Recently,exploration breakthroughs have been made in the Lower Cretaceous sandstone reservoirs in the Doseo Basin,but the identification of reservoir fluid property is difficult due to variable reservoir lithology,com...Recently,exploration breakthroughs have been made in the Lower Cretaceous sandstone reservoirs in the Doseo Basin,but the identification of reservoir fluid property is difficult due to variable reservoir lithology,complex oil-water contact within and faint responses of the oil zone,which causes the lower accuracy of reservoir fluid property identification with conventional mudlogging and wirelogging techniques.Applying the geochemical logging,fluorescent logging,mud logging and cutting logging technology,in combination with formation test data,this paper distinguishes the crude oil types,analyzes the logging response characteristics of oil zone after water washing,and establishes the interpretation charts and parameter standards for reservoir fluid properties.The crude oil can be divided into two types,namely viscous-heavy and thin-light,based on total hydrocarbon content and component concentration tested by mud logging,features of pyrolysis gas chromatogram and fluorescence spectroscopy.The general characteristics of oil layers experienced water washing include the decrease of total hydrocarbon content and component concentration from mud logging,the decrease of S1 and PS values from geochemical logging,the decrease of hydrocarbon abundance and absence of some light components in pyrolysis gas chromatogram,and the decrease of fluorescence area and intensity from fluorescence logging.According to crude oil types,the cross plots of S1 versus peak-baseline ratio,and the cross plots of rock wettability versus fluorescence area ratio are drawn and used to interpret reservoir fluid property.Meanwhile,the standards of reservoir fluid parameter are established combining with the parameters of PS and the parameters in above charts,and comprehensive multiparameter correlation in both vertical and horizontal ways is also performed to interpret reservoir fluid property.The application in the Doseo Basin achieved great success,improving interpretation ability of fluid property in the reservoir with complex oil-water contact,and also provided technical reference for the efficient exploration and development of similar reservoirs.展开更多
A silylated melamine sponge(SMS)was prepared by two simple steps,namely,immersion and dehydration of a melamine sponge coated with methyltrichlorosilane.The silylated structure of SMS was characterized by FT-IR(Fourie...A silylated melamine sponge(SMS)was prepared by two simple steps,namely,immersion and dehydration of a melamine sponge coated with methyltrichlorosilane.The silylated structure of SMS was characterized by FT-IR(Fourier-transform infrared)spectroscopy,SEM(Scanning electron microscopy)and in terms of water contact angles.Its oil-water absorption and separation capacities were measured by FT-IR and UV-visible spectrophoto-metry.The experimental results have shown that oligomeric silanol covalently bonds by Si-N onto the surface of melamine sponge skeletons.SMS has shown superhydrophobicity with a water contact angle exceeding 150°±1°,a better separation efficiency with regard to diesel oil(by 99.31%(wt/wt%)in oil-water mixture and even up to 99.99%(wt/wt%)for diesel oil in its saturated aqueous solution.Moreover,SMS inherited the intrinsicflame retardancy of the melamine sponge.In general,SMS has shown superhydrophobicity,high porosity,excellent selectivity,remarkable recyclability,and better absorption capacity for various oils and organic solvents,and a high separation efficiency for oil in saturated aqueous solutions.展开更多
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp...In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.展开更多
Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with sev...Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration(of oil droplets) in oil-water two-phase flow,which makes it difficult to measure water holdup in oil wells.In this study,we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in lowvelocity and high water-cut conditions.First,we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling.Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor.Based on the results,we then investigate the effects of oildroplet diameter and distribution on the ultrasonic field.To further understand the measurement characteristics of the ultrasonic sensor,we perform a flow loop test on vertical upward oilwater two-phase flow and measure the responses of the optimized ultrasonic sensor.The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow(D OS/W flow),but the resolution is favorable for dispersed oil in water flow(D O/W flow) and very fine dispersed oil in water flow(VFD O/W flow).This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut.展开更多
The fluid flow and oil-water separation were simulated using a Reynolds stress transport equation model of turbulence in water flow and a stochastic model of oil droplet motion. Simulation results give the axial and t...The fluid flow and oil-water separation were simulated using a Reynolds stress transport equation model of turbulence in water flow and a stochastic model of oil droplet motion. Simulation results give the axial and tangential velocity components, the pressure and turbulence intensity distribution and droplet trajectories for a hydrocyclone of F type and a hydrocyclone proposed by the present authors. The flow field predictions are in qualitative agreement with the LDV measurements. The results show that the proposed hydrocyclone has better performance than the hydrocyclone of F type due to creating stronger centrifugal force and lower axial velocity.展开更多
