The application of nanotechnology in the oil and gas industry is on the rise as evidenced by the number of researches undertaken in the past few years.The quest to develop more game-changing technologies that can addr...The application of nanotechnology in the oil and gas industry is on the rise as evidenced by the number of researches undertaken in the past few years.The quest to develop more game-changing technologies that can address the challenges currently facing the industry has spurred this growth.Several nanoparticles,of different sizes and at different concentrations,have been used in many investigations.In this work,the scope of the study covered the application of nanotechnology in drilling and hydraulic fracturing fluids,oilwell cementing,enhanced oil recovery(which includes transport study,and foam and emulsion stability),corrosion inhibition,logging operations,formation fines control during production,heavy oil viscosity reduction,hydrocarbon detection,methane release from gas hydrates,and drag reduction in porous media.The observed challenges associated with the use of nanoparticles are their stability in a liquid medium and transportability in reservoir rocks.The addition of viscosifier was implemented by researchers to ensure stability,and also,surface-treated nanoparticles have been used to facilitate stability and transportability.For the purpose of achieving better performance or new application,studies on synergistic effects are suggested for investigation in future nanotechnology research.The resulting technology from the synergistic studies may reinforce the current and future nanotechnology applications in the oil and gas industry,especially for high pressure and high temperature(HPHT)applications.To date,majority of the oil and gas industry nanotechnology publications are reports of laboratory experimental work;therefore,more field trials are recommended for further advancement of nanotechnology in this industry.Usually,nanoparticles are expensive;so,it will be cost beneficial to use the lowest nanoparticles concentration possible while still achieving an acceptable level of a desired performance.Hence,optimization studies are also recommended for examination in future nanotechnology research.展开更多
基金The authors express their profound gratitude to the University of Oklahoma for granting the permission to publish this work.
文摘The application of nanotechnology in the oil and gas industry is on the rise as evidenced by the number of researches undertaken in the past few years.The quest to develop more game-changing technologies that can address the challenges currently facing the industry has spurred this growth.Several nanoparticles,of different sizes and at different concentrations,have been used in many investigations.In this work,the scope of the study covered the application of nanotechnology in drilling and hydraulic fracturing fluids,oilwell cementing,enhanced oil recovery(which includes transport study,and foam and emulsion stability),corrosion inhibition,logging operations,formation fines control during production,heavy oil viscosity reduction,hydrocarbon detection,methane release from gas hydrates,and drag reduction in porous media.The observed challenges associated with the use of nanoparticles are their stability in a liquid medium and transportability in reservoir rocks.The addition of viscosifier was implemented by researchers to ensure stability,and also,surface-treated nanoparticles have been used to facilitate stability and transportability.For the purpose of achieving better performance or new application,studies on synergistic effects are suggested for investigation in future nanotechnology research.The resulting technology from the synergistic studies may reinforce the current and future nanotechnology applications in the oil and gas industry,especially for high pressure and high temperature(HPHT)applications.To date,majority of the oil and gas industry nanotechnology publications are reports of laboratory experimental work;therefore,more field trials are recommended for further advancement of nanotechnology in this industry.Usually,nanoparticles are expensive;so,it will be cost beneficial to use the lowest nanoparticles concentration possible while still achieving an acceptable level of a desired performance.Hence,optimization studies are also recommended for examination in future nanotechnology research.