The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo...The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.展开更多
To enhance the lubricating and extreme pressure(EP) performance of base oils, two types of oil-soluble ionic liquids(ILs) with similar anion albeit dissimilar cations were synthesized. The physical properties of the p...To enhance the lubricating and extreme pressure(EP) performance of base oils, two types of oil-soluble ionic liquids(ILs) with similar anion albeit dissimilar cations were synthesized. The physical properties of the prepared ILs were measured. The anticorrosion properties of ILs were assessed by conducting corrosion tests on steel discs and copper strips, which revealed the remarkable anticorrosion properties of the ILs in comparison with those of the commercial additive zinc dialkyldithiophosphate(ZDDP). The tribological properties of the two ILs as additives for poly-α-olefin-10(PAO10) with various mass concentrations were investigated. The tribological test results indicate that these ILs as additives are capable of reducing friction and wear of sliding contacts remarkably as well as enhance the EP performance of blank PAO10. Under similar test conditions, these IL additives exhibit higher lubricating and anti-wear(AW) performances than those of ZDDP based additive package in PAO10. Subsequently, X-ray photoelectron spectroscopy(XPS) and energy dispersive spectrometer(EDS) were conducted to study the lubricating mechanism of the two ILs. The results indicate that the formation of tribochemical film plays the most crucial role in enhancing the lubricating and AW behavior of the mixture lubricants.展开更多
A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainab...A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainable corrosion inhibitors are chosen to investigate the corrosion inhibition behavior of ionic liquid(ILs)during the LePEO process for LA91 magnesium-lithium(Mg-Li)alloy.Results show that the ionic liquid BmimBF_(4)participates in the LePEO coating formation process,causing an increment in coating thickness and surface roughness.The low conductivity of the ionic liquid is responsible for the voltage and breakdown voltage increases during the LePEO with IL process(LePEO-IL).After adding BmimBF_(4),corrosion current density decreases from 1.159×10^(−4)A·cm^(−2)to 8.143×10^(−6)A·cm^(−2).The impedance modulus increases to 1.048×10^(4)Ω·cm^(−2)and neutral salt spray remains intact for 24 h.The superior corrosion resistance of the LePEO coating assisted by ionic liquid could be mainly attributed to its compact and thick barrier layer and physical absorption of ionic liquid.The ionic liquid-assisted LePEO technique provides a promising approach to reducing energy consumption and improving film performance.展开更多
An efficient mass transfer process is a critical factor for regulating catalytic activity in a photocatalytic desulfurization system.Herein,a phosphotungstic acid(HPW)active center is successfully composited with a qu...An efficient mass transfer process is a critical factor for regulating catalytic activity in a photocatalytic desulfurization system.Herein,a phosphotungstic acid(HPW)active center is successfully composited with a quaternary ammonium phosphotungstate-based hexadecyltrimethylammonium chloride ionic liquid(CTAC-HPW)by the ion exchange method for the photocatalytic oxidative desulfurization of dibenzothiophene sulfide.The keggin structure of HPW and highly mass transfer performance of organic cations synergistically enhanced the photocatalytic activity towards the effective convertion of dibenzothiophene(DBT)with the excitation of visible light.The deep desulfurization(<10 mg·kg^(-1))is attained within 30 min,and well stability is demonstrated within 25 cycles.Moreover,the CTAC-HPW photocatalyst projects well selectivity to interference from coexisting compounds such as olefins and aromatic hydrocarbons and universality of dibenzothiophenes,for example,4-methyldibenzothiophene(4-MDBT)and 4,6-dimethyldibenzothiophene(4,6-DMDBT).Ultimately,a possible photocatalytic desulfurization mechanism is proposed according to the Gaschromatography-mass spectrometry(GC-MS),proving that the final product is the corresponding sulfone.The trapping experiment and electron spin resonance(ESR)analysis confirmed that h^(+)and,COOH played critical roles in the oxidation process.The work offers a practicable strategy for efficiently converting DBT to DBTO_(2) with added value.展开更多
The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the cr...The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials.展开更多
Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and...Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and the oxygen evolution reaction(HER and OER).Ionic liquids(ILs)or poly(ionic liquids)(PILs),containing heteroatoms,metal-based anions,and various structures,have been frequently involved as precursors to prepare electrocatalysts for water splitting.Moreover,ILs/PILs possess high conductivity,wide electrochemical windows,and high thermal and chemical stability,which can be directly applied in the electrocatalysis process with high durability.In this review,we focus on the studies of ILs/PILs-derived electrocatalysts for HER and OER,where ILs/PILs are applied as heteroatom dopants and metal precursors to prepare catalysts or are directly utilized as the electrocatalysts.Due to those attractive properties,IL/PIL-derived electrocatalysts exhibit excellent performance for electrochemical water splitting.All these accomplishments and developments are systematically summarized and thoughtfully discussed.Then,the overall perspectives for the current challenges and future developments of ILs/PILs-derived electrocatalysts are provided.展开更多
The ionic liquid(IL) 1-butyl-3-methylimidazolium tetrafluoroborate treated with radiofrequency plasma is proposed for functionalization and immobilization on polyethersulfone supports to form supported ionic liquid me...The ionic liquid(IL) 1-butyl-3-methylimidazolium tetrafluoroborate treated with radiofrequency plasma is proposed for functionalization and immobilization on polyethersulfone supports to form supported ionic liquid membranes for CO_(2) separation.The effects of treatment time and transmembrane pressure difference on CO_(2) permeance were evaluated.The best gas permeation performance was obtained with a treatment time of 10 min and the transmembrane pressure difference was 0.25 MPa.Characterization of the materials by Fourier transform infrared spectroscopy,x-ray photoelectron spectroscopy and nuclear magnetic resonance spectroscopy demonstrates that the IL is grafted with carboxyl groups and deprotonated through plasma treatment.A preliminary mechanism for the plasma treatment and facilitated transport of CO_(2)has been proposed on this basis.展开更多
