency higher than 0.05 Hz are that of drum level sloshing, the signals with frequency of 0.0-0.05 Hz are that of drum level trendy and "false water level", and variation of the feed-water flow rates, main-steam flow rates and heating quantities can change the frequency of drum level sloshing, i.e., the frequency of sloshing increases with the increase of feed-water flow rate, or the decrease of the main-steam flow rate and the heating quantity. This research work is fundamental to improve signal-to-noise ratio of drum level signal and precise controlling of drum level.
文摘This paper is devoted to development and study of models for operator training systems of heating power station processes management. It proposed a mathematical model describing the management processes of heating power units of the technological complex considering the relationship of technological variables in deviations effective in real time. A software complex is developed for the system of training of operators controlling processes in heating station units. Obtained results may be used in the course of development of computer training systems for operators of heating power stations with cross-linkage.