Neurodegenerative diseases are a group of disorders characterized by the progressive degeneration of neurons in the central or peripheral nervous system.Currently,there is no cure for neurodegenerative diseases and th...Neurodegenerative diseases are a group of disorders characterized by the progressive degeneration of neurons in the central or peripheral nervous system.Currently,there is no cure for neurodegenerative diseases and this means a heavy burden for patients and the health system worldwide.Therefore,it is necessary to find new therapeutic approaches,and antisense therapies offer this possibility,having the great advantage of not modifying cellular genome and potentially being safer.Many preclinical and clinical studies aim to test the safety and effectiveness of antisense therapies in the treatment of neurodegenerative diseases.The objective of this review is to summarize the recent advances in the development of these new technologies to treat the most common neurodegenerative diseases,with a focus on those antisense therapies that have already received the approval of the U.S.Food and Drug Administration.展开更多
Objective This study aimed to examine the role of long non-coding RNA PCED1B antisense RNA 1(PCED1B-AS1)in the development of hepatocellular carcinoma(HCC).Methods A total of 62 pairs of HCC tissues and adjacent non-t...Objective This study aimed to examine the role of long non-coding RNA PCED1B antisense RNA 1(PCED1B-AS1)in the development of hepatocellular carcinoma(HCC).Methods A total of 62 pairs of HCC tissues and adjacent non-tumor tissues were obtained from 62 HCC patients.The interactions of PCED1B-AS1 and microRNA-34a(miR-34a)were detected by dual luciferase activity assay and RNA pull-down assay.The RNA expression levels of PCED1B-AS1,miR-34a and CD44 were detected by RT-qPCR,and the protein expression level of CD44 was determined by Western blotting.The cell proliferation was detected by cell proliferation assay,and the cell invasion and migration by transwell invasion assay.The HCC tumor growth after PCED1B-AS1 was downregulated was determined by in vivo animal study.Results PCED1B-AS1 was highly expressed in HCC tissues,which was associated with poor survival of HCC patients.Furthermore,PCED1B-AS1 interacted with miR-34a in HCC cells,but they did not regulate the expression of each other.Additionally,PCED1B-AS1 increased the expression level of CD44,which was targeted by miR-34a.The cell proliferation and invasion assay revealed that miR-34a inhibited the proliferation and invasion of HCC in vitro,while CD44 exhibited the opposite effects.Furthermore,PCED1B-AS1 suppressed the role of miR-34a.Moreover,the knockdown of PCED1B-AS1 repressed the HCC tumor growth in nude mice in vivo.Conclusion PCED1B-AS1 may play an oncogenic role by regulating the miR-34a/CD44 axis in HCC.展开更多
Objective To study the differences and similarities of the antisense drugs with different structures on the biological functions of HL60 cells. Methods Cytotoxic effects were measured by cell viability assay. The e...Objective To study the differences and similarities of the antisense drugs with different structures on the biological functions of HL60 cells. Methods Cytotoxic effects were measured by cell viability assay. The expression levels of protein were assayed by immunofluorescence using fluoresce isothiocyanate label. The morphological changes in apoptotic cells were observed. Flow cytometric analysis of DNA fragmentation was also performed. Results Antisense peptide nucleic acid (PNA) targeting the coding region of the Bcl-2 mRNA could effectively inhibit the growth of HL60 cells, down-regulate the synthesis of Bcl-2 protein and induce apoptosis. After HL60 cells were treated with 10 μmol/L Bcl-2 antisense PNA or antisense oligonucleotide for 72 h respectively, apoptotic rates of HL60 cells were 17.80±1.53 and 13.17±1.12, respectively( P <0.05). Conclusion Antisense PNA targeting the coding region of Bcl-2 mRNA may have stronger antisense effects than the antisense oligonucleotides and could induce apoptosis of HL60 cells.展开更多
cDNA encoding caffeoyl CoA O-methyltransferase (CCoAOMT) from Chinese white poplar ( Populus tomentosa Carr.) was cloned by RT-PCR and sequenced. Northern analysis displayed that the CCoAOMT was expressed specifically...cDNA encoding caffeoyl CoA O-methyltransferase (CCoAOMT) from Chinese white poplar ( Populus tomentosa Carr.) was cloned by RT-PCR and sequenced. Northern analysis displayed that the CCoAOMT was expressed specifically in the developing secondary xylem and its expression was coincident with lignification. The antisense CCoAOMT cDNA was transformed into P. tremula x P. alba mediated by Agrobacterium tumefaciens ( Smith et Townsend) Conn. Transgenic plants were identified with PCR, PCR-Southern and Southern analysis. Lignin content in 5- to 6-month-old transgenic plants was measured. One of the transgenic lines had significant reduction of 17.9% in Klason lignin content as compared with that of untransformed poplar. The results demonstrate that antisense repression of CCoAOMT is an efficient way to reduce lignin content for improving pulping property in engineered trees.展开更多