The melting points of ionic liquids(ILs)reported since 2020 were surveyed,collected,and reviewed,which were further combined with the previous data to provide a database with 3129 ILs ranging from 177.15 to 645.9 K in...The melting points of ionic liquids(ILs)reported since 2020 were surveyed,collected,and reviewed,which were further combined with the previous data to provide a database with 3129 ILs ranging from 177.15 to 645.9 K in melting points.In addition,the factors that affect the melting point of ILs from macro,micro,and thermodynamic perspectives were summarized and analyzed.Then the development of the quantitative structure-property relationship(QSPR),group contribution method(GCM),and conductor-like screening model for realistic solvents(COSMO-RS)for predicting the melting points of ILs were reviewed and further analyzed.Combined with the evaluation together with the preliminary study conducted in this work,it shows that COSMO-RS is more promising and possible to further improve its performance,and a framework was thus proposed.展开更多
The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal...The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal catalyst and a corrosive homogeneous alkali,we prepared a series of hydroxyapatite catalysts by an ionic liquid-assisted hydrothermal method and evaluated their catalytic performance.The results showed that the ionic liquid[Bmim]BF_(4) can affect the crystal growth of hydroxyapatite,provide fluoride ion for fluorination of hydroxyapatite,and adjust the surface acidity and basicity,morphology,textural properties,crystallinity,and composition of hydroxyapatite.The[Bmim]BF4 dosage and hydrothermal temperature can affect the fluoride ion concentration in the hydrothermal system,thus changing the degree of fluoridation of hydroxyapatite.High fluoride-ion concentration can lead to the formation of CaF_(2) and thus significantly decrease the catalytic performance of hydroxyapatite.The hydrothermal time mainly affects the growth of hydroxyapatite crystals on the c axis,leading to different catalytic performance.The suitable conditions for the preparation of this fluoridized hydroxyapatite are as follows:a mass ratio of[Bmim]BF4 to calcium salt=0.2:1,a hydrothermal time of 12 h,and a hydrothermal temperature of 130℃.A maximal methacrylic acid yield of 54.7%was obtained using the fluoridized hydroxyapatite under relatively mild reaction conditions(250℃ and 2 MPa of N_(2))in the absence of a precious-metal catalyst and a corrosive homogeneous alkali.展开更多
The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and...The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and their performances in the separation of 1,2,3,4-tetrahydronaphthalene(tetralin)/dodecane and tetralin/decalin systems were studied.Among these ionic liquids,1-ethyl-3-methylimidazolium tetrachloroferrate([EMIM][FeCl_(4)])with the highest selectivity was used as the extractant.Density functional theory calculations showed that[EMIM][FeCl_(4)]interacted more strongly with tetralin than with dodecane and decalin.Energy decomposition analysis of[EMIM][FeCl_(4)]-tetralin indicated that electrostatics and dispersion played essential roles,and induction cannot be neglected.The van der Waals forces was a main effect in[EMIM][FeCl_(4)]-tetralin by independent gradient model analysis.The tetralin distribution coefficient and selectivity were 0.8 and 110,respectively,with 10%(mol)tetralin in the initial tetralin/dodecane system,and 0.67 and 19.5,respectively,with 10%(mol)tetralin in the initial tetralin/decalin system.The selectivity increased with decreasing alkyl chain length of the extractant.The influence of the extraction temperature,extractant dosage,and initial concentrations of the system components on the separation performance were studied.Recycling experiments showed that the regenerated[EMIM][FeCl_(4)]could be used repeatedly.展开更多
Viscosity is one of the most important fundamental properties of fluids.However,accurate acquisition of viscosity for ionic liquids(ILs)remains a critical challenge.In this study,an approach integrating prior physical...Viscosity is one of the most important fundamental properties of fluids.However,accurate acquisition of viscosity for ionic liquids(ILs)remains a critical challenge.In this study,an approach integrating prior physical knowledge into the machine learning(ML)model was proposed to predict the viscosity reliably.The method was based on 16 quantum chemical descriptors determined from the first principles calculations and used as the input of the ML models to represent the size,structure,and interactions of the ILs.Three strategies based on the residuals of the COSMO-RS model were created as the output of ML,where the strategy directly using experimental data was also studied for comparison.The performance of six ML algorithms was compared in all strategies,and the CatBoost model was identified as the optimal one.The strategies employing the relative deviations were superior to that using the absolute deviation,and the relative ratio revealed the systematic prediction error of the COSMO-RS model.The CatBoost model based on the relative ratio achieved the highest prediction accuracy on the test set(R^(2)=0.9999,MAE=0.0325),reducing the average absolute relative deviation(AARD)in modeling from 52.45% to 1.54%.Features importance analysis indicated the average energy correction,solvation-free energy,and polarity moment were the key influencing the systematic deviation.展开更多
