Nitrogen deficiency is an effective strategy for enhancing lipid production in microalgae. Close relationships exist among lipid production, microalgal species, and nitrogen sources. We report growth, lipid accumulati...Nitrogen deficiency is an effective strategy for enhancing lipid production in microalgae. Close relationships exist among lipid production, microalgal species, and nitrogen sources. We report growth, lipid accumulation, and fatty acid composition in four microalgae (Chloroeoccum ellipsoideum UTEX972, Chlorococcum nivale LB2225, Chlorococcum tatrense UTEX2227, and Scenedesmus deserticola JNU19) under nitrate- and urea-nitrogen deficiencies. We found three patterns of response to nitrogen deficiency: Type-A (decrease in biomass and increase in lipid content), Type-B (reduction in both biomass and lipid content), and Type-C (enhancement of both biomass and lipid content). Type-C microalgae are potential candidates for large-scale oil production. Chlorococcum ellipsoideum, for example, exhibited a neutral lipid production of up to 239.6 mg/(L'd) under urea-nitrogen deficiency. In addition, nitrogen deficiency showed only a slight influence on lipid fractions and fatty acid composition. Our study provides useful information for further screening hyper-lipid microalgal strains for biofuel production.展开更多
Depleting global petroleum reserves and skyrocketing prices coupled with succinct supply have been a grave concern,which needs alternative sources to conventional fuels.Oleaginous microalgae have been explored for enh...Depleting global petroleum reserves and skyrocketing prices coupled with succinct supply have been a grave concern,which needs alternative sources to conventional fuels.Oleaginous microalgae have been explored for enhanced lipid production,leading towards biodiesel production.These microalgae have short life cycles,require less labor,and space,and are easy to scale up.Triacylglycerol,the primary source of lipids needed to produce biodiesel,is accumulated by most microalgae.The article focuses on different types of oleaginous microalgae,which can be used as a feedstock to produce biodiesel.Lipid biosynthesis in microalgae occurs through fatty acid synthesis and TAG synthesis approaches.In-depth discussions are held regarding other efficient methods for enhancing fatty acid and TAG synthesis,regulating TAG biosynthesis bypass methods,blocking competing pathways,multigene approach,and genome editing.The most potential targets for gene transformation are hypothesized to be a malic enzyme and diacylglycerol acyltransferase while lowering phosphoenolpyruvate carboxylase activity is reported to be advantageous for lipid synthesis.展开更多
Epigenetic marks on histones and DNA,such as DNA methylation at N6-adenine(6mA),play crucial roles in gene expression and genome maintenance,but their deposition and function in microalgae remain largely uncharacteriz...Epigenetic marks on histones and DNA,such as DNA methylation at N6-adenine(6mA),play crucial roles in gene expression and genome maintenance,but their deposition and function in microalgae remain largely uncharacterized.Here,we report a genome-wide 6mA map for the model industrial oleaginous microalga Nannochloropsis oceanica produced by single-molecule real-time sequencing.Found in 0.1%of adenines,6mA sites are mostly enriched at the AGGYV motif,more abundant in transposons and 30 untranslated re-gions,and associated with active transcription.Moreover,6mA gradually increases in abundance along the direction of gene transcription and shows special positional enrichment near splicing donor and transcrip-tion termination sites.Highly expressed genes tend to show greater 6mA abundance in the gene body than do poorly expressed genes,indicating a positive interaction between 6mA and general transcription fac-tors.Furthermore,knockout of the putative 6mA methylase NO08G00280 by genome editing leads to changes in methylation patterns that are correlated with changes in the expression of molybdenum cofactor,sulfate transporter,glycosyl transferase,and lipase genes that underlie reductions in biomass and oil productivity.By contrast,knockout of the candidate demethylase NO06G02500 results in increased 6mA levels and reduced growth.Unraveling the epigenomic players and their roles in biomass productivity and lipid metabolism lays a foundation for epigenetic engineering of industrial microalgae.展开更多
基金Supported by the National High Technology Research and Development Program of China(863 Program)(Nos.2009AA064401,2013AA065805)the National Natural Science Foundation of China(Nos.31170337,41176105)the National Basic Research Program of China(973 Program)(No.2011CB2009001)
文摘Nitrogen deficiency is an effective strategy for enhancing lipid production in microalgae. Close relationships exist among lipid production, microalgal species, and nitrogen sources. We report growth, lipid accumulation, and fatty acid composition in four microalgae (Chloroeoccum ellipsoideum UTEX972, Chlorococcum nivale LB2225, Chlorococcum tatrense UTEX2227, and Scenedesmus deserticola JNU19) under nitrate- and urea-nitrogen deficiencies. We found three patterns of response to nitrogen deficiency: Type-A (decrease in biomass and increase in lipid content), Type-B (reduction in both biomass and lipid content), and Type-C (enhancement of both biomass and lipid content). Type-C microalgae are potential candidates for large-scale oil production. Chlorococcum ellipsoideum, for example, exhibited a neutral lipid production of up to 239.6 mg/(L'd) under urea-nitrogen deficiency. In addition, nitrogen deficiency showed only a slight influence on lipid fractions and fatty acid composition. Our study provides useful information for further screening hyper-lipid microalgal strains for biofuel production.