An ACC synthase cDNA isolated from tomato (Lycopersicum esculentum Mill.) fruit was constructed in antisense orientation under the transcriptional control of CaMV 35S promoter and then introduced into tobacco (Nicotia...An ACC synthase cDNA isolated from tomato (Lycopersicum esculentum Mill.) fruit was constructed in antisense orientation under the transcriptional control of CaMV 35S promoter and then introduced into tobacco (Nicotiana tabacum L.) . PCR amplification demonstrated the integration of this antisense gene in tobacco genomes. Northern hybridization and reverse transcription-PCR analyses indicated the expression of this heterologous antisense gene in the transgenic tobacco tissues, which caused a decrease in the ethylene production, particularly when shoot regeneration exhibited. The ability of shoot regeneration of the transgenic plant during the culture process was enhanced remarkably as compared with that of the control. These results indicate at the molecular level that ethylene may play a regulatory role in shoot formation.展开更多
Objective: To investigated the e?ect of inhibition of telomerase with hTERT antisense on leukemic cells (HL-60 and K562) to CDDP-induced apoptosis. Methods: Antisense phosphorothioate oligodeox...Objective: To investigated the e?ect of inhibition of telomerase with hTERT antisense on leukemic cells (HL-60 and K562) to CDDP-induced apoptosis. Methods: Antisense phosphorothioate oligodeoxynucleotide (AS PS-ODN) was synthesized and puri?ed. Telomerase activity was detected by Telomerase PCR ELASA kit and cell apoptosis was observed by morphological method and determined by ?owcytometry. Results: AS PS-ODN could signi?cantly inhibit telomerase activity by down regulat- ing the hTERT expression, and increase the susceptibility of leukemic cells to CDDP-induced apoptosis. Conclusion: Inhibition of telomerase with hTERT antisense can increases the susceptibility of leukemic cells to CDDP-induced apoptosis.展开更多
Objective: To inhibit specifically survivin expression and block its function in leukemia cells, an antisense RNA expression plasmid for survivin was constructed and transfected into a leukemia cell line.Methods: A cD...Objective: To inhibit specifically survivin expression and block its function in leukemia cells, an antisense RNA expression plasmid for survivin was constructed and transfected into a leukemia cell line.Methods: A cDNA fragment of survivin obtained by RT-PCR was inserted into a plasmid vector named pcDNA3 in the reverse direction. Antisense RNA of survivin was confirmed by restriction enzyme digestion and DNA sequencing. The recombinant plasmid was transfected into the cell line HL-60 by electroporation. The effect of survivin antisense RNA on survivin mRNA expression in transfected cells was examined by RT-PCR.Results: The correct construction of the recombinant plasmid has been shown by restriction enzyme digestion and DNA sequencing. As compared to controls, the level of survivin mRNA expression in transfected cells decreased significantly.Conclusion: An antisense RNA vector for survivin has been successfully constructed and may be useful as a specific inhibitor in leukemia cells. Thus, antisense therapy on the basis of survivin can be further explored in leukemia. Key words leukemia - survivin - antisense RNA This project was supported by a grant from National Key Basis Research Program of China (No. CB 513109) and the National Natural Sciences Foundation of China (No. 39970693).展开更多
[ Objective] This study was to investigate the effect of VEGF and its receptor Fit-1 mRNA expression in Mongolia sheep umbilical vein endothelial cells by ghrelin antisense inhibition. [ Method] Experiments were divid...[ Objective] This study was to investigate the effect of VEGF and its receptor Fit-1 mRNA expression in Mongolia sheep umbilical vein endothelial cells by ghrelin antisense inhibition. [ Method] Experiments were divided into 4 groups: group Ⅰ (blank control group) ; group Ⅱ (liposome group) ; group Ⅲ (SCON group: 20 μmol/L sense oligonucleotide) ; group Ⅳ (ASCON: 20 μmol/L antisense oligonucleotide). VEGF and its receptor Fit-1 mRNA expression changes were detected by using real-time fluorescence quantitative detection after 24, 36 and 48 h. [ Result] The expression of VEGF mRNA in group Ⅰ, group Ⅱ were insignificantly different at higher expression levels, and did not change significantly with the time; the expression of VEGF mRNA in group Ⅲ assumed a slight decrease, but there were no significant differences between group I and group Ⅱ (P 〉0.05), the expression of VEGF mRNA in group Ⅳ(antisense oligonucleotide group ) decreased significantly (P 〈 0.05) ; the expression of VEGF receptor FLT-1 mRNA was similar to that of VEGF. [ Conclusion] Antisense inhibition ghrelin has a downward effect to the expression of VEGF and its receptor Fit-1 the mRNA.展开更多
Objective:The ataxia telangiectasia mutated(ATM)gene is a master regulator in cellular DNA damage response.The dysregulation of ATM expression is frequent in breast cancer,and is known to be involved in the carcinogen...Objective:The ataxia telangiectasia mutated(ATM)gene is a master regulator in cellular DNA damage response.The dysregulation of ATM expression is frequent in breast cancer,and is known to be involved in the carcinogenesis and prognosis of cancer.However,the underlying mechanism remains unclear.The bioinformatic analysis predicted a potential antisense transcript ATM-antisense(AS)from the opposite strand of the ATM gene.The purpose of this study was to identify ATM-AS and investigate the possible effect of ATM-AS on the ATM gene regulation.Methods:Single strand-specific RT-PCR was performed to verify the predicted antisense transcript ATM-AS within the ATM gene locus.qRT-PCR and Western blotting were used to detect the expression levels of ATM-AS and ATM in normal and breast cancer cell lines as well as in tissue samples.Luciferase reporter gene assays,biological mass