To conduct extensive research on the application of ionic liquids as collectors in mineral flotation,ethanol(EtOH)was used as a solvent to dissolve hydrophobic ionic liquids(ILs)to simplify the reagent regime.Interest...To conduct extensive research on the application of ionic liquids as collectors in mineral flotation,ethanol(EtOH)was used as a solvent to dissolve hydrophobic ionic liquids(ILs)to simplify the reagent regime.Interesting phenomena were observed in which EtOH exerted different effects on the flotation efficiency of two ILs with similar structures.When EtOH was used to dissolve 1-dodecyl-3-methylimidazolium chloride(C12[mim]Cl)and as a collector for pure quartz flotation tests at a concentration of 1×10^(−5)mol·L^(−1),quartz recovery increased from 23.77%to 77.91%compared with ILs dissolved in water.However,quartz recovery of 1-dodecyl-3-methylim-idazolium hexafluorophosphate(C12[mim]PF6)decreased from 60.45%to 24.52%under the same conditions.The conditional experi-ments under 1×10^(−5)mol·L^(−1)ILs for EtOH concentration and under 2vol%EtOH for ILs concentration confirmed this difference.After being affected by EtOH,the mixed ore flotation tests of quartz and hematite showed a decrease in the hematite concentrate grade and re-covery for the C12[mim]Cl collector,whereas the hematite concentrate grade and recovery for the C12[mim]PF6 collector increased.On the basis of these differences and observations of flotation foam,two-phase bubble observation tests were carried out.The EtOH promoted the foam height of two ILs during aeration.It accelerated static froth defoaming after aeration stopped,and the foam of C12[mim]PF6 de-foaming especially quickly.In the discussion of flotation tests and foam observation,an attempt was made to explain the reasons and mechanisms behind the diverse phenomena using the dynamic surface tension effect and solvation effect results from EtOH.The solva-tion effect was verified through Fourier transform infrared(FT-IR),X-ray photoelectron spectroscopy(XPS),and Zeta potential tests.Al-though EtOH affects the adsorption of ILs on the ore surface during flotation negatively,it holds an positive value of inhibiting foam mer-ging during flotation aeration and accelerating the defoaming of static foam.And induce more robust secondary enrichment in the mixed ore flotation of the C12[mim]PF6 collector,facilitating effective mixed ore separation even under inhibitor-free conditions.展开更多
Increasing the 1,3,5-trioxane(TOX) concentration in the equilibrated vapor phase of TOX-H_(2)O system has been recognized as a challenge for the azeotrope. Ionic liquids(ILs) were used to improve the relative volatili...Increasing the 1,3,5-trioxane(TOX) concentration in the equilibrated vapor phase of TOX-H_(2)O system has been recognized as a challenge for the azeotrope. Ionic liquids(ILs) were used to improve the relative volatility of TOX to H_(2)O and destroy the azeotrope in the TOX-H2O system. The vapor-liquid equilibrium of TOX-H2O system at 101.3 kPa was studied with the addition of 1-butyl-3-methylimidazolium hydrogen sulfate, 1-hexyl-3-methylimidazolium hydrogen sulfate and 1-butyl-3-methylimidazolium nitrate, respectively. The results showed that the volatility of TOX increased with the increase in IL dosage. And the volatility of water decreased with the increase in IL dosage. The relative volatility of TOX to H_(2)O was improved with the increase in ILs dosage. The azeotrope could be destroyed with an IL mole fraction of about 0.10. A non-random two-liquid(NRTL) model was successfully used to correlate the experimental data. The interaction parameters were obtained by fitting the experimental data with the model. The results indicated that a strong interaction existed between ILs and water. The strong interaction improved the volatility of TOX and inhibited the volatility of water, and then intensified the relative volatility of TOX to H_(2)O. The results showed that an ILs with strong polarity and hydrophilicity may be a potential additive to improve the TOX concentration in the equilibrated vapor phase.展开更多
Ionic liquids(ILs),because of the advantages of low volatility,good thermal stability,high gas solubility and easy recovery,can be regarded as the green substitute for traditional solvent.However,the high viscosity an...Ionic liquids(ILs),because of the advantages of low volatility,good thermal stability,high gas solubility and easy recovery,can be regarded as the green substitute for traditional solvent.However,the high viscosity and synthesis cost limits their application,the hybrid solvent which combining ILs together with others especially water can solve this problem.Compared with the pure IL systems,the study of the ILs-H_(2)O binary system is rare,and the experimental data of corresponding thermodynamic properties(such as density,heat capacity,etc.)are less.Moreover,it is also difficult to obtain all the data through experiments.Therefore,this work establishes a predicted model on ILs-water binary systems based on the group contribution(GC)method.Three different machine learning algorithms(ANN,XGBoost,LightBGM)are applied to fit the density and heat capacity of ILs-water binary systems.And then the three models are compared by two index of MAE and R^(2).The results show that the ANN-GC model has the best prediction effect on the density and heat capacity of ionic liquid-water mixed system.Furthermore,the Shapley additive explanations(SHAP)method is harnessed to scrutinize the significance of each structure and parameter within the ANN-GC model in relation to prediction outcomes.The results reveal that system components(XIL)within the ILs-H_(2)O binary system exert the most substantial influence on density,while for the heat capacity,the substituents on the cation exhibit the greatest impact.This study not only introduces a robust prediction model for the density and heat capacity properties of IL-H_(2)O binary mixtures but also provides insight into the influence of mixture features on its density and heat capacity.展开更多
As global economic growth increases,the demand for energy sources boosts.While fossil fuels have traditionally satisfied this demand,their environmental influence and limited reserves require alternatives.Fossil fuel co...As global economic growth increases,the demand for energy sources boosts.While fossil fuels have traditionally satisfied this demand,their environmental influence and limited reserves require alternatives.Fossil fuel combustion contributes substantially to greenhouse gas emissions,with a pressing need to halve these emissions by 2030 and target net-zero by 2050.Renewable energy sources,contributing currently to 29%of global electricity,are viewed as promising substitutes.With wind energy's potential,Zheng's team developed a novel method to harness even low wind speeds using well-aligned nanofibers and an innovative“drop wind generator”.This system,combining moisture-saturated ionic liquid 3-Methyl-1-octylimidazolium chloride with specific nanofiber arrays,exploits wind-inducedflows for energy conversion.This study highlights the vast untapped potential of low-speed wind as a sustainable energy source potentially for electronics.展开更多