基金partially supported by Department of Science and Technology,Science and Engineering Research Board under Teachers Associateship for Research Excellence(TARE)Scheme(File Number TAR/2023/000036).
文摘Depleting global petroleum reserves and skyrocketing prices coupled with succinct supply have been a grave concern,which needs alternative sources to conventional fuels.Oleaginous microalgae have been explored for enhanced lipid production,leading towards biodiesel production.These microalgae have short life cycles,require less labor,and space,and are easy to scale up.Triacylglycerol,the primary source of lipids needed to produce biodiesel,is accumulated by most microalgae.The article focuses on different types of oleaginous microalgae,which can be used as a feedstock to produce biodiesel.Lipid biosynthesis in microalgae occurs through fatty acid synthesis and TAG synthesis approaches.In-depth discussions are held regarding other efficient methods for enhancing fatty acid and TAG synthesis,regulating TAG biosynthesis bypass methods,blocking competing pathways,multigene approach,and genome editing.The most potential targets for gene transformation are hypothesized to be a malic enzyme and diacylglycerol acyltransferase while lowering phosphoenolpyruvate carboxylase activity is reported to be advantageous for lipid synthesis.
基金supported by the Synthetic Biology Program of the Ministry of Science and Technology of the People’s Republic of China (2021YFA0909700)I201908 and E1551402 from the Qingdao Institute of Bioenergy and Bioprocess Technology,Chinese Academy of Sciences,31900071 from the Natural Science Foundation of ChinaZR2019QC012 from the Natural Science Foundation of Shandong Province.
文摘Epigenetic marks on histones and DNA,such as DNA methylation at N6-adenine(6mA),play crucial roles in gene expression and genome maintenance,but their deposition and function in microalgae remain largely uncharacterized.Here,we report a genome-wide 6mA map for the model industrial oleaginous microalga Nannochloropsis oceanica produced by single-molecule real-time sequencing.Found in 0.1%of adenines,6mA sites are mostly enriched at the AGGYV motif,more abundant in transposons and 30 untranslated re-gions,and associated with active transcription.Moreover,6mA gradually increases in abundance along the direction of gene transcription and shows special positional enrichment near splicing donor and transcrip-tion termination sites.Highly expressed genes tend to show greater 6mA abundance in the gene body than do poorly expressed genes,indicating a positive interaction between 6mA and general transcription fac-tors.Furthermore,knockout of the putative 6mA methylase NO08G00280 by genome editing leads to changes in methylation patterns that are correlated with changes in the expression of molybdenum cofactor,sulfate transporter,glycosyl transferase,and lipase genes that underlie reductions in biomass and oil productivity.By contrast,knockout of the candidate demethylase NO06G02500 results in increased 6mA levels and reduced growth.Unraveling the epigenomic players and their roles in biomass productivity and lipid metabolism lays a foundation for epigenetic engineering of industrial microalgae.