The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inh...The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inhibitor SL-2, scale inhibitor HEDP, germicide 1227, and flocculant polyaluminium chloride PAC) on the stability of oilfield produced water. The influence of these treatment agents on oil-water interfacial properties and the mechanism of these agents acting on the oilfield produced water were studied by measuring the interfacial shear viscosity, interfacial tension and zeta electric potential. The results indicated that the scale inhibitor HEDP could increase the oil-water interfacial film strength, and it could also increase the absolute value of the zeta potential of oil droplets. HEDP played an important role in the stability of the emulsion. Polyaluminum chloride (PAC) reduced the stability of the emulsion by considerably decreasing the absolute value of the zeta potential of oil droplets. Corrosion inhibitor SL-2 and germicide 1227 could decrease the oil-water interfacial tension, whereas they had little influence on oil-water interfacial shear viscosity and oil-water interfacial electricity properties.展开更多
The magnetically responsive anti-fouling nanofiber membrane(MRANM)was fabricated for efficient oilwater emulsion separation,which could be cleaned using oscillating magnetic field.MRANM was prepared by grafting superp...The magnetically responsive anti-fouling nanofiber membrane(MRANM)was fabricated for efficient oilwater emulsion separation,which could be cleaned using oscillating magnetic field.MRANM was prepared by grafting superparamagnetic Fe_(3)O_(4) nanoparticles onto the surface of electrospun polyacrylonitrile nanofiber membrane(PANM).Compared with PANM,the water contact angle of MRANM decreased from 104°to 0°,indicating that the hydrophilicity of the membrane was significantly improved.For the emulsions of hexadecane,octane and rapeseed oil,the separation efficiency was 98.04%,96.59%and 92.67%,respectively.After the treatments in oscillating magnetic field,the separation efficiency kept above 95%after 8 times recycling,which indicated that the MRANM had good regenerability and reusability.The as-fabricated membrane with magnetic responsiveness facilitated an effective method for solving the membrane fouling problem during practical applications of separation high viscosity oil-water emulsion.展开更多
Massive oily wastewater discharged from industrial production and human daily life have been an urgent environmental and ecological challenge.Superhydrophobic materials have attracted tremendous attention due to their...Massive oily wastewater discharged from industrial production and human daily life have been an urgent environmental and ecological challenge.Superhydrophobic materials have attracted tremendous attention due to their unique properties and potential applications in the treatment of wastewater.In this study,a novel superhydrophobic/superoleophilic composite melamine sponge modified with dual silanized SiO_(2) microspheres was fabricated simply by a two-step sol-gel method using vinyltriethoxysilane and hexadecyltrimethoxysilane as functional agent,which exhibited a water contact angle of 153.2°and a water sliding contact angle of 4.8°.Furthermore,the composite sponge showed the excellent oil adsorption performance and the compressive elasticity reaching up to 130 g·g^(-1) of dichloromethane and 33.1 kPa of compressive stress.It was worth noting that the composite sponge presented the excellent separation efficiency(up to 99.5%)in the processes of continuous oil/water separation.The robust superhydrophobic composite melamine sponge provided the possibility with the practical application for oil-water separation.展开更多
A novel simple two-dimensional square-lattice model of amphiphile at oil-water interface is developed,in which oil and water act as solvent and occupy empty sites and amphiphile occupies chains of sites. In this mode...A novel simple two-dimensional square-lattice model of amphiphile at oil-water interface is developed,in which oil and water act as solvent and occupy empty sites and amphiphile occupies chains of sites. In this model, the oil-water interface is fixed, And amphiphile molecules will be enriched at the oil-water interface. The interfacial concentration of amphiphile calculated by Monte Carlo method shows that it is easier for the hydrophilic-hydrophobic balanced amphiphile to stay at the interface. And the adsorption of amphiphile increases with the increase of amphiphile concentration and the decrease with temperature.展开更多
The distribution characteristics of the oil-water contact are the basis for the reservoir exploration and development and reserves evaluation. The reservoir with a tilted oil-water contact has a unique formation mecha...The distribution characteristics of the oil-water contact are the basis for the reservoir exploration and development and reserves evaluation. The reservoir with a tilted oil-water contact has a unique formation mechanism, and the understanding of its distribution and formation mechanism will directly affect the evaluations for the reservoir type, well deployment, selection of well pattern and type, determination of test section, and reserves evaluation. Based on the analysis of reservoir characteristics, petrophysical properties and geological structure in 40 reservoirs worldwide with tilted oil-water contacts, the progress of the research on the formation mechanisms of titled oil-water contacts is summarized in terms of the hydrodynamic conditions, reservoir heterogeneity, neotectonic movement and oil-gas exploitation. According to the formation