Ionic liquid electrospray(ILE) in an atmospheric environment is often accompanied by the gas discharge phenomenon. It interferes with the normal operation of the electrospray and the measurement of experimental parame...Ionic liquid electrospray(ILE) in an atmospheric environment is often accompanied by the gas discharge phenomenon. It interferes with the normal operation of the electrospray and the measurement of experimental parameters. In this study, electrospray experiments were conducted on the ionic liquid EMI-BF4. The observations revealed that the operating modes of the ionic liquid depend on the voltage polarity at high voltages. Additionally, a correspondence between the operating mode of ILE and the current signal in the circuit was established. The shape of the liquid cone formed at the needle tip bore a striking resemblance to the plume of corona discharge, suggesting that the motion trajectory of electrons influenced the curvature of the liquid cone. Steamer theory provided a clear explanation for the change in curvature as the voltage increased.展开更多
Porous ionic liquids have demonstrated excellent performance in the field of separation,attributed to their high specific surface area and efficient mass transfer.Herein,task-specific protic porous ionic liquids(PPILs...Porous ionic liquids have demonstrated excellent performance in the field of separation,attributed to their high specific surface area and efficient mass transfer.Herein,task-specific protic porous ionic liquids(PPILs)were prepared by employing a novel one-step coupling neutralization reaction strategy for extractive desulfurization.The single-extraction efficiency of PPILs reached 75.0%for dibenzothiophene.Moreover,adding aromatic hydrocarbon interferents resulted in a slight decrease in the extraction efficiency of PPILs(from 45.2%to 37.3%,37.9%,and 33.5%),indicating the excellent extraction selectivity of PPILs.The experimental measurements and density functional theory calculations reveal that the surface channels of porous structures can selectively capture dibenzothiophene by the stronger electrophilicity(Eint(HS surface channel/DBT)=-39.8 kcal mol^(-1)),and the multiple extraction sites of ion pairs can effectively enrich and transport dibenzothiophene from the oil phase into PPILs throughπ...π,C-H...πand hydrogen bonds interactions.Furthermore,this straightforward synthetic strategy can be employed in preparing porous liquids,offering new possibilities for synthesizing PPILs with tailored functionalities.展开更多
Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However...Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However,the underlying microscopic mechanism remains ambiguous.In this work,the multiscale reaction density functional theory is applied to explore the effect of 1-butyl-3-methylimidazolium hexafluorophosphate([BMIM][PF_(6)])solvent on the reaction of cyclopentadiene(CP)with acrolein,methyl acrylate,or acrylonitrile.By analyzing the free energy landscape during the reaction,it is found that the polarization effect has a relatively small influence,while the solvation effect makes both the activation free energy and reaction free energy decrease.In addition,the rearrangement of local solvent structure shows that the cation spatial distribution responds more evidently to the reaction than the anion,and this indicates that the cation plays a dominant role in the solvation effect and so as to affect the reaction rates and selectivity of the DA reactions.展开更多
Ionic liquids(ILs)are an emerging class of media of fundamental importance for chemical engineering,especially due to their interaction with solid surfaces.Here,we explore the growth phenomenon of surface-confined ILs...Ionic liquids(ILs)are an emerging class of media of fundamental importance for chemical engineering,especially due to their interaction with solid surfaces.Here,we explore the growth phenomenon of surface-confined ILs and reveal a peculiar structural transition behavior from order to disorder above a threshold thickness.This behavior can be explained by the variation of interfacial forces with increasing distance from the solid surface.Direct structural observation of different ILs highlights the influence of the ionic structure on the growth process.Notably,the length of the alkyl chain in the cation is found to be a determining factor for the ordering trend.Also,the thermal stability of surface-confined ILs is investigated in depth by controlling annealing treatments.It is found that the ordered monolayer ILs exhibit high robustness against high temperatures.Our findings provide new perspectives on the properties of surface-confined ILs and open up potential avenues for manipulating the structures of nanometer-thick IL films for various applications.展开更多
Single-molecule junctions,integrating individual molecules as active components between electrodes,serve as fundamental building blocks for advanced electronic and sensing technologies.The application of ionic liquids...Single-molecule junctions,integrating individual molecules as active components between electrodes,serve as fundamental building blocks for advanced electronic and sensing technologies.The application of ionic liquids in single-molecule junctions represents a cutting-edge and rapidly evolving field of research at the intersection of nanoscience,materials chemistry,and electronics.This review explores recent advances where ionic liquids function as electrolytes,dielectric layers,and structural elements within single-molecule junctions,reshaping charge transport,redox reactions,and molecular behaviors in these nanoscale systems.We comprehensively dissect fundamental concepts,techniques,and modulation mechanisms,elucidating the roles of ionic liquids as gates,electrochemical controllers,and interface components in singlemolecule junctions.Encompassing applications from functional device construction to unraveling intricate chemical reactions,this review maps the diverse applications of ionic liquids in single-molecule junctions.Moreover,we propose critical future research topics in this field,including catalysis involving ionic liquids at the single-molecule level,functionalizing single-molecule devices using ionic liquids,and probing the structure and interactions of ionic liquids.These endeavors aim to drive technological breakthroughs in nanotechnology,energy,and quantum research.展开更多
文摘The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.