spectrometry,ChIP-qPCR and RIP were used to explore the function of ATM-AS in regulating the ATM expression.Immunofluorescence and host-cell reactivation(HCR)assay were performed to evaluate the biological significance of ATM-AS in ATM-mediated DNA damage repair.Breast cancer tissue samples were used for evaluating the correlation of the ATM-AS level with the ATM expression as well as prognosis of the patients.Results:The ATM-AS significantly upregulated the ATM gene activity by recruiting KAT5 histone acetyltransferase to the gene promoter.The reduced ATM-AS level led to the abnormal downregulation of ATM expression,and impaired the ATM-mediated DNA damage repair in normal breast cells in vitro.The ATM-AS level was positively correlated with the ATM expression in the examined breast cancer tissue samples,and the patient prognosis.Conclusion:The present study demonstrated that ATM-AS,an antisense transcript located within the ATM gene body,is an essential positive regulator of ATM expression,and functions by mediating the binding of KAT5 to the ATM promoter.These findings uncover the novel mechanism underlying the dysregulation of the ATM gene in breast cancer,and enrich our understanding of how an antisense transcript regulates its host gene.展开更多
Objective: To investigate the influence of central administration ofneuropeptide Y-Y5 receptor antisense oligodeoxynucleotides (ODNs) on body weight, fat pads of SDrats, and the effects of white adipocytes lipolysis a...Objective: To investigate the influence of central administration ofneuropeptide Y-Y5 receptor antisense oligodeoxynucleotides (ODNs) on body weight, fat pads of SDrats, and the effects of white adipocytes lipolysis and apoptosis. Methods: Y5 receptor antisense,sense, mismatched ODNs or vehicle was intracerebroventricularly (i. c. v.) injected. Averageadipocyte area was calculated. DNA ladders were measured to evaluate adipocyte apoptosis, and RT-PCRwas used to analyse the expression of Bcl-2 and Bax gene. Results: Central administration of Y5antisense ODNs significantly decreased body weight, and average adipocyte area. DNA fragmentationwas present after electrophoresis at epididymal adipose tissue. The expression of Bcl-2 gene wasdownregulated, while the expression of Bax upregulated. Conclusion: Lipolysis and adipocyteapoptosis may be important mechanisms far 75 antisense therapy.展开更多
Objective: To investigate the inhibitory effects of the Bcl-2 antisense oligodeoxynucleotides (ASODN) on tumor formation and growth of human lung carcinoma transplanted subcutaneously in nude mice. Methods: Human ...Objective: To investigate the inhibitory effects of the Bcl-2 antisense oligodeoxynucleotides (ASODN) on tumor formation and growth of human lung carcinoma transplanted subcutaneously in nude mice. Methods: Human NCI-H460 cells treated with Bcl-2 ASODN or nonesense oligodeoxynucleotide (NSODN) and untreated NCI-H460 cells were respectively implanted subcutaneously into nude mice. When the diameters of tumor were above 0.5 cm after untreated NCI-H460 cells injection, the mice bearing tumor were randomly divided into three groups: saline control group, Bcl-2 ASODN group, NSODN group. ODN was directly injected into the tumor body for 3 weeks. The weight and volume of subcutaneous tumors were measured, and the morphology of tumor cells was observed. Results: The tumorigenic ability of the treated NCI-H460 cells by Bcl-2 ASODN was reduced. The mean time at which tumor can be detected was prolonged up to 12.6 days (P〈0.01). The maximum tumor growth inhibitory rate was 87.5%. In therapeutic efficacy, growth of tumor was significantly inhibited in Bcl-2 ASODN group as compared with that in NSODN group, saline-treated group (P〈0.01). The NSODN control was ineffective. In comparison with NSODN-treated, saline-treated mice, those treated with Bcl-2 ASODN showed a significant decrease in median weight of subcutaneous tumors (P〈0.01). The growth inhibitory rate was 71.0% in ASODN group. Conclusion: Bcl-2 ASODN could inhibit tumor formation and tumor growth in nude mice.展开更多
Objective: To explore and investigate the selection of effective antisense oligodeoxynuleotides with the help of computer and RNAstructure folding software. Methods: Bcl-2 gene was used as the target gene and five a...Objective: To explore and investigate the selection of effective antisense oligodeoxynuleotides with the help of computer and RNAstructure folding software. Methods: Bcl-2 gene was used as the target gene and five antisense oligodeoxynuleotides were designed to be bound to Bcl-2 mRNA optimal secondary structure regions that were predicted free from intramolecular fold or instability of free energy. The five antisense oligodeoxynucleotides were studied with experimental assay of leukemia cells, including cell grow assay with tropan blue exclusion, expression of Bcl-2 protein detected with immunochemistry and flowcytometry, Bcl-2 mRNA content detected with RT-PCR technique, as well as apoptosis observed and determined with morphonological method, electrophoresis and flowcytometry. Results: The results showed that two of the five antisense oligodeoxynucleotides were effective antisense oligodeoxynucleotides, which were able to inhibit cell growth in leukemia, to decrease the level of Bcl-2 mRNA and protein, to induce apoptosis of leukemia cells significantly. Conclusion: The computational prediction of antisense efficacy is faster than other methods and more efficient, which can potentially speed the development of sequences for both research and clinical applications.展开更多