mechanism of tilted oil-water contacts and the needs of exploration research, different aspects of research methods are summarized and classified, such as the calculation of equipotential surfaces for oil and water in the formation, analysis of formation pressure and analysis of reservoir physical properties and so on. Based upon statistical analysis, it is suggested that the degree of the inclination of the oil-water contact be divided based on the dip of oil-water contact(DipTOWC). The tilted oil-water contact is divided into three categories: large dip(DipTOWC≥55 m/km), medium dip(4 m/km≤DipTOWC55 m/km), and small dip(DipTOWC4 m/km). The classification and evaluation method can be combined with structure amplitude and reservoir property. The formation mechanism of domestic and international reservoirs with tilted oil-water contacts are summarized in this paper, which have important significance in guiding the exploration and development of the oilfield with tilted oil-water contacts, reserves evaluation, and well deployment.展开更多
Oil-water separation is critical to solvent extraction process of rare earth, which can directly affect the yield and quality of the product. The experiments measure the two-phase separation time in a beaker, mixing u...Oil-water separation is critical to solvent extraction process of rare earth, which can directly affect the yield and quality of the product. The experiments measure the two-phase separation time in a beaker, mixing uniformity of two phases in the mixer and the oil phase entrainment at oil exit by the Karl Fischer method and numerical simulation for the mixersettler to study the combined effect of gravity and stirring. Experimental results show that relative to the static situation, the separation efficiency resulted from low-speed stirring is increased by 25%. The water content in the oil is a minimum at an offset distance L of 10 cm and the clearance off the tank bottom z of 10 cm is as low as 0.49%. Distribution images of oilwater separation at 2 s indicates that stirring is very conducive to the separation of the oil-water phase.展开更多
Here,superhydrophobic cuprous oxide(Cu2O)with hierarchical micro/nanosized structures was synthesized via sprayassisted layer by layer assembling.The asprepared superhydrophobic meshes with high contact angle(159.6...Here,superhydrophobic cuprous oxide(Cu2O)with hierarchical micro/nanosized structures was synthesized via sprayassisted layer by layer assembling.The asprepared superhydrophobic meshes with high contact angle(159.6°)and low sliding angle(1°)are covered with Cu_(2)O "coral reef"like micro/nanosized structures.Interestingly,the superhydrophobic mesh surfaces became superhydrophilic again due to the oxidization of Cu_(2)O to CuO by annealing at a higher temperature(300℃).And the superhydrophobic properties would be recovered by heating at 120℃.Furthermore,the superwetting meshes were applied to design a miniature device to separate light or heavy oil from the wateroil mixtures with excellent separation efficiency.These superwetting surfaces by simultaneously sprayassisted layer by layer assembling technique show the potential application in universal oilwater separation.展开更多
The fabrication of directionally driven oil-water separation materials has great significance for the removal of oil spills and organic pollutants.In this study,an oil-water separation aerogel capable of directionally...The fabrication of directionally driven oil-water separation materials has great significance for the removal of oil spills and organic pollutants.In this study,an oil-water separation aerogel capable of directionally adsorbing oil was designed using an anisotropic wood aerogel with a layered structure and a top-down fabrication strategy.Specifically,a magnetic wood-based superhydrophobic aerogel(methyltrimethoxysilane(MTMS)/Fe_(3)O_(4) wood aerogel)was developed through the in situ coprecipitation of Fe_(3)O_(4) nanoparticles and chemical vapor deposition.Owing to its highly porous structure,lipophilicity,hydrophobicity(water contact angle of 160°),and high compressibility,the MTMS/Fe_(3)O_(4) wood aerogel exhibits excellent oil-water separation performance and compression cycle stability.Additionally,the Fe_(3)O_(4) endows the material with excellent magnetic and photothermal conversion capabilities.These excellent properties make MTMS/Fe_(3)O_(4) wood aerogel a promising recyclable and sustainable oil-water separation material.展开更多
Troxerutin fatty acid esters were prepared using troxerutin and fatty acid vinyl esters as substrates in pyridine through enzymatic route. The structures of as-prepared compounds were identified by FT-TR, NMR, and ESI...Troxerutin fatty acid esters were prepared using troxerutin and fatty acid vinyl esters as substrates in pyridine through enzymatic route. The structures of as-prepared compounds were identified by FT-TR, NMR, and ESI-HRMS. Using alkaline protease(≥30 mg/mL) as enzyme, maximum yields reached 58% at 3:1(vinyl hexanoate to troxerutin) in pyridine(water content ≤1%). The yields gradually declined as chain length of acyl donors rose. The antioxidation abilities of the as-obtained compounds were confirmed by both DPPH free radical scavenging and potassium ferricyanide reduction methods. The antioxidation ability of troxerutin fatty acid esters was found lower than that of troxerutin. However, the logP values of troxerutin fatty acid esters varied from 0.15 to 1.94, suggesting that troxerutin fatty acid esters had better lipophilicity than troxerutin(logP =-2.12) when compared to their oil-water distribution coefficients. Overall, these findings look promising as reference for further development of future troxerutin.展开更多