基金the financial support from the National Natural Science Foundation of China (NSFC,Nos.51675512,51227804,and 51305428)Natural Science Foundation of Gansu Province (No.1606RJZA051)the National Key Basic Research and Development (973) Program of China (No.2013CB632301)
文摘To enhance the lubricating and extreme pressure(EP) performance of base oils, two types of oil-soluble ionic liquids(ILs) with similar anion albeit dissimilar cations were synthesized. The physical properties of the prepared ILs were measured. The anticorrosion properties of ILs were assessed by conducting corrosion tests on steel discs and copper strips, which revealed the remarkable anticorrosion properties of the ILs in comparison with those of the commercial additive zinc dialkyldithiophosphate(ZDDP). The tribological properties of the two ILs as additives for poly-α-olefin-10(PAO10) with various mass concentrations were investigated. The tribological test results indicate that these ILs as additives are capable of reducing friction and wear of sliding contacts remarkably as well as enhance the EP performance of blank PAO10. Under similar test conditions, these IL additives exhibit higher lubricating and anti-wear(AW) performances than those of ZDDP based additive package in PAO10. Subsequently, X-ray photoelectron spectroscopy(XPS) and energy dispersive spectrometer(EDS) were conducted to study the lubricating mechanism of the two ILs. The results indicate that the formation of tribochemical film plays the most crucial role in enhancing the lubricating and AW behavior of the mixture lubricants.
基金supported by the Natural Science Founda-tion of Beijing(Grant No.2182017,2202017).
文摘A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainable corrosion inhibitors are chosen to investigate the corrosion inhibition behavior of ionic liquid(ILs)during the LePEO process for LA91 magnesium-lithium(Mg-Li)alloy.Results show that the ionic liquid BmimBF_(4)participates in the LePEO coating formation process,causing an increment in coating thickness and surface roughness.The low conductivity of the ionic liquid is responsible for the voltage and breakdown voltage increases during the LePEO with IL process(LePEO-IL).After adding BmimBF_(4),corrosion current density decreases from 1.159×10^(−4)A·cm^(−2)to 8.143×10^(−6)A·cm^(−2).The impedance modulus increases to 1.048×10^(4)Ω·cm^(−2)and neutral salt spray remains intact for 24 h.The superior corrosion resistance of the LePEO coating assisted by ionic liquid could be mainly attributed to its compact and thick barrier layer and physical absorption of ionic liquid.The ionic liquid-assisted LePEO technique provides a promising approach to reducing energy consumption and improving film performance.
基金the financial supports from National Natural Science Foundation of China(22172066,22378176)supported by State Key Laboratory of Heavy Oil ProcessingSupported by Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment,Suzhou University of Science and Technology。
文摘An efficient mass transfer process is a critical factor for regulating catalytic activity in a photocatalytic desulfurization system.Herein,a phosphotungstic acid(HPW)active center is successfully composited with a quaternary ammonium phosphotungstate-based hexadecyltrimethylammonium chloride ionic liquid(CTAC-HPW)by the ion exchange method for the photocatalytic oxidative desulfurization of dibenzothiophene sulfide.The keggin structure of HPW and highly mass transfer performance of organic cations synergistically enhanced the photocatalytic activity towards the effective convertion of dibenzothiophene(DBT)with the excitation of visible light.The deep desulfurization(<10 mg·kg^(-1))is attained within 30 min,and well stability is demonstrated within 25 cycles.Moreover,the CTAC-HPW photocatalyst projects well selectivity to interference from coexisting compounds such as olefins and aromatic hydrocarbons and universality of dibenzothiophenes,for example,4-methyldibenzothiophene(4-MDBT)and 4,6-dimethyldibenzothiophene(4,6-DMDBT).Ultimately,a possible photocatalytic desulfurization mechanism is proposed according to the Gaschromatography-mass spectrometry(GC-MS),proving that the final product is the corresponding sulfone.The trapping experiment and electron spin resonance(ESR)analysis confirmed that h^(+)and,COOH played critical roles in the oxidation process.The work offers a practicable strategy for efficiently converting DBT to DBTO_(2) with added value.
基金This work was supported by the National Natural Science Foundation of China(nos.21988102,and 22305026)the China Postdoctoral Science Foundation(2019M650433).
文摘The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials.
基金supported by the Natural Science Founda-tion of Chongqing(cstc2021jcyj-msxmX0420)Natural Science Foundation of Sichuan(2023NSFSC0088)。
文摘Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and the oxygen evolution reaction(HER and OER).Ionic liquids(ILs)or poly(ionic liquids)(PILs),containing heteroatoms,metal-based anions,and various structures,have been frequently involved as precursors to prepare electrocatalysts for water splitting.Moreover,ILs/PILs possess high conductivity,wide electrochemical windows,and high thermal and chemical stability,which can be directly applied in the electrocatalysis process with high durability.In this review,we focus on the studies of ILs/PILs-derived electrocatalysts for HER and OER,where ILs/PILs are applied as heteroatom dopants and metal precursors to prepare catalysts or are directly utilized as the electrocatalysts.Due to those attractive properties,IL/PIL-derived electrocatalysts exhibit excellent performance for electrochemical water splitting.All these accomplishments and developments are systematically summarized and thoughtfully discussed.Then,the overall perspectives for the current challenges and future developments of ILs/PILs-derived electrocatalysts are provided.
基金supported by the National Key R&D Program of China ‘Intergovernmental International Scientific and Technological Innovation Cooperation’ (No. 2019YFE0122100)。
文摘The ionic liquid(IL) 1-butyl-3-methylimidazolium tetrafluoroborate treated with radiofrequency plasma is proposed for functionalization and immobilization on polyethersulfone supports to form supported ionic liquid membranes for CO_(2) separation.The effects of treatment time and transmembrane pressure difference on CO_(2) permeance were evaluated.The best gas permeation performance was obtained with a treatment time of 10 min and the transmembrane pressure difference was 0.25 MPa.Characterization of the materials by Fourier transform infrared spectroscopy,x-ray photoelectron spectroscopy and nuclear magnetic resonance spectroscopy demonstrates that the IL is grafted with carboxyl groups and deprotonated through plasma treatment.A preliminary mechanism for the plasma treatment and facilitated transport of CO_(2)has been proposed on this basis.