Objective: To study the differences and similarities of the antisense drugs with different structures on the biological functions of K562 cells. Methods: Cytotoxic effects were measured by use of a cell viability assa...Objective: To study the differences and similarities of the antisense drugs with different structures on the biological functions of K562 cells. Methods: Cytotoxic effects were measured by use of a cell viability assay. Flow cytometric analysis and agarose gel electrophoresis of DNA fragmentation were also performed. The expression level of protein was assayed by immunofluorescence using fluoresce isothiocyanate label. Results: PNA targeting the coding region of the Bcl-2 messenger RNA could effectively inhibit K562 cell viability, down-regulate the synthesis of the Bcl-2 protein and increase cell apoptosis. By 72 h after the Bcl-2 antisense PNA treatment, K562 cells showed more reduction in the level of Bcl-2 protein compared with cells treated with the antisense ODN. After treatment with 10 μmol/L of Bcl-2 antisense PNA or antisense ODN for 72 h, apoptotic rates of K562 cells were 13.15±1.13 and 11.72±1.12, respectively. Furthermore, there was significant difference in the percentage of apoptotic cells between antisense PNA group and antisense ODN group. Conclusion: The results suggest that antisense PNA targeting the coding region of Bcl-2 mRNA has better antisense effects than the antisense oligonucleotides on inducing apoptosis of K562 cells. Key words Bcl-2 - Antisense peptide nucleic acid - Antisense oligonucleotide - K562 cells - Apoptosis CLC number Q255 Foundation item: This work was supported by the Key Foundation of Science & Technology Program of Guangzhou (No.2001-Z-037-01), and the Nature Science Key Foundation of Guangdong Province (No. 021195).Biography: LEI Xiao-yong(1970–), male, associate professor, doctor of medicine, Institute of Pharmacy and Pharmacology, Nanhua University, majors in tumor pharmacology.展开更多
INTRODUCTION Human tissue homeostasis is precisely regulated bycellular division,differentiation and death.Normalhuman somatic cells progressively lose telomererestriction fragment(TRF)length with eachsuccessive cell ...INTRODUCTION Human tissue homeostasis is precisely regulated bycellular division,differentiation and death.Normalhuman somatic cells progressively lose telomererestriction fragment(TRF)length with eachsuccessive cell division,eventually leading tocellular quiescence,chromosomal end-degradationand apoptosis.On the contrary,stabilization oftelomere lengths by expressing telomerase,an RNA-dependent DNA polymerase,may be involved incellular immortality and carcinogenesis.展开更多
AIM To further investigate the effect of cyclin D1 on the biologic behavior of cancer cells and its potential role in gene therapy of tumor. METHODS A cyclin D1 subcloning plasmid termed BKSD1 was constructed by su...AIM To further investigate the effect of cyclin D1 on the biologic behavior of cancer cells and its potential role in gene therapy of tumor. METHODS A cyclin D1 subcloning plasmid termed BKSD1 was constructed by subcloning the human cyclin D1 cDNA into Bluescript KS, a plasmid vector with a pair of T7 and T3 promoters, with recombinant DNA technology of molecular biology. So, it is easy to generate digoxigenin (DIG) labeled RNA probes of antisense and sense to cyclin D1 using RKSD1 as a template vector. PDORD1AS, an eukaryotic expression vector containing the full length human cyclin D1 cDNA in its antisense orientation cloned into the retroviral vector pDOR neo, was successfully constructed with BKSD1 to change restriction sites. A gastric cancer cell line, SGC7901/VCR, was transfected with pDORD1AS by Lipofect Amine mediated introduction and a subline termed SGC7901/VCRD1AS, which had stable overexpression of antisense RNA to cyclin D1, was obtained by selection in G418. The subline, control subline transfected pDOR neo and SGC7901/VCR were evaluated by methods of immunohistochemistry, flow cytometry, molecular hybridization, morphology and cell biology. RESULTS Compared with control cell lines, SGC7901/VCRD1AS had a reduced expression of cyclin D1 (inhibition rate was about 36%), increased cell size and cytoplasm to nucleus ratio, increased doubling time (42 2h to 26 8h and 26 4h), decreased saturation density (18 9×10 4 to 4 8×10 5 and 4 8×10 5), increased percentage of cells in the G1/G0 phase (80 9%-64 6% and 63 8%), reacquired serum dependence, and a loss of tumorigenicity in nude mice (0/4 to 4/4 and 4/4). CONCLUSION Stable overexpression of antisense RNA to cyclin D1 can reverse the transformed phenotype of human gastric cancer cells and may provide an approach of gene therapy for gastric cancer.展开更多
INIRODUCTIONAccording to the therapeutic effect and strategy ofantisense RNA for hepatoccllular carcinoma(HCC),we have specifically synthesized partialcDNA of human insulin-like growth factor Ⅱ(IGF-Ⅱ)and constructed...INIRODUCTIONAccording to the therapeutic effect and strategy ofantisense RNA for hepatoccllular carcinoma(HCC),we have specifically synthesized partialcDNA of human insulin-like growth factor Ⅱ(IGF-Ⅱ)and constructed IGF-Ⅱ cDNA antisenseeukaryotic expression vector.The constructedvector was introduced into hepatoma cell lineSMMC-7721 to block the intrinsic IGF-Ⅱexpression.The biological behavior changes ofhepatoma cells were observed.All these展开更多