To accurately measure and evaluate the oil-water production profile of horizontal wells, a dynamic measurement experiment of oil-water two-phase flow in horizontal wells and numerical simulation were combined to estab...To accurately measure and evaluate the oil-water production profile of horizontal wells, a dynamic measurement experiment of oil-water two-phase flow in horizontal wells and numerical simulation were combined to establish a method for measuring the partial phase flow rate of oil-water two-phase stratified flow in horizontal wells. An experimental work was performed in horizontal oil-water two-phase flow simulation well using combination production logging tool including mini-capacitance sensor and mini-spinner. The combination tool provides a recording of holdup and velocity profiles at five different heights of the borehole cross-section. The effect of total flow rate and water-cut on the response of spinner and capacitive sensor at five measured positions were investigated. The capacitance water holdup interpolation imaging algorithm was used to determine the local fluid property and oil-water interface height, and the measured local fluid speed was combined with the numerical simulation result to establish an optimal calculation model for obtaining the partial phase flow rate of the oil-water two-phase stratified flow in the horizontal well. The calculated flow rates of five measured points are basically consistent with the experimental data, the total flow rate and water holdup from calculation are in agreement with the set values in the experiment too, suggesting that the method has high accuracy.展开更多
Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using exi...Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work.展开更多
Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.Howe...Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility.展开更多
Uniform monodispersed mesoporous silica nanospheres with vertical pores were successfully synthesized using chiral amphiphilic small molecule L-16Ala5PyClO4and solvents as dual templates via solgel transcription.The m...Uniform monodispersed mesoporous silica nanospheres with vertical pores were successfully synthesized using chiral amphiphilic small molecule L-16Ala5PyClO4and solvents as dual templates via solgel transcription.The morphologies and pore sizes of silicas are adjustable by changing the type and amount of solvents in the reaction systems.With the increase of the organic solvent content,the morphologies of the obtained silica changed from nanospheres with vertical pore structures to nanosheets structures.When 1 mL of benzene,cyclohexane or toluene were used as solvents,only silica nanospheres were obtained,the BET surface areas of silica nanospheres reached 600.7,669.5,and 560.8 m^(2)/g,respectively.The pore sizes were 3.51,3.54,and 3.46 nm,respectively.Significantly,these ordered silica nanospheres/poly(vinyl alcohol-co-ethylene)(PVAco-PE)nanofiber membranes have high separation efficiencies(>99%)for n-hexane/water mixtures.展开更多
Amphiphile-oil-water system is complicated. The real behavior of amphiphile in the interface is still undnown despite that this behavior is very important in determining the stability of emulsion system. In this paper...Amphiphile-oil-water system is complicated. The real behavior of amphiphile in the interface is still undnown despite that this behavior is very important in determining the stability of emulsion system. In this paper, the interface properties of amphiphile at oil-water interface were investigated by a square-lattice model Monte Carlo simulation method. The synergistic effect was found for hydrophobic and hydrophilic amphiphile mixture systems; and the synergistic effect disappears or was weakened as the amphiphile at the interface region became dilute with the increasing of temperature.展开更多
Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The ...Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The printing quality and performance of L-PBF alloys are infuenced by numerous variables consisting of feedstock powders, manufacturing process,and post-treatment. As the starting materials, metallic powders play a critical role in infuencing the fabrication cost, printing consistency, and properties. Given their deterministic roles, the present review aims to retrospect the recent progress on metallic powders for L-PBF including characterization, preparation, and reuse. The powder characterization mainly serves for printing consistency while powder preparation and reuse are introduced to reduce the fabrication costs.Various powder characterization and preparation methods are presented in the beginning by analyzing the measurement principles, advantages, and limitations. Subsequently, the effect of powder reuse on the powder characteristics and mechanical performance of L-PBF parts is analyzed, focusing on steels, nickel-based superalloys, titanium and titanium alloys, and aluminum alloys. The evolution trends of powders and L-PBF parts vary depending on specific alloy systems, which makes the proposal of a unified reuse protocol infeasible. Finally,perspectives are presented to cater to the increased applications of L-PBF technologies for future investigations. The present state-of-the-art work can pave the way for the broad industrial applications of L-PBF by enhancing printing consistency and reducing the total costs from the perspective of powders.展开更多
基金funded by a project entitled exploration field evaluation and target optimization of key basins in Chad and Niger(No.2019D-4308)initiated by the scientific research and technology development project of china national petroleum corporation.
