This paper presents two systems for recognizing static signs (digits) from American Sign Language (ASL). These systems avoid the use color marks, or gloves, using instead, low-pass and high-pass filters in space and f...This paper presents two systems for recognizing static signs (digits) from American Sign Language (ASL). These systems avoid the use color marks, or gloves, using instead, low-pass and high-pass filters in space and frequency domains, and color space transformations. First system used rotational signatures based on a correlation operator;minimum distance was used for the classification task. Second system computed the seven Hu invariants from binary images;these descriptors fed to a Multi-Layer Perceptron (MLP) in order to recognize the 9 different classes. First system achieves 100% of recognition rate with leaving-one-out validation and second experiment performs 96.7% of recognition rate with Hu moments and 100% using 36 normalized moments and k-fold cross validation.展开更多
In order to improve reservoir fluid recognition, the sensitivity of array resistivity response to the difference of the invasion properties in both oil-bearing layers and water layers is analyzed. Then the primary inv...In order to improve reservoir fluid recognition, the sensitivity of array resistivity response to the difference of the invasion properties in both oil-bearing layers and water layers is analyzed. Then the primary inversion is carried out based on the array resistivity log. The mud invasion process is numerically simulated based on the oil-water flow equation and water convection diffusion equation. The results show that the radial resistivity of a fresh mud-invaded oil-bearing layer presents complex distribution characteristics, such as nonlinear increase, increasing to decreasing and low resistivity annulus, and the resistive invasion profile of a water layer is monotonic. Under specific conditions, array resistivity log can reflect these changes and the array induction log is more sensitive. Nevertheless, due to the effect of factors like large invasion depth, reservoir physical and oil-bearing properties, the measured apparent resistivity may differ greatly from the actual mud filtrate invasion profile in an oil-bearing layer. We proposed a five-parameter formation model to simulate the complex resistivity distribution of fresh mud-invaded formation. Then, based on the principle of non-linear least squares, the measured array resistivity log is used for inversion with the Marquardt method. It is demonstrated that the inverted resistivity is typically non-monotonic in oil-bearing layers and is monotonic in water layers. Processing of some field data shows that this is helpful in achieving efficient reservoir fluid recognition.展开更多
Deep Learning is a powerful technique that is widely applied to Image Recognition and Natural Language Processing tasks amongst many other tasks. In this work, we propose an efficient technique to utilize pre-trained ...Deep Learning is a powerful technique that is widely applied to Image Recognition and Natural Language Processing tasks amongst many other tasks. In this work, we propose an efficient technique to utilize pre-trained Convolutional Neural Network (CNN) architectures to extract powerful features from images for object recognition purposes. We have built on the existing concept of extending the learning from pre-trained CNNs to new databases through activations by proposing to consider multiple deep layers. We have exploited the progressive learning that happens at the various intermediate layers of the CNNs to construct Deep Multi-Layer (DM-L) based Feature Extraction vectors to achieve excellent object recognition performance. Two popular pre-trained CNN architecture models i.e. the VGG_16 and VGG_19 have been used in this work to extract the feature sets from 3 deep fully connected multiple layers namely “fc6”, “fc7” and “fc8” from inside the models for object recognition purposes. Using the Principal Component Analysis (PCA) technique, the Dimensionality of the DM-L feature vectors has been reduced to form powerful feature vectors that have been fed to an external Classifier Ensemble for classification instead of the Softmax based classification layers of the two original pre-trained CNN models. The proposed DM-L technique has been applied to the Benchmark Caltech-101 object recognition database. Conventional wisdom may suggest that feature extractions based on the deepest layer i.e. “fc8” compared to “fc6” will result in the best recognition performance but our results have proved it otherwise for the two considered models. Our experiments have revealed that for the two models under consideration, the “fc6” based feature vectors have achieved the best recognition performance. State-of-the-Art recognition performances of 91.17% and 91.35% have been achieved by utilizing the “fc6” based feature vectors for the VGG_16 and VGG_19 models respectively. The recognition performance has been achieved by considering 30 sample images per class whereas the proposed system is capable of achieving improved performance by considering all sample images per class. Our research shows that for feature extraction based on CNNs, multiple layers should be considered and then the best layer can be selected that maximizes the recognition performance.展开更多
文摘This paper presents two systems for recognizing static signs (digits) from American Sign Language (ASL). These systems avoid the use color marks, or gloves, using instead, low-pass and high-pass filters in space and frequency domains, and color space transformations. First system used rotational signatures based on a correlation operator;minimum distance was used for the classification task. Second system computed the seven Hu invariants from binary images;these descriptors fed to a Multi-Layer Perceptron (MLP) in order to recognize the 9 different classes. First system achieves 100% of recognition rate with leaving-one-out validation and second experiment performs 96.7% of recognition rate with Hu moments and 100% using 36 normalized moments and k-fold cross validation.