基金the financial support from National Natural Science Foundation of China(No.21838004,22011530112)China ScholarshipCouncil(No.202208320253)+2 种基金STINT(CH2019-8287)the Swedish Research Councilthe financial support from Horizon-EIC,Pathfinder challenges,Grant Number:101070976.
文摘The melting points of ionic liquids(ILs)reported since 2020 were surveyed,collected,and reviewed,which were further combined with the previous data to provide a database with 3129 ILs ranging from 177.15 to 645.9 K in melting points.In addition,the factors that affect the melting point of ILs from macro,micro,and thermodynamic perspectives were summarized and analyzed.Then the development of the quantitative structure-property relationship(QSPR),group contribution method(GCM),and conductor-like screening model for realistic solvents(COSMO-RS)for predicting the melting points of ILs were reviewed and further analyzed.Combined with the evaluation together with the preliminary study conducted in this work,it shows that COSMO-RS is more promising and possible to further improve its performance,and a framework was thus proposed.
基金supported by National Natural Science Foundation of China(21978066)Basic Research Program of Hebei Province for Natural Science Foundation and Key Basic Research Project(18964308D)the Key Program of Natural Science Foundation of Hebei Province(B2020202048).
文摘The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal catalyst and a corrosive homogeneous alkali,we prepared a series of hydroxyapatite catalysts by an ionic liquid-assisted hydrothermal method and evaluated their catalytic performance.The results showed that the ionic liquid[Bmim]BF_(4) can affect the crystal growth of hydroxyapatite,provide fluoride ion for fluorination of hydroxyapatite,and adjust the surface acidity and basicity,morphology,textural properties,crystallinity,and composition of hydroxyapatite.The[Bmim]BF4 dosage and hydrothermal temperature can affect the fluoride ion concentration in the hydrothermal system,thus changing the degree of fluoridation of hydroxyapatite.High fluoride-ion concentration can lead to the formation of CaF_(2) and thus significantly decrease the catalytic performance of hydroxyapatite.The hydrothermal time mainly affects the growth of hydroxyapatite crystals on the c axis,leading to different catalytic performance.The suitable conditions for the preparation of this fluoridized hydroxyapatite are as follows:a mass ratio of[Bmim]BF4 to calcium salt=0.2:1,a hydrothermal time of 12 h,and a hydrothermal temperature of 130℃.A maximal methacrylic acid yield of 54.7%was obtained using the fluoridized hydroxyapatite under relatively mild reaction conditions(250℃ and 2 MPa of N_(2))in the absence of a precious-metal catalyst and a corrosive homogeneous alkali.
基金supported by the National Natural Science Foundation of China(22125802,22078010).
文摘The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and their performances in the separation of 1,2,3,4-tetrahydronaphthalene(tetralin)/dodecane and tetralin/decalin systems were studied.Among these ionic liquids,1-ethyl-3-methylimidazolium tetrachloroferrate([EMIM][FeCl_(4)])with the highest selectivity was used as the extractant.Density functional theory calculations showed that[EMIM][FeCl_(4)]interacted more strongly with tetralin than with dodecane and decalin.Energy decomposition analysis of[EMIM][FeCl_(4)]-tetralin indicated that electrostatics and dispersion played essential roles,and induction cannot be neglected.The van der Waals forces was a main effect in[EMIM][FeCl_(4)]-tetralin by independent gradient model analysis.The tetralin distribution coefficient and selectivity were 0.8 and 110,respectively,with 10%(mol)tetralin in the initial tetralin/dodecane system,and 0.67 and 19.5,respectively,with 10%(mol)tetralin in the initial tetralin/decalin system.The selectivity increased with decreasing alkyl chain length of the extractant.The influence of the extraction temperature,extractant dosage,and initial concentrations of the system components on the separation performance were studied.Recycling experiments showed that the regenerated[EMIM][FeCl_(4)]could be used repeatedly.
基金supported by the National Natural Science Foundation of China(21838004),STINT(CH2019-8287)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23-1467)the financial support from Horizon-EIC and Pathfinder challenges,Grant Number:101070976.
文摘Viscosity is one of the most important fundamental properties of fluids.However,accurate acquisition of viscosity for ionic liquids(ILs)remains a critical challenge.In this study,an approach integrating prior physical knowledge into the machine learning(ML)model was proposed to predict the viscosity reliably.The method was based on 16 quantum chemical descriptors determined from the first principles calculations and used as the input of the ML models to represent the size,structure,and interactions of the ILs.Three strategies based on the residuals of the COSMO-RS model were created as the output of ML,where the strategy directly using experimental data was also studied for comparison.The performance of six ML algorithms was compared in all strategies,and the CatBoost model was identified as the optimal one.The strategies employing the relative deviations were superior to that using the absolute deviation,and the relative ratio revealed the systematic prediction error of the COSMO-RS model.The CatBoost model based on the relative ratio achieved the highest prediction accuracy on the test set(R^(2)=0.9999,MAE=0.0325),reducing the average absolute relative deviation(AARD)in modeling from 52.45% to 1.54%.Features importance analysis indicated the average energy correction,solvation-free energy,and polarity moment were the key influencing the systematic deviation.
基金supported by the National Natural Science Foundation of China(No.51874221)the Open Foundation of Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Materials,Guangxi University(No.2022GXYSOF 11).