文摘Recently,exploration breakthroughs have been made in the Lower Cretaceous sandstone reservoirs in the Doseo Basin,but the identification of reservoir fluid property is difficult due to variable reservoir lithology,complex oil-water contact within and faint responses of the oil zone,which causes the lower accuracy of reservoir fluid property identification with conventional mudlogging and wirelogging techniques.Applying the geochemical logging,fluorescent logging,mud logging and cutting logging technology,in combination with formation test data,this paper distinguishes the crude oil types,analyzes the logging response characteristics of oil zone after water washing,and establishes the interpretation charts and parameter standards for reservoir fluid properties.The crude oil can be divided into two types,namely viscous-heavy and thin-light,based on total hydrocarbon content and component concentration tested by mud logging,features of pyrolysis gas chromatogram and fluorescence spectroscopy.The general characteristics of oil layers experienced water washing include the decrease of total hydrocarbon content and component concentration from mud logging,the decrease of S1 and PS values from geochemical logging,the decrease of hydrocarbon abundance and absence of some light components in pyrolysis gas chromatogram,and the decrease of fluorescence area and intensity from fluorescence logging.According to crude oil types,the cross plots of S1 versus peak-baseline ratio,and the cross plots of rock wettability versus fluorescence area ratio are drawn and used to interpret reservoir fluid property.Meanwhile,the standards of reservoir fluid parameter are established combining with the parameters of PS and the parameters in above charts,and comprehensive multiparameter correlation in both vertical and horizontal ways is also performed to interpret reservoir fluid property.The application in the Doseo Basin achieved great success,improving interpretation ability of fluid property in the reservoir with complex oil-water contact,and also provided technical reference for the efficient exploration and development of similar reservoirs.
基金funded by Qingyang Science and Technology Support Project(KT2019-03)。
文摘A silylated melamine sponge(SMS)was prepared by two simple steps,namely,immersion and dehydration of a melamine sponge coated with methyltrichlorosilane.The silylated structure of SMS was characterized by FT-IR(Fourier-transform infrared)spectroscopy,SEM(Scanning electron microscopy)and in terms of water contact angles.Its oil-water absorption and separation capacities were measured by FT-IR and UV-visible spectrophoto-metry.The experimental results have shown that oligomeric silanol covalently bonds by Si-N onto the surface of melamine sponge skeletons.SMS has shown superhydrophobicity with a water contact angle exceeding 150°±1°,a better separation efficiency with regard to diesel oil(by 99.31%(wt/wt%)in oil-water mixture and even up to 99.99%(wt/wt%)for diesel oil in its saturated aqueous solution.Moreover,SMS inherited the intrinsicflame retardancy of the melamine sponge.In general,SMS has shown superhydrophobicity,high porosity,excellent selectivity,remarkable recyclability,and better absorption capacity for various oils and organic solvents,and a high separation efficiency for oil in saturated aqueous solutions.
文摘In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.
基金supported by the National Natural Science Foundation of China(Nos.51527805,11572220 and 41174109)
文摘Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration(of oil droplets) in oil-water two-phase flow,which makes it difficult to measure water holdup in oil wells.In this study,we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in lowvelocity and high water-cut conditions.First,we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling.Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor.Based on the results,we then investigate the effects of oildroplet diameter and distribution on the ultrasonic field.To further understand the measurement characteristics of the ultrasonic sensor,we perform a flow loop test on vertical upward oilwater two-phase flow and measure the responses of the optimized ultrasonic sensor.The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow(D OS/W flow),but the resolution is favorable for dispersed oil in water flow(D O/W flow) and very fine dispersed oil in water flow(VFD O/W flow).This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut.
基金Supported by the Special Funds for Major State Basic Research (No. 1999-0222-08).
文摘The fluid flow and oil-water separation were simulated using a Reynolds stress transport equation model of turbulence in water flow and a stochastic model of oil droplet motion. Simulation results give the axial and tangential velocity components, the pressure and turbulence intensity distribution and droplet trajectories for a hydrocyclone of F type and a hydrocyclone proposed by the present authors. The flow field predictions are in qualitative agreement with the LDV measurements. The results show that the proposed hydrocyclone has better performance than the hydrocyclone of F type due to creating stronger centrifugal force and lower axial velocity.
文摘The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inhibitor SL-2, scale inhibitor HEDP, germicide 1227, and flocculant polyaluminium chloride PAC) on the stability of oilfield produced water. The influence of these treatment agents on oil-water interfacial properties and the mechanism of these agents acting on the oilfield produced water were studied by measuring the interfacial shear viscosity, interfacial tension and zeta electric potential. The results indicated that the scale inhibitor HEDP could increase the oil-water interfacial film strength, and it could also increase the absolute value of the zeta potential of oil droplets. HEDP played an important role in the stability of the emulsion. Polyaluminum chloride (PAC) reduced the stability of the emulsion by considerably decreasing the absolute value of the zeta potential of oil droplets. Corrosion inhibitor SL-2 and germicide 1227 could decrease the oil-water interfacial tension, whereas they had little influence on oil-water interfacial shear viscosity and oil-water interfacial electricity properties.