AIM To study the specific inhibition of HBV gene expression by liver-targeting antisense oligonucleotide (ASON) directed against pre-c and c regious in a sequence-specific manner.METHODS According to the result of dir...AIM To study the specific inhibition of HBV gene expression by liver-targeting antisense oligonucleotide (ASON) directed against pre-c and c regious in a sequence-specific manner.METHODS According to the result of direct sequencing of PCR amplified products, a 16-mer phosphorothioate analogue of the antisense oligonucleotide (PS-ASOn) directed against the HBV U5-like region was synthesized and then linked with one live-targeting ligand, the galactosylated poly-L-lysine. Their effect on the expression of HBV gene was observed using the 2.2.15 cells.RESULTS HBV DNA in the 2.2.15 cells was from HBV with surface antigen subtype ayw1 by sequencing so that antisense oligonucleotides could bind specifically to the target sequence through base piring. Under the same experimental conditions, the inhibitory rates of PS-ASON to HBsAg and HBeAg were 70% and 58% at a concentration of 10μmol/L, while by ligand-PS-ASON they were 96% and 82%, the amount of HBV DNA in cultured supernatant and cells was reduced significantly. An unrelated sequence oligonucleotide showed no effectiveness. All the oligonucleotides had no cytotoxicity.CONCLUSION Antisense oligonucleotides complexed by the liver-targeting ligand can be targeted to cells via asialoglycoprotein receptors, resulting in supecific inhibition of HBV gene expression and replication.展开更多
AIM: To study the distribution and stability of antisense oligodeoxynucleotide (ASODN) in Walker-256 cells and their distribution in liver, lung and kidney tissues after being infused alone or mixed with lipiodol via ...AIM: To study the distribution and stability of antisense oligodeoxynucleotide (ASODN) in Walker-256 cells and their distribution in liver, lung and kidney tissues after being infused alone or mixed with lipiodol via hepatic artery in a rat liver tumor model.METHODS: 5'-Isothiocyananate (FITC)-labeled vascular endothelial growth factor (VEGF) ASODN was added into Walker-256 cell culture media. Its distribution in cells was observed by fluorescence microscope at different time points. Walker-256 carcinosarcoma was transplanted into Wistar rat liver to establish a liver cancer model. 5'-FITC-labeled VEGF ASODN mixed with (mixed group, n = 6) or without (TAI group, n = 6)ultra-fluid lipiodol was administrated via hepatic artery.Frozen samples of liver, lung and kidney tissue were taken from rats after 1, 3 and 6 d, respectively. The distribution of ASODN was observed under fluorescent microscope.RESULTS: ASODN could enter cytoplasm within 2 h and nuclei within 6 h. Accumulation of ASODN reached the peak point in nuclei at 12 h, and then disappeared gradually. No fluorescence could be seen in cells at 48 h. In vivo experiment, on d 1 and 3 the fluorescence staining in liver was stronger in mixed group than in TAI group and more fluorescence could be detected in lung and kidney in TAI group than in mixed group. On d 6, no fluorescence could be detected in TAI group, but faint fluorescence could be seen in mixed group. ASODN could be seen in cancer cells and normal hepatic cells. In mixed group, ASODN was mainly distributed in liver tumor tissues.CONCLUSION: ASODN can transfect Walker-256 cells.ASODN mixed with lipiodol infusion via hepatic artery can be used in the treatment of HCC.展开更多
AIM To compare the expression level of Fas gene and Bcl-2 gene in gastric cancer cells SGC7901 and gastric cancer MDR (multidrug resistant) cells SGC7901/VCR, to transduce Fas cDNA and Bcl-2 antisense nucleic acid int...AIM To compare the expression level of Fas gene and Bcl-2 gene in gastric cancer cells SGC7901 and gastric cancer MDR (multidrug resistant) cells SGC7901/VCR, to transduce Fas cDNA and Bcl-2 antisense nucleic acid into SGC7901/VCR cells respectively, and to observe the expression of two genes in transfectants and non-transfectants as well as their drug sensitivity.METHODS Eukaryotic expression vector pBK-Fas cDNA and pDOR-anti Bcl-2 were constructed and transfected into SGC7901/VCR cells by lipofectamine, respectively. Northern blot and Western blot were used to detect the expression of mRNA and protein in SGC7901/VCR and SGC7901 cells and transfectants, and drug sensitivity of transfectants for VCR, CDDP and 5-FU was analyzed with MTT assay.RESULTS After gene transfection, 80 for Fas and 120 for antisense Bcl-2 drug-resistant clones were selected from 2×105 cells, transfection rate being 0.04% and 0.06%. Two clones of SGC7901 Fas/VCR cells and SGC7901 anti Bcl-2/VCR cells were randomly selected for further incubation. Hybridization results showed that the expression level of Fas mRNA and protein in SGC7901/VCR cells was much lower, but that of Bcl-2 mRNA and protein was higher than that in SGC7901 cells. The expression of Fas mRNA and protein in SGC7901 Fas/VCR cells was higher, and of Bcl-2 mRNA and protein was lower in SGC7901 anti Bcl-2/VCR cells than that in non-transfectants. MTT assay showed that transfectants were more sensitive to VCR, CDDP, 5-FU than non-transfectants.CONCLUSION Bcl-2 gene displayed high expression while Fas gene had low expression in drug resistant gastric cancer cells. Expression of Bcl-2 protein was effectively blocked in SGC7901 anti Bcl-2/VCR cells by gene transfection. In contrast, the expression of Fas mRNA and protein in SGC7901 Fas/VCR cells increased. Fas gene and Bcl-2 antisense nucleic acid transfection sensitized drug resistant gastric cancer cells to chemotherapeutic drugs. These results suggest cell apoptosis plays an important role in the mechanism of MDR, and enhancing apoptosis might reverse MDR.展开更多