基金funded by the National Natural Science Foundation (41174009)National Major Science &Technology Projects (2011ZX05020, 2011ZX05035,2011ZX05003, 2011ZX05007)
文摘In order to improve reservoir fluid recognition, the sensitivity of array resistivity response to the difference of the invasion properties in both oil-bearing layers and water layers is analyzed. Then the primary inversion is carried out based on the array resistivity log. The mud invasion process is numerically simulated based on the oil-water flow equation and water convection diffusion equation. The results show that the radial resistivity of a fresh mud-invaded oil-bearing layer presents complex distribution characteristics, such as nonlinear increase, increasing to decreasing and low resistivity annulus, and the resistive invasion profile of a water layer is monotonic. Under specific conditions, array resistivity log can reflect these changes and the array induction log is more sensitive. Nevertheless, due to the effect of factors like large invasion depth, reservoir physical and oil-bearing properties, the measured apparent resistivity may differ greatly from the actual mud filtrate invasion profile in an oil-bearing layer. We proposed a five-parameter formation model to simulate the complex resistivity distribution of fresh mud-invaded formation. Then, based on the principle of non-linear least squares, the measured array resistivity log is used for inversion with the Marquardt method. It is demonstrated that the inverted resistivity is typically non-monotonic in oil-bearing layers and is monotonic in water layers. Processing of some field data shows that this is helpful in achieving efficient reservoir fluid recognition.
文摘Deep Learning is a powerful technique that is widely applied to Image Recognition and Natural Language Processing tasks amongst many other tasks. In this work, we propose an efficient technique to utilize pre-trained Convolutional Neural Network (CNN) architectures to extract powerful features from images for object recognition purposes. We have built on the existing concept of extending the learning from pre-trained CNNs to new databases through activations by proposing to consider multiple deep layers. We have exploited the progressive learning that happens at the various intermediate layers of the CNNs to construct Deep Multi-Layer (DM-L) based Feature Extraction vectors to achieve excellent object recognition performance. Two popular pre-trained CNN architecture models i.e. the VGG_16 and VGG_19 have been used in this work to extract the feature sets from 3 deep fully connected multiple layers namely “fc6”, “fc7” and “fc8” from inside the models for object recognition purposes. Using the Principal Component Analysis (PCA) technique, the Dimensionality of the DM-L feature vectors has been reduced to form powerful feature vectors that have been fed to an external Classifier Ensemble for classification instead of the Softmax based classification layers of the two original pre-trained CNN models. The proposed DM-L technique has been applied to the Benchmark Caltech-101 object recognition database. Conventional wisdom may suggest that feature extractions based on the deepest layer i.e. “fc8” compared to “fc6” will result in the best recognition performance but our results have proved it otherwise for the two considered models. Our experiments have revealed that for the two models under consideration, the “fc6” based feature vectors have achieved the best recognition performance. State-of-the-Art recognition performances of 91.17% and 91.35% have been achieved by utilizing the “fc6” based feature vectors for the VGG_16 and VGG_19 models respectively. The recognition performance has been achieved by considering 30 sample images per class whereas the proposed system is capable of achieving improved performance by considering all sample images per class. Our research shows that for feature extraction based on CNNs, multiple layers should be considered and then the best layer can be selected that maximizes the recognition performance.