基金supported by the National Natural Science Founda-tion of China(22078347)National Natural Science Foundation of China(21961160745)+2 种基金Key Research and Development Program of Hebei Province,China(20374001D,21373303D)Science and Technology Program of Guanshanhu([2020]13)Program of Inno-vation Academy for Green Manufacture,CAS(IAGM2020C04).
文摘The magnetically responsive anti-fouling nanofiber membrane(MRANM)was fabricated for efficient oilwater emulsion separation,which could be cleaned using oscillating magnetic field.MRANM was prepared by grafting superparamagnetic Fe_(3)O_(4) nanoparticles onto the surface of electrospun polyacrylonitrile nanofiber membrane(PANM).Compared with PANM,the water contact angle of MRANM decreased from 104°to 0°,indicating that the hydrophilicity of the membrane was significantly improved.For the emulsions of hexadecane,octane and rapeseed oil,the separation efficiency was 98.04%,96.59%and 92.67%,respectively.After the treatments in oscillating magnetic field,the separation efficiency kept above 95%after 8 times recycling,which indicated that the MRANM had good regenerability and reusability.The as-fabricated membrane with magnetic responsiveness facilitated an effective method for solving the membrane fouling problem during practical applications of separation high viscosity oil-water emulsion.
基金This work was supported by the National Natural Science Foundation of China(No.21676127)Natural Science Foundation of Jiangsu Province(BK20170532)+4 种基金China Postdoctoral Science Foundation(2017M620194)Jiangsu Planned Projects for Postdoctoral Research Funds(1701023A)Natural Science Foundation Jiangsu Higher Education Institutions(17KJB430011)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX19_1592)Zhenjiang Natural Science Foundation of China(Grant Nos.SH2017046,SH2017055).
文摘Massive oily wastewater discharged from industrial production and human daily life have been an urgent environmental and ecological challenge.Superhydrophobic materials have attracted tremendous attention due to their unique properties and potential applications in the treatment of wastewater.In this study,a novel superhydrophobic/superoleophilic composite melamine sponge modified with dual silanized SiO_(2) microspheres was fabricated simply by a two-step sol-gel method using vinyltriethoxysilane and hexadecyltrimethoxysilane as functional agent,which exhibited a water contact angle of 153.2°and a water sliding contact angle of 4.8°.Furthermore,the composite sponge showed the excellent oil adsorption performance and the compressive elasticity reaching up to 130 g·g^(-1) of dichloromethane and 33.1 kPa of compressive stress.It was worth noting that the composite sponge presented the excellent separation efficiency(up to 99.5%)in the processes of continuous oil/water separation.The robust superhydrophobic composite melamine sponge provided the possibility with the practical application for oil-water separation.
基金Supported by the National Natural Science Foundation of China (No. 29736170)and the Natural Science Foundation of Zhejiang Province(No. RC01051).
文摘A novel simple two-dimensional square-lattice model of amphiphile at oil-water interface is developed,in which oil and water act as solvent and occupy empty sites and amphiphile occupies chains of sites. In this model, the oil-water interface is fixed, And amphiphile molecules will be enriched at the oil-water interface. The interfacial concentration of amphiphile calculated by Monte Carlo method shows that it is easier for the hydrophilic-hydrophobic balanced amphiphile to stay at the interface. And the adsorption of amphiphile increases with the increase of amphiphile concentration and the decrease with temperature.
文摘The distribution characteristics of the oil-water contact are the basis for the reservoir exploration and development and reserves evaluation. The reservoir with a tilted oil-water contact has a unique formation mechanism, and the understanding of its distribution and formation mechanism will directly affect the evaluations for the reservoir type, well deployment, selection of well pattern and type, determination of test section, and reserves evaluation. Based on the analysis of reservoir characteristics, petrophysical properties and geological structure in 40 reservoirs worldwide with tilted oil-water contacts, the progress of the research on the formation mechanisms of titled oil-water contacts is summarized in terms of the hydrodynamic conditions, reservoir heterogeneity, neotectonic movement and oil-gas exploitation. According to the formation mechanism of tilted oil-water contacts and the needs of exploration research, different aspects of research methods are summarized and classified, such as the calculation of equipotential surfaces for oil and water in the formation, analysis of formation pressure and analysis of reservoir physical properties and so on. Based upon statistical analysis, it is suggested that the degree of the inclination of the oil-water contact be divided based on the dip of oil-water contact(DipTOWC). The tilted oil-water contact is divided into three categories: large dip(DipTOWC≥55 m/km), medium dip(4 m/km≤DipTOWC55 m/km), and small dip(DipTOWC4 m/km). The classification and evaluation method can be combined with structure amplitude and reservoir property. The formation mechanism of domestic and international reservoirs with tilted oil-water contacts are summarized in this paper, which have important significance in guiding the exploration and development of the oilfield with tilted oil-water contacts, reserves evaluation, and well deployment.
