地球大气层外太阳光谱辐照度(extraterrestrial solar spectral irradiance,ESSI)数据是计算卫星传感器波段平均太阳辐照度(band mean solar irradiance,BMSI)的重要参数。为了探求利用何种来源的ESSI数据计算传感器BMSI更为准确,分别采...地球大气层外太阳光谱辐照度(extraterrestrial solar spectral irradiance,ESSI)数据是计算卫星传感器波段平均太阳辐照度(band mean solar irradiance,BMSI)的重要参数。为了探求利用何种来源的ESSI数据计算传感器BMSI更为准确,分别采用SBDART软件模拟的太阳光谱曲线数据、MODTRAN4.0 oldkur.dat文件数据、Thuillier太阳光谱曲线数据和WRC太阳光谱曲线数据计算了HJ-1A CCD1(B1—B4),CBERS-02 CCD(B1—B5),Landsat5TM(B1—B4)和ASTER(B1—B8)4种传感器的BMSI,并与传感器运营商公布的数据进行了比较。结果表明:利用SBDART和WRC太阳光谱曲线数据计算的结果误差较小;利用MODTRAN4.0 oldkur.dat数据计算的结果误差次之;利用Thuillier太阳光谱曲线的计算结果误差较大。展开更多
文摘地球大气层外太阳光谱辐照度(extraterrestrial solar spectral irradiance,ESSI)数据是计算卫星传感器波段平均太阳辐照度(band mean solar irradiance,BMSI)的重要参数。为了探求利用何种来源的ESSI数据计算传感器BMSI更为准确,分别采用SBDART软件模拟的太阳光谱曲线数据、MODTRAN4.0 oldkur.dat文件数据、Thuillier太阳光谱曲线数据和WRC太阳光谱曲线数据计算了HJ-1A CCD1(B1—B4),CBERS-02 CCD(B1—B5),Landsat5TM(B1—B4)和ASTER(B1—B8)4种传感器的BMSI,并与传感器运营商公布的数据进行了比较。结果表明:利用SBDART和WRC太阳光谱曲线数据计算的结果误差较小;利用MODTRAN4.0 oldkur.dat数据计算的结果误差次之;利用Thuillier太阳光谱曲线的计算结果误差较大。
文摘为了提升不同环境中竹笋细粒度的自动化识别精度,提高生产管理效率,文章提出了一种基于YOLOv8的目标检测改进模型。该模型融合了BiFPN(Bidirectional Feature Pyramid Network),这一架构在图像目标检测和分割任务中表现出色,同时在C2f模块中添加DAT(Vision Transformer with Deformable Attention),引入了可变形注意力机制,进一步提升了模型的性能。实验结果表明,改进后的算法模型对春笋和冬笋识别的平均精度均值(Mean Average Precision,mAP)分别为81.4%和94.7%,相较于原有模型,分别提升了0.9百分点和3.9百分点。改进后的算法模型在竹笋细粒度识别方面展现出较高的精度,为未来竹笋产业的高度智能化提供了技术支撑。