A total of 14 halophilic hydrocarbon-degrading strains were isolated from crude oil-contaminated sites,using petroleum as the sole carbon and energy source.Among these,four highly efficient strains were selected to cr...A total of 14 halophilic hydrocarbon-degrading strains were isolated from crude oil-contaminated sites,using petroleum as the sole carbon and energy source.Among these,four highly efficient strains were selected to create the mixed bacterial agent XH-1.These four strains were identified through 16S rRNA gene-based sequencing as belonging to Acinetobacter,Bacillus paramycoides,Rhodococcus sp.,and Enterobacter sp.,respectively.The optimal cultivation time for the mixed consortium XH-1 was found to be 48 h,and a nitrogen-phosphorus molar ratio of 10:1 was determined to be beneficial for crude oil degradation.XH-1 showed notable crude oil degradation even at a salinity of up to 30 g/L,with little inhibition observed at sulfide concentrations as high as 150 mg/L and initial oil concentrations of 500 mg/L.Gas chromatography analysis revealed that XH-1 was able to efficiently degrade C9–C29 n-alkanes.Moreover,a bio-contact oxidation reactor enhanced by XH-1 showed promising results in treating oilfield wastewater.These findings suggest that XH-1 can be applied for the treatment of oilfield wastewater.展开更多
A method using three-dimensional electrode is applied to treat wastewater in oil fields, which contains polyacrylamide (PAM), for analogue. A best condition for electrolysis (I= 1.0 A, t=90 min, c=0.1%, m=980 g,φ=...A method using three-dimensional electrode is applied to treat wastewater in oil fields, which contains polyacrylamide (PAM), for analogue. A best condition for electrolysis (I= 1.0 A, t=90 min, c=0.1%, m=980 g,φ=5 mm, d=5.0 cm) has been determined, under which the COD removal efficiency reached 96.0%, COD containing in wastewater reduced to 64.3 mg/L from 1 622.9 mg/L, the figure before treatment. Three categories of PAM-containing wastewater in production practice have been treated with the COD removal ratios being 87.5%, 82.4% and 84.7% respectively. Presence of H2O2 and ·OH are detected by means of Ti(IV)-5-Br-PADAP technique and colorimetry respectively. The concentration is positively proportional to the COD removal ratio and increases in accordance with increment of time of electrolysis and current.展开更多
基金the Shandong Provincial Natural Science Foundation(No.ZR2019MEE038,ZR202110260011)the Fundamental Research Funds for the Central Universities(No.19CX02038A)。
文摘A total of 14 halophilic hydrocarbon-degrading strains were isolated from crude oil-contaminated sites,using petroleum as the sole carbon and energy source.Among these,four highly efficient strains were selected to create the mixed bacterial agent XH-1.These four strains were identified through 16S rRNA gene-based sequencing as belonging to Acinetobacter,Bacillus paramycoides,Rhodococcus sp.,and Enterobacter sp.,respectively.The optimal cultivation time for the mixed consortium XH-1 was found to be 48 h,and a nitrogen-phosphorus molar ratio of 10:1 was determined to be beneficial for crude oil degradation.XH-1 showed notable crude oil degradation even at a salinity of up to 30 g/L,with little inhibition observed at sulfide concentrations as high as 150 mg/L and initial oil concentrations of 500 mg/L.Gas chromatography analysis revealed that XH-1 was able to efficiently degrade C9–C29 n-alkanes.Moreover,a bio-contact oxidation reactor enhanced by XH-1 showed promising results in treating oilfield wastewater.These findings suggest that XH-1 can be applied for the treatment of oilfield wastewater.
基金Supported by the National High-Technology Research and Development Program(2003AA602140-2)the Important Scientific Re-search Project of Hubei Provincial Department of Education, China (2004D001)
文摘A method using three-dimensional electrode is applied to treat wastewater in oil fields, which contains polyacrylamide (PAM), for analogue. A best condition for electrolysis (I= 1.0 A, t=90 min, c=0.1%, m=980 g,φ=5 mm, d=5.0 cm) has been determined, under which the COD removal efficiency reached 96.0%, COD containing in wastewater reduced to 64.3 mg/L from 1 622.9 mg/L, the figure before treatment. Three categories of PAM-containing wastewater in production practice have been treated with the COD removal ratios being 87.5%, 82.4% and 84.7% respectively. Presence of H2O2 and ·OH are detected by means of Ti(IV)-5-Br-PADAP technique and colorimetry respectively. The concentration is positively proportional to the COD removal ratio and increases in accordance with increment of time of electrolysis and current.