基金financially supported by the National 863 Plan (2010AA03A405, and 2012AA062303)the National 973 Plan (2012CBA01205)+2 种基金the National Natural Science Foundation of China (U1202274, 51204040)the National Science and Technology Support Program (2012BAE01B02)Fundamental Research Funds for the Central Universities (N130702001 and N130607001)
文摘Oil-water separation is critical to solvent extraction process of rare earth, which can directly affect the yield and quality of the product. The experiments measure the two-phase separation time in a beaker, mixing uniformity of two phases in the mixer and the oil phase entrainment at oil exit by the Karl Fischer method and numerical simulation for the mixersettler to study the combined effect of gravity and stirring. Experimental results show that relative to the static situation, the separation efficiency resulted from low-speed stirring is increased by 25%. The water content in the oil is a minimum at an offset distance L of 10 cm and the clearance off the tank bottom z of 10 cm is as low as 0.49%. Distribution images of oilwater separation at 2 s indicates that stirring is very conducive to the separation of the oil-water phase.
基金The authors gratefully acknowledge financial support from Guangdong Basic and Applied Basic Research Foundation,China(No.2019A15150101011282)Open Funds of National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials(2019008)the Fundamental Research Funds for the Central Universities(21619336).
文摘Here,superhydrophobic cuprous oxide(Cu2O)with hierarchical micro/nanosized structures was synthesized via sprayassisted layer by layer assembling.The asprepared superhydrophobic meshes with high contact angle(159.6°)and low sliding angle(1°)are covered with Cu_(2)O "coral reef"like micro/nanosized structures.Interestingly,the superhydrophobic mesh surfaces became superhydrophilic again due to the oxidization of Cu_(2)O to CuO by annealing at a higher temperature(300℃).And the superhydrophobic properties would be recovered by heating at 120℃.Furthermore,the superwetting meshes were applied to design a miniature device to separate light or heavy oil from the wateroil mixtures with excellent separation efficiency.These superwetting surfaces by simultaneously sprayassisted layer by layer assembling technique show the potential application in universal oilwater separation.
基金This work was supported by the National Natural Science Foundation of China(22078114)Natural Science Foundation of Guangdong Province(2021A1515010360)International Cooperation Project of National Key Research Program(2021YFE0104500).
文摘The fabrication of directionally driven oil-water separation materials has great significance for the removal of oil spills and organic pollutants.In this study,an oil-water separation aerogel capable of directionally adsorbing oil was designed using an anisotropic wood aerogel with a layered structure and a top-down fabrication strategy.Specifically,a magnetic wood-based superhydrophobic aerogel(methyltrimethoxysilane(MTMS)/Fe_(3)O_(4) wood aerogel)was developed through the in situ coprecipitation of Fe_(3)O_(4) nanoparticles and chemical vapor deposition.Owing to its highly porous structure,lipophilicity,hydrophobicity(water contact angle of 160°),and high compressibility,the MTMS/Fe_(3)O_(4) wood aerogel exhibits excellent oil-water separation performance and compression cycle stability.Additionally,the Fe_(3)O_(4) endows the material with excellent magnetic and photothermal conversion capabilities.These excellent properties make MTMS/Fe_(3)O_(4) wood aerogel a promising recyclable and sustainable oil-water separation material.
基金financially supported by Science and Technology Department of Henan Province (No. 132102310028)the Program for Innovative Research Team from Zhengzhou (No. 131PCXTD605)
文摘Troxerutin fatty acid esters were prepared using troxerutin and fatty acid vinyl esters as substrates in pyridine through enzymatic route. The structures of as-prepared compounds were identified by FT-TR, NMR, and ESI-HRMS. Using alkaline protease(≥30 mg/mL) as enzyme, maximum yields reached 58% at 3:1(vinyl hexanoate to troxerutin) in pyridine(water content ≤1%). The yields gradually declined as chain length of acyl donors rose. The antioxidation abilities of the as-obtained compounds were confirmed by both DPPH free radical scavenging and potassium ferricyanide reduction methods. The antioxidation ability of troxerutin fatty acid esters was found lower than that of troxerutin. However, the logP values of troxerutin fatty acid esters varied from 0.15 to 1.94, suggesting that troxerutin fatty acid esters had better lipophilicity than troxerutin(logP =-2.12) when compared to their oil-water distribution coefficients. Overall, these findings look promising as reference for further development of future troxerutin.