文摘To conduct extensive research on the application of ionic liquids as collectors in mineral flotation,ethanol(EtOH)was used as a solvent to dissolve hydrophobic ionic liquids(ILs)to simplify the reagent regime.Interesting phenomena were observed in which EtOH exerted different effects on the flotation efficiency of two ILs with similar structures.When EtOH was used to dissolve 1-dodecyl-3-methylimidazolium chloride(C12[mim]Cl)and as a collector for pure quartz flotation tests at a concentration of 1×10^(−5)mol·L^(−1),quartz recovery increased from 23.77%to 77.91%compared with ILs dissolved in water.However,quartz recovery of 1-dodecyl-3-methylim-idazolium hexafluorophosphate(C12[mim]PF6)decreased from 60.45%to 24.52%under the same conditions.The conditional experi-ments under 1×10^(−5)mol·L^(−1)ILs for EtOH concentration and under 2vol%EtOH for ILs concentration confirmed this difference.After being affected by EtOH,the mixed ore flotation tests of quartz and hematite showed a decrease in the hematite concentrate grade and re-covery for the C12[mim]Cl collector,whereas the hematite concentrate grade and recovery for the C12[mim]PF6 collector increased.On the basis of these differences and observations of flotation foam,two-phase bubble observation tests were carried out.The EtOH promoted the foam height of two ILs during aeration.It accelerated static froth defoaming after aeration stopped,and the foam of C12[mim]PF6 de-foaming especially quickly.In the discussion of flotation tests and foam observation,an attempt was made to explain the reasons and mechanisms behind the diverse phenomena using the dynamic surface tension effect and solvation effect results from EtOH.The solva-tion effect was verified through Fourier transform infrared(FT-IR),X-ray photoelectron spectroscopy(XPS),and Zeta potential tests.Al-though EtOH affects the adsorption of ILs on the ore surface during flotation negatively,it holds an positive value of inhibiting foam mer-ging during flotation aeration and accelerating the defoaming of static foam.And induce more robust secondary enrichment in the mixed ore flotation of the C12[mim]PF6 collector,facilitating effective mixed ore separation even under inhibitor-free conditions.
基金supported by the fundamental research funds for the central universities(2022SCUH0041,SCU2023D012).
文摘Increasing the 1,3,5-trioxane(TOX) concentration in the equilibrated vapor phase of TOX-H_(2)O system has been recognized as a challenge for the azeotrope. Ionic liquids(ILs) were used to improve the relative volatility of TOX to H_(2)O and destroy the azeotrope in the TOX-H2O system. The vapor-liquid equilibrium of TOX-H2O system at 101.3 kPa was studied with the addition of 1-butyl-3-methylimidazolium hydrogen sulfate, 1-hexyl-3-methylimidazolium hydrogen sulfate and 1-butyl-3-methylimidazolium nitrate, respectively. The results showed that the volatility of TOX increased with the increase in IL dosage. And the volatility of water decreased with the increase in IL dosage. The relative volatility of TOX to H_(2)O was improved with the increase in ILs dosage. The azeotrope could be destroyed with an IL mole fraction of about 0.10. A non-random two-liquid(NRTL) model was successfully used to correlate the experimental data. The interaction parameters were obtained by fitting the experimental data with the model. The results indicated that a strong interaction existed between ILs and water. The strong interaction improved the volatility of TOX and inhibited the volatility of water, and then intensified the relative volatility of TOX to H_(2)O. The results showed that an ILs with strong polarity and hydrophilicity may be a potential additive to improve the TOX concentration in the equilibrated vapor phase.
基金financially supported by the National Natural Science Foundation of China(22208253)the Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials(Wuhan University of Science and Technology,WKDM202202).
文摘Ionic liquids(ILs),because of the advantages of low volatility,good thermal stability,high gas solubility and easy recovery,can be regarded as the green substitute for traditional solvent.However,the high viscosity and synthesis cost limits their application,the hybrid solvent which combining ILs together with others especially water can solve this problem.Compared with the pure IL systems,the study of the ILs-H_(2)O binary system is rare,and the experimental data of corresponding thermodynamic properties(such as density,heat capacity,etc.)are less.Moreover,it is also difficult to obtain all the data through experiments.Therefore,this work establishes a predicted model on ILs-water binary systems based on the group contribution(GC)method.Three different machine learning algorithms(ANN,XGBoost,LightBGM)are applied to fit the density and heat capacity of ILs-water binary systems.And then the three models are compared by two index of MAE and R^(2).The results show that the ANN-GC model has the best prediction effect on the density and heat capacity of ionic liquid-water mixed system.Furthermore,the Shapley additive explanations(SHAP)method is harnessed to scrutinize the significance of each structure and parameter within the ANN-GC model in relation to prediction outcomes.The results reveal that system components(XIL)within the ILs-H_(2)O binary system exert the most substantial influence on density,while for the heat capacity,the substituents on the cation exhibit the greatest impact.This study not only introduces a robust prediction model for the density and heat capacity properties of IL-H_(2)O binary mixtures but also provides insight into the influence of mixture features on its density and heat capacity.
基金funding of the National Natural Science Foundation of China(no.21776235,no.21376197)the studentship by the Hong Kong Polytechnic University。
文摘As global economic growth increases,the demand for energy sources boosts.While fossil fuels have traditionally satisfied this demand,their environmental influence and limited reserves require alternatives.Fossil fuel combustion contributes substantially to greenhouse gas emissions,with a pressing need to halve these emissions by 2030 and target net-zero by 2050.Renewable energy sources,contributing currently to 29%of global electricity,are viewed as promising substitutes.With wind energy's potential,Zheng's team developed a novel method to harness even low wind speeds using well-aligned nanofibers and an innovative“drop wind generator”.This system,combining moisture-saturated ionic liquid 3-Methyl-1-octylimidazolium chloride with specific nanofiber arrays,exploits wind-inducedflows for energy conversion.This study highlights the vast untapped potential of low-speed wind as a sustainable energy source potentially for electronics.