BACKGROUND: Multidrug resistance is a major obstacle in cancer chemotherapy. We examined whether the antisense RNA of multidrug resistance gene 1 (mdr1) could reverse multidrug resistance in the human hepatocellular c...BACKGROUND: Multidrug resistance is a major obstacle in cancer chemotherapy. We examined whether the antisense RNA of multidrug resistance gene 1 (mdr1) could reverse multidrug resistance in the human hepatocellular carcinoma (HCC) cell line SMMC7721/ADM. METHODS: The recombinant adenoviruses pAdEasy- GFP-ASmdr1 product was produced by the adenoviral vector AdEasy system, which can express antisense RNA against the mdr1 gene. Following that, the recombinant adenovirus was transfected into the P-glycoprotein- producing multidrug resistance cell line, SMMC7721/ADM human HCC cells resistant to adriamycin (ADM) and daunorubicin (DNR). In order to investigate the reversal of multidrug resistance phenotype, we measured the expression of mdr1 mRNA by RT-PCR and the production of P-glycoprotein by flow cytometry. The sensitivities for ADM and DNR SMMC7721/ADM cells were examined by [3-(4, 5-dimethylthi-azol-2-yl)-2,5 diphenyl-terazolium bromide] (MTT) analysis. RESULTS: The low-level expression of mdr1 mRNA and P-glycoprotein production were observed in parental sensitive cells SMMC/7721 in addition to the overexpressionof mdr1 mRNA and P-glycoprotein in SMMC7721/ADM cells. The transfection of antisense-RNA into SMMC7721/ ADM cells resulted in decreases of mdr1 mRNA and P-glycoprotein, but increase of drug sensitivities. The sensitivities of transfected SMMC7721/ADM cells to ADM and DNR in IC50 reduced by 31.25% and 62.96% respectively. CONCLUSIONS: Mdr1 antisense RNA can increase the sensitivities of SMMC7721/ADM cells to anticancer drug by decreasing the expression of the mdr1 gene and inhibiting P-glycoprotein expression. This strategy may be applicable to cancer patients with P-glycoportein mediated multidrug resistance.展开更多
基金supported by Association 2HE(Center for Human Health and Environment)by Regione Puglia-Grant Malattie Rare DUP n.246 of 2019(to CB).
文摘Neurodegenerative diseases are a group of disorders characterized by the progressive degeneration of neurons in the central or peripheral nervous system.Currently,there is no cure for neurodegenerative diseases and this means a heavy burden for patients and the health system worldwide.Therefore,it is necessary to find new therapeutic approaches,and antisense therapies offer this possibility,having the great advantage of not modifying cellular genome and potentially being safer.Many preclinical and clinical studies aim to test the safety and effectiveness of antisense therapies in the treatment of neurodegenerative diseases.The objective of this review is to summarize the recent advances in the development of these new technologies to treat the most common neurodegenerative diseases,with a focus on those antisense therapies that have already received the approval of the U.S.Food and Drug Administration.
基金supported by the Medical Science and Technology Research Foundation of Guangdong Province(No.A2020559).
文摘Objective This study aimed to examine the role of long non-coding RNA PCED1B antisense RNA 1(PCED1B-AS1)in the development of hepatocellular carcinoma(HCC).Methods A total of 62 pairs of HCC tissues and adjacent non-tumor tissues were obtained from 62 HCC patients.The interactions of PCED1B-AS1 and microRNA-34a(miR-34a)were detected by dual luciferase activity assay and RNA pull-down assay.The RNA expression levels of PCED1B-AS1,miR-34a and CD44 were detected by RT-qPCR,and the protein expression level of CD44 was determined by Western blotting.The cell proliferation was detected by cell proliferation assay,and the cell invasion and migration by transwell invasion assay.The HCC tumor growth after PCED1B-AS1 was downregulated was determined by in vivo animal study.Results PCED1B-AS1 was highly expressed in HCC tissues,which was associated with poor survival of HCC patients.Furthermore,PCED1B-AS1 interacted with miR-34a in HCC cells,but they did not regulate the expression of each other.Additionally,PCED1B-AS1 increased the expression level of CD44,which was targeted by miR-34a.The cell proliferation and invasion assay revealed that miR-34a inhibited the proliferation and invasion of HCC in vitro,while CD44 exhibited the opposite effects.Furthermore,PCED1B-AS1 suppressed the role of miR-34a.Moreover,the knockdown of PCED1B-AS1 repressed the HCC tumor growth in nude mice in vivo.Conclusion PCED1B-AS1 may play an oncogenic role by regulating the miR-34a/CD44 axis in HCC.
文摘Objective To study the differences and similarities of the antisense drugs with different structures on the biological functions of HL60 cells. Methods Cytotoxic effects were measured by cell viability assay. The expression levels of protein were assayed by immunofluorescence using fluoresce isothiocyanate label. The morphological changes in apoptotic cells were observed. Flow cytometric analysis of DNA fragmentation was also performed. Results Antisense peptide nucleic acid (PNA) targeting the coding region of the Bcl-2 mRNA could effectively inhibit the growth of HL60 cells, down-regulate the synthesis of Bcl-2 protein and induce apoptosis. After HL60 cells were treated with 10 μmol/L Bcl-2 antisense PNA or antisense oligonucleotide for 72 h respectively, apoptotic rates of HL60 cells were 17.80±1.53 and 13.17±1.12, respectively( P <0.05). Conclusion Antisense PNA targeting the coding region of Bcl-2 mRNA may have stronger antisense effects than the antisense oligonucleotides and could induce apoptosis of HL60 cells.
