Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular funct...Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular functions such as migration, survival, proliferation, and differentiation. Oligodendrocytes are the myelin-forming cells in the central nervous system and play critical roles in the conduction of action potentials, supply of metabolic components for axons, and other functions. Emerging evidence suggests that both oligodendrocytes and oligodendrocyte precursor cells are vulnerable to cytokines released under pathological conditions. This review mainly summarizes the effects of cytokines on oligodendrocyte lineage cells in central nervous system diseases. A comprehensive understanding of the effects of cytokines on oligodendrocyte lineage cells contributes to our understanding of central nervous system diseases and offers insights into treatment strategies.展开更多
General anesthetic agents can impact brain function through interactions with neurons and their effects on glial cells.Oligodendrocytes perform essential roles in the central nervous system,including myelin sheath for...General anesthetic agents can impact brain function through interactions with neurons and their effects on glial cells.Oligodendrocytes perform essential roles in the central nervous system,including myelin sheath formation,axonal metabolism,and neuroplasticity regulation.They are particularly vulnerable to the effects of general anesthetic agents resulting in impaired proliferation,differentiation,and apoptosis.Neurologists are increasingly interested in the effects of general anesthetic agents on oligodendrocytes.These agents not only act on the surface receptors of oligodendrocytes to elicit neuroinflammation through modulation of signaling pathways,but also disrupt metabolic processes and alter the expression of genes involved in oligodendrocyte development and function.In this review,we summarize the effects of general anesthetic agents on oligodendrocytes.We anticipate that future research will continue to explore these effects and develop strategies to decrease the incidence of adverse reactions associated with the use of general anesthetic agents.展开更多
随着分布式电源(distributed generation,DG)的容量变化,微电网原有的供电结构发生改变,使得潮流大小、方向和功率结构发生变化,对快速检测和定位微电网中的短路故障区域提出了挑战。在MATLAB/Simulink中搭建低压交流微电网模型;通过高...随着分布式电源(distributed generation,DG)的容量变化,微电网原有的供电结构发生改变,使得潮流大小、方向和功率结构发生变化,对快速检测和定位微电网中的短路故障区域提出了挑战。在MATLAB/Simulink中搭建低压交流微电网模型;通过高尺度小波能量谱算法对微电网与大电网公共连接点(point of common coupling,PCC)处检测到的电流进行分解,提取适应不同容量情况的短路故障特征值,实现了不同容量下微电网短路故障的早期检测;利用小波能量谱特征结合基于正交最小二乘法(orthogonal least square,OLS)的径向基函数(radial basis function,RBF)神经网络算法提出一种适用于不同容量微电网的短路故障区域定位方法,并进行仿真验证;在此基础上设计并网模式微电网短路故障保护硬件系统,并进行实验验证。结果表明,所设计的保护系统能够快速、准确地同时实现并网模式下交流微电网短路故障的早期检测与区域定位。展开更多
目的:研究线粒体分裂抑制剂1(Mdivi-1)在实验性自身免疫性脑脊髓炎(EAE)小鼠髓鞘保护中的作用,探讨Mdivi-1抑制髓鞘变性的机制。方法:小鼠经髓磷脂少突胶质细胞糖蛋白第35~55位肽段(MOG35-55)免疫后,随机分为DMSO模型组和Mdivi-1干预组...目的:研究线粒体分裂抑制剂1(Mdivi-1)在实验性自身免疫性脑脊髓炎(EAE)小鼠髓鞘保护中的作用,探讨Mdivi-1抑制髓鞘变性的机制。方法:小鼠经髓磷脂少突胶质细胞糖蛋白第35~55位肽段(MOG35-55)免疫后,随机分为DMSO模型组和Mdivi-1干预组。于免疫后第28天处死小鼠,行Luxol fast blue染色分析髓鞘丢失情况,免疫荧光染色和TUNEL染色小鼠脊髓组织和体外细胞实验分析Mdivi-1髓鞘保护机制。结果:与DMSO模型组比较,Mdivi-1处理明显减少EAE小鼠脊髓组织白质区髓鞘丢失,减少少突胶质细胞凋亡及线粒体凋亡相关蛋白cleaved caspase-3、caspase-9、cytochrome C和Bax的表达;体外MO3.13少突胶质细胞培养实验发现,Mdivi-1可以明显阻止星形孢菌素(staurosporine)处理诱导的线粒体膜电位去极化,减轻细胞损伤,增强细胞活力。结论:Mdivi-1可能通过抑制少突胶质细胞线粒体相关凋亡信号通路发挥髓鞘保护作用。展开更多
基金supported by the Natural Science Foundation of Zhejiang Province,No.LQ23C090003 (to CZ)the Major Project on Brain Science and Analog Brain Research of Ministry of Science and Technology of China,No.2022ZD0204701 (to MQ)the National Natural Science Foundation of China,No.32170969 (to MQ)。
文摘Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular functions such as migration, survival, proliferation, and differentiation. Oligodendrocytes are the myelin-forming cells in the central nervous system and play critical roles in the conduction of action potentials, supply of metabolic components for axons, and other functions. Emerging evidence suggests that both oligodendrocytes and oligodendrocyte precursor cells are vulnerable to cytokines released under pathological conditions. This review mainly summarizes the effects of cytokines on oligodendrocyte lineage cells in central nervous system diseases. A comprehensive understanding of the effects of cytokines on oligodendrocyte lineage cells contributes to our understanding of central nervous system diseases and offers insights into treatment strategies.