基金supported by the National Key Research and Development Program of China(No.2020YFC2201004)National Natural Science Foundation of China(No.12172110)。
文摘Ionic liquid electrospray(ILE) in an atmospheric environment is often accompanied by the gas discharge phenomenon. It interferes with the normal operation of the electrospray and the measurement of experimental parameters. In this study, electrospray experiments were conducted on the ionic liquid EMI-BF4. The observations revealed that the operating modes of the ionic liquid depend on the voltage polarity at high voltages. Additionally, a correspondence between the operating mode of ILE and the current signal in the circuit was established. The shape of the liquid cone formed at the needle tip bore a striking resemblance to the plume of corona discharge, suggesting that the motion trajectory of electrons influenced the curvature of the liquid cone. Steamer theory provided a clear explanation for the change in curvature as the voltage increased.
基金financially supported by the National Natural Science Foundation of China (Nos.22078135,21808092,21978119,22202088)。
文摘Porous ionic liquids have demonstrated excellent performance in the field of separation,attributed to their high specific surface area and efficient mass transfer.Herein,task-specific protic porous ionic liquids(PPILs)were prepared by employing a novel one-step coupling neutralization reaction strategy for extractive desulfurization.The single-extraction efficiency of PPILs reached 75.0%for dibenzothiophene.Moreover,adding aromatic hydrocarbon interferents resulted in a slight decrease in the extraction efficiency of PPILs(from 45.2%to 37.3%,37.9%,and 33.5%),indicating the excellent extraction selectivity of PPILs.The experimental measurements and density functional theory calculations reveal that the surface channels of porous structures can selectively capture dibenzothiophene by the stronger electrophilicity(Eint(HS surface channel/DBT)=-39.8 kcal mol^(-1)),and the multiple extraction sites of ion pairs can effectively enrich and transport dibenzothiophene from the oil phase into PPILs throughπ...π,C-H...πand hydrogen bonds interactions.Furthermore,this straightforward synthetic strategy can be employed in preparing porous liquids,offering new possibilities for synthesizing PPILs with tailored functionalities.
基金supported by the National Natural Science Foundation of China(22168002,22108070,21878078)the Natural Science Foundation of Guangxi Province(2020GXNSFAA159119)+2 种基金the Dean Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology(2021Z012)the Open Fund of the State Key Laboratory of Molecular Reaction Dynamics in DICP(SKLMRD-K202106)the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)。
文摘Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However,the underlying microscopic mechanism remains ambiguous.In this work,the multiscale reaction density functional theory is applied to explore the effect of 1-butyl-3-methylimidazolium hexafluorophosphate([BMIM][PF_(6)])solvent on the reaction of cyclopentadiene(CP)with acrolein,methyl acrylate,or acrylonitrile.By analyzing the free energy landscape during the reaction,it is found that the polarization effect has a relatively small influence,while the solvation effect makes both the activation free energy and reaction free energy decrease.In addition,the rearrangement of local solvent structure shows that the cation spatial distribution responds more evidently to the reaction than the anion,and this indicates that the cation plays a dominant role in the solvation effect and so as to affect the reaction rates and selectivity of the DA reactions.
基金supported by the National Key Research and Development Program of China(2021YFB3802600)the National Natural Science Foundation of China(22278396,22378392,22178344)+1 种基金the Youth Innovation Promotion Association CAS(Y2021022)the Open Research Fund of State Key Laboratory of Mesoscience and Engineering(MESO-23-D17)。
文摘Ionic liquids(ILs)are an emerging class of media of fundamental importance for chemical engineering,especially due to their interaction with solid surfaces.Here,we explore the growth phenomenon of surface-confined ILs and reveal a peculiar structural transition behavior from order to disorder above a threshold thickness.This behavior can be explained by the variation of interfacial forces with increasing distance from the solid surface.Direct structural observation of different ILs highlights the influence of the ionic structure on the growth process.Notably,the length of the alkyl chain in the cation is found to be a determining factor for the ordering trend.Also,the thermal stability of surface-confined ILs is investigated in depth by controlling annealing treatments.It is found that the ordered monolayer ILs exhibit high robustness against high temperatures.Our findings provide new perspectives on the properties of surface-confined ILs and open up potential avenues for manipulating the structures of nanometer-thick IL films for various applications.
基金primary financial supports from the National Key R&D Program of China(2021YFA1200102,2021YFA1200101,and 2022YFE0128700)the National Natural Science Foundation of China(22173050,22150013,21727806,and 21933001)+4 种基金the New Cornerstone Science Foundation through the XPLORER PRIZEthe Natural Science Foundation of Beijing(2222009)Beijing National Laboratory for Molecular Sciences(BNLMS202105)the Fundamental Research Funds for the Central Universities(63223056)“Frontiers Science Center for New Organic Matter”at Nankai University(63181206).
文摘Single-molecule junctions,integrating individual molecules as active components between electrodes,serve as fundamental building blocks for advanced electronic and sensing technologies.The application of ionic liquids in single-molecule junctions represents a cutting-edge and rapidly evolving field of research at the intersection of nanoscience,materials chemistry,and electronics.This review explores recent advances where ionic liquids function as electrolytes,dielectric layers,and structural elements within single-molecule junctions,reshaping charge transport,redox reactions,and molecular behaviors in these nanoscale systems.We comprehensively dissect fundamental concepts,techniques,and modulation mechanisms,elucidating the roles of ionic liquids as gates,electrochemical controllers,and interface components in singlemolecule junctions.Encompassing applications from functional device construction to unraveling intricate chemical reactions,this review maps the diverse applications of ionic liquids in single-molecule junctions.Moreover,we propose critical future research topics in this field,including catalysis involving ionic liquids at the single-molecule level,functionalizing single-molecule devices using ionic liquids,and probing the structure and interactions of ionic liquids.These endeavors aim to drive technological breakthroughs in nanotechnology,energy,and quantum research.