文摘cDNA encoding caffeoyl CoA O-methyltransferase (CCoAOMT) from Chinese white poplar ( Populus tomentosa Carr.) was cloned by RT-PCR and sequenced. Northern analysis displayed that the CCoAOMT was expressed specifically in the developing secondary xylem and its expression was coincident with lignification. The antisense CCoAOMT cDNA was transformed into P. tremula x P. alba mediated by Agrobacterium tumefaciens ( Smith et Townsend) Conn. Transgenic plants were identified with PCR, PCR-Southern and Southern analysis. Lignin content in 5- to 6-month-old transgenic plants was measured. One of the transgenic lines had significant reduction of 17.9% in Klason lignin content as compared with that of untransformed poplar. The results demonstrate that antisense repression of CCoAOMT is an efficient way to reduce lignin content for improving pulping property in engineered trees.
基金This work was supported by the Chinese National Key ScienceTechnology Projects in the Eighth-Five Year Plan
文摘An ACC synthase cDNA isolated from tomato (Lycopersicum esculentum Mill.) fruit was constructed in antisense orientation under the transcriptional control of CaMV 35S promoter and then introduced into tobacco (Nicotiana tabacum L.) . PCR amplification demonstrated the integration of this antisense gene in tobacco genomes. Northern hybridization and reverse transcription-PCR analyses indicated the expression of this heterologous antisense gene in the transgenic tobacco tissues, which caused a decrease in the ethylene production, particularly when shoot regeneration exhibited. The ability of shoot regeneration of the transgenic plant during the culture process was enhanced remarkably as compared with that of the control. These results indicate at the molecular level that ethylene may play a regulatory role in shoot formation.
基金This project was supported by grants from Foundation of Science and Technology of Guangzhou city (2001-Z-037-01) and Guangdong Province (021195).
文摘Objective: To investigated the e?ect of inhibition of telomerase with hTERT antisense on leukemic cells (HL-60 and K562) to CDDP-induced apoptosis. Methods: Antisense phosphorothioate oligodeoxynucleotide (AS PS-ODN) was synthesized and puri?ed. Telomerase activity was detected by Telomerase PCR ELASA kit and cell apoptosis was observed by morphological method and determined by ?owcytometry. Results: AS PS-ODN could signi?cantly inhibit telomerase activity by down regulat- ing the hTERT expression, and increase the susceptibility of leukemic cells to CDDP-induced apoptosis. Conclusion: Inhibition of telomerase with hTERT antisense can increases the susceptibility of leukemic cells to CDDP-induced apoptosis.
基金This project was supported by a grant from National Key Basis Research Program of China(No.CB 513109)and the NationalNatural Sciences Foundation of China(No.39970693).
文摘Objective: To inhibit specifically survivin expression and block its function in leukemia cells, an antisense RNA expression plasmid for survivin was constructed and transfected into a leukemia cell line.Methods: A cDNA fragment of survivin obtained by RT-PCR was inserted into a plasmid vector named pcDNA3 in the reverse direction. Antisense RNA of survivin was confirmed by restriction enzyme digestion and DNA sequencing. The recombinant plasmid was transfected into the cell line HL-60 by electroporation. The effect of survivin antisense RNA on survivin mRNA expression in transfected cells was examined by RT-PCR.Results: The correct construction of the recombinant plasmid has been shown by restriction enzyme digestion and DNA sequencing. As compared to controls, the level of survivin mRNA expression in transfected cells decreased significantly.Conclusion: An antisense RNA vector for survivin has been successfully constructed and may be useful as a specific inhibitor in leukemia cells. Thus, antisense therapy on the basis of survivin can be further explored in leukemia. Key words leukemia - survivin - antisense RNA This project was supported by a grant from National Key Basis Research Program of China (No. CB 513109) and the National Natural Sciences Foundation of China (No. 39970693).
基金Supported by National Natural Science Foundation of China(30860201)~~
文摘[ Objective] This study was to investigate the effect of VEGF and its receptor Fit-1 mRNA expression in Mongolia sheep umbilical vein endothelial cells by ghrelin antisense inhibition. [ Method] Experiments were divided into 4 groups: group Ⅰ (blank control group) ; group Ⅱ (liposome group) ; group Ⅲ (SCON group: 20 μmol/L sense oligonucleotide) ; group Ⅳ (ASCON: 20 μmol/L antisense oligonucleotide). VEGF and its receptor Fit-1 mRNA expression changes were detected by using real-time fluorescence quantitative detection after 24, 36 and 48 h. [ Result] The expression of VEGF mRNA in group Ⅰ, group Ⅱ were insignificantly different at higher expression levels, and did not change significantly with the time; the expression of VEGF mRNA in group Ⅲ assumed a slight decrease, but there were no significant differences between group I and group Ⅱ (P 〉0.05), the expression of VEGF mRNA in group Ⅳ(antisense oligonucleotide group ) decreased significantly (P 〈 0.05) ; the expression of VEGF receptor FLT-1 mRNA was similar to that of VEGF. [ Conclusion] Antisense inhibition ghrelin has a downward effect to the expression of VEGF and its receptor Fit-1 the mRNA.
基金supported by the National Natural Science Foundation of China(No.81802670 and No.82072580).