基金supported by the Natural Science Foundation of Zhejiang Province(LZ22H090002,2014C33170)National Natural Science Foundation of China(82171260,81641042,81471240)。
文摘General anesthetic agents can impact brain function through interactions with neurons and their effects on glial cells.Oligodendrocytes perform essential roles in the central nervous system,including myelin sheath formation,axonal metabolism,and neuroplasticity regulation.They are particularly vulnerable to the effects of general anesthetic agents resulting in impaired proliferation,differentiation,and apoptosis.Neurologists are increasingly interested in the effects of general anesthetic agents on oligodendrocytes.These agents not only act on the surface receptors of oligodendrocytes to elicit neuroinflammation through modulation of signaling pathways,but also disrupt metabolic processes and alter the expression of genes involved in oligodendrocyte development and function.In this review,we summarize the effects of general anesthetic agents on oligodendrocytes.We anticipate that future research will continue to explore these effects and develop strategies to decrease the incidence of adverse reactions associated with the use of general anesthetic agents.
文摘随着分布式电源(distributed generation,DG)的容量变化,微电网原有的供电结构发生改变,使得潮流大小、方向和功率结构发生变化,对快速检测和定位微电网中的短路故障区域提出了挑战。在MATLAB/Simulink中搭建低压交流微电网模型;通过高尺度小波能量谱算法对微电网与大电网公共连接点(point of common coupling,PCC)处检测到的电流进行分解,提取适应不同容量情况的短路故障特征值,实现了不同容量下微电网短路故障的早期检测;利用小波能量谱特征结合基于正交最小二乘法(orthogonal least square,OLS)的径向基函数(radial basis function,RBF)神经网络算法提出一种适用于不同容量微电网的短路故障区域定位方法,并进行仿真验证;在此基础上设计并网模式微电网短路故障保护硬件系统,并进行实验验证。结果表明,所设计的保护系统能够快速、准确地同时实现并网模式下交流微电网短路故障的早期检测与区域定位。
文摘目的:研究线粒体分裂抑制剂1(Mdivi-1)在实验性自身免疫性脑脊髓炎(EAE)小鼠髓鞘保护中的作用,探讨Mdivi-1抑制髓鞘变性的机制。方法:小鼠经髓磷脂少突胶质细胞糖蛋白第35~55位肽段(MOG35-55)免疫后,随机分为DMSO模型组和Mdivi-1干预组。于免疫后第28天处死小鼠,行Luxol fast blue染色分析髓鞘丢失情况,免疫荧光染色和TUNEL染色小鼠脊髓组织和体外细胞实验分析Mdivi-1髓鞘保护机制。结果:与DMSO模型组比较,Mdivi-1处理明显减少EAE小鼠脊髓组织白质区髓鞘丢失,减少少突胶质细胞凋亡及线粒体凋亡相关蛋白cleaved caspase-3、caspase-9、cytochrome C和Bax的表达;体外MO3.13少突胶质细胞培养实验发现,Mdivi-1可以明显阻止星形孢菌素(staurosporine)处理诱导的线粒体膜电位去极化,减轻细胞损伤,增强细胞活力。结论:Mdivi-1可能通过抑制少突胶质细胞线粒体相关凋亡信号通路发挥髓鞘保护作用。