基金Supported by National Natural Science Foundation of China(41474115)Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University)Ministry of Education of China(No K2018-02)Educational Commission of Hubei Province of China(D20141302)
文摘To accurately measure and evaluate the oil-water production profile of horizontal wells, a dynamic measurement experiment of oil-water two-phase flow in horizontal wells and numerical simulation were combined to establish a method for measuring the partial phase flow rate of oil-water two-phase stratified flow in horizontal wells. An experimental work was performed in horizontal oil-water two-phase flow simulation well using combination production logging tool including mini-capacitance sensor and mini-spinner. The combination tool provides a recording of holdup and velocity profiles at five different heights of the borehole cross-section. The effect of total flow rate and water-cut on the response of spinner and capacitive sensor at five measured positions were investigated. The capacitance water holdup interpolation imaging algorithm was used to determine the local fluid property and oil-water interface height, and the measured local fluid speed was combined with the numerical simulation result to establish an optimal calculation model for obtaining the partial phase flow rate of the oil-water two-phase stratified flow in the horizontal well. The calculated flow rates of five measured points are basically consistent with the experimental data, the total flow rate and water holdup from calculation are in agreement with the set values in the experiment too, suggesting that the method has high accuracy.
基金financially supported by the National Key Research and Development Program of China(2022YFB4600302)National Natural Science Foundation of China(52090041)+1 种基金National Natural Science Foundation of China(52104368)National Major Science and Technology Projects of China(J2019-VII-0010-0150)。
文摘Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work.
基金supported by the following funds:National Natural Science Foundation of China(51935014,52165043)Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects(20225BCJ23008)+1 种基金Jiangxi Provincial Natural Science Foundation(20224ACB204013,20224ACB214008)Scientific Research Project of Anhui Universities(KJ2021A1106)。
文摘Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility.
基金Funded by the Opening Funding of the Provincial and Ministerial Joint Construction of the State Key Laboratory of New Textile Materials and Advanced Processing Technology (No.FZ2020003)the National Natural Science Foundation of China (No.51603155)。
文摘Uniform monodispersed mesoporous silica nanospheres with vertical pores were successfully synthesized using chiral amphiphilic small molecule L-16Ala5PyClO4and solvents as dual templates via solgel transcription.The morphologies and pore sizes of silicas are adjustable by changing the type and amount of solvents in the reaction systems.With the increase of the organic solvent content,the morphologies of the obtained silica changed from nanospheres with vertical pore structures to nanosheets structures.When 1 mL of benzene,cyclohexane or toluene were used as solvents,only silica nanospheres were obtained,the BET surface areas of silica nanospheres reached 600.7,669.5,and 560.8 m^(2)/g,respectively.The pore sizes were 3.51,3.54,and 3.46 nm,respectively.Significantly,these ordered silica nanospheres/poly(vinyl alcohol-co-ethylene)(PVAco-PE)nanofiber membranes have high separation efficiencies(>99%)for n-hexane/water mixtures.
基金Supported by the National Natural Science Foundation of China (No. 29736170) the Natural Science Foundation of Zhejiang Province (No. RC01051).
文摘Amphiphile-oil-water system is complicated. The real behavior of amphiphile in the interface is still undnown despite that this behavior is very important in determining the stability of emulsion system. In this paper, the interface properties of amphiphile at oil-water interface were investigated by a square-lattice model Monte Carlo simulation method. The synergistic effect was found for hydrophobic and hydrophilic amphiphile mixture systems; and the synergistic effect disappears or was weakened as the amphiphile at the interface region became dilute with the increasing of temperature.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. AE89991/403)National Natural Science Foundation of China (Grant No. 52005262)+1 种基金Natural Science Foundation of Jiangsu Province (BK20202007)National Key Research and Development Program of China (2022YFB4600800)。
文摘Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The printing quality and performance of L-PBF alloys are infuenced by numerous variables consisting of feedstock powders, manufacturing process,and post-treatment. As the starting materials, metallic powders play a critical role in infuencing the fabrication cost, printing consistency, and properties. Given their deterministic roles, the present review aims to retrospect the recent progress on metallic powders for L-PBF including characterization, preparation, and reuse. The powder characterization mainly serves for printing consistency while powder preparation and reuse are introduced to reduce the fabrication costs.Various powder characterization and preparation methods are presented in the beginning by analyzing the measurement principles, advantages, and limitations. Subsequently, the effect of powder reuse on the powder characteristics and mechanical performance of L-PBF parts is analyzed, focusing on steels, nickel-based superalloys, titanium and titanium alloys, and aluminum alloys. The evolution trends of powders and L-PBF parts vary depending on specific alloy systems, which makes the proposal of a unified reuse protocol infeasible. Finally,perspectives are presented to cater to the increased applications of L-PBF technologies for future investigations. The present state-of-the-art work can pave the way for the broad industrial applications of L-PBF by enhancing printing consistency and reducing the total costs from the perspective of powders.