文摘Objective:The ataxia telangiectasia mutated(ATM)gene is a master regulator in cellular DNA damage response.The dysregulation of ATM expression is frequent in breast cancer,and is known to be involved in the carcinogenesis and prognosis of cancer.However,the underlying mechanism remains unclear.The bioinformatic analysis predicted a potential antisense transcript ATM-antisense(AS)from the opposite strand of the ATM gene.The purpose of this study was to identify ATM-AS and investigate the possible effect of ATM-AS on the ATM gene regulation.Methods:Single strand-specific RT-PCR was performed to verify the predicted antisense transcript ATM-AS within the ATM gene locus.qRT-PCR and Western blotting were used to detect the expression levels of ATM-AS and ATM in normal and breast cancer cell lines as well as in tissue samples.Luciferase reporter gene assays,biological mass spectrometry,ChIP-qPCR and RIP were used to explore the function of ATM-AS in regulating the ATM expression.Immunofluorescence and host-cell reactivation(HCR)assay were performed to evaluate the biological significance of ATM-AS in ATM-mediated DNA damage repair.Breast cancer tissue samples were used for evaluating the correlation of the ATM-AS level with the ATM expression as well as prognosis of the patients.Results:The ATM-AS significantly upregulated the ATM gene activity by recruiting KAT5 histone acetyltransferase to the gene promoter.The reduced ATM-AS level led to the abnormal downregulation of ATM expression,and impaired the ATM-mediated DNA damage repair in normal breast cells in vitro.The ATM-AS level was positively correlated with the ATM expression in the examined breast cancer tissue samples,and the patient prognosis.Conclusion:The present study demonstrated that ATM-AS,an antisense transcript located within the ATM gene body,is an essential positive regulator of ATM expression,and functions by mediating the binding of KAT5 to the ATM promoter.These findings uncover the novel mechanism underlying the dysregulation of the ATM gene in breast cancer,and enrich our understanding of how an antisense transcript regulates its host gene.
基金Supported by grant from National Natural Science Foundation (39870362)Natural Science Foundation of Education Committee of Jiangsu Province (98KJB320002).
文摘Objective: To investigate the influence of central administration ofneuropeptide Y-Y5 receptor antisense oligodeoxynucleotides (ODNs) on body weight, fat pads of SDrats, and the effects of white adipocytes lipolysis and apoptosis. Methods: Y5 receptor antisense,sense, mismatched ODNs or vehicle was intracerebroventricularly (i. c. v.) injected. Averageadipocyte area was calculated. DNA ladders were measured to evaluate adipocyte apoptosis, and RT-PCRwas used to analyse the expression of Bcl-2 and Bax gene. Results: Central administration of Y5antisense ODNs significantly decreased body weight, and average adipocyte area. DNA fragmentationwas present after electrophoresis at epididymal adipose tissue. The expression of Bcl-2 gene wasdownregulated, while the expression of Bax upregulated. Conclusion: Lipolysis and adipocyteapoptosis may be important mechanisms far 75 antisense therapy.
基金This project was supported by Natural Science Program Foundation of the Guangdong Provincial (021195) and The GuangzhouCity Key Foundation of Science and Technology Program (2001-Z-037-01)
文摘Objective: To investigate the inhibitory effects of the Bcl-2 antisense oligodeoxynucleotides (ASODN) on tumor formation and growth of human lung carcinoma transplanted subcutaneously in nude mice. Methods: Human NCI-H460 cells treated with Bcl-2 ASODN or nonesense oligodeoxynucleotide (NSODN) and untreated NCI-H460 cells were respectively implanted subcutaneously into nude mice. When the diameters of tumor were above 0.5 cm after untreated NCI-H460 cells injection, the mice bearing tumor were randomly divided into three groups: saline control group, Bcl-2 ASODN group, NSODN group. ODN was directly injected into the tumor body for 3 weeks. The weight and volume of subcutaneous tumors were measured, and the morphology of tumor cells was observed. Results: The tumorigenic ability of the treated NCI-H460 cells by Bcl-2 ASODN was reduced. The mean time at which tumor can be detected was prolonged up to 12.6 days (P〈0.01). The maximum tumor growth inhibitory rate was 87.5%. In therapeutic efficacy, growth of tumor was significantly inhibited in Bcl-2 ASODN group as compared with that in NSODN group, saline-treated group (P〈0.01). The NSODN control was ineffective. In comparison with NSODN-treated, saline-treated mice, those treated with Bcl-2 ASODN showed a significant decrease in median weight of subcutaneous tumors (P〈0.01). The growth inhibitory rate was 71.0% in ASODN group. Conclusion: Bcl-2 ASODN could inhibit tumor formation and tumor growth in nude mice.
文摘Objective: To explore and investigate the selection of effective antisense oligodeoxynuleotides with the help of computer and RNAstructure folding software. Methods: Bcl-2 gene was used as the target gene and five antisense oligodeoxynuleotides were designed to be bound to Bcl-2 mRNA optimal secondary structure regions that were predicted free from intramolecular fold or instability of free energy. The five antisense oligodeoxynucleotides were studied with experimental assay of leukemia cells, including cell grow assay with tropan blue exclusion, expression of Bcl-2 protein detected with immunochemistry and flowcytometry, Bcl-2 mRNA content detected with RT-PCR technique, as well as apoptosis observed and determined with morphonological method, electrophoresis and flowcytometry. Results: The results showed that two of the five antisense oligodeoxynucleotides were effective antisense oligodeoxynucleotides, which were able to inhibit cell growth in leukemia, to decrease the level of Bcl-2 mRNA and protein, to induce apoptosis of leukemia cells significantly. Conclusion: The computational prediction of antisense efficacy is faster than other methods and more efficient, which can potentially speed the development of sequences for both research and clinical applications.
基金This work was supported by the KeyFoundation of Science & Technology Program of Guangzhou(No.2001-Z-037-01) and the Nature Science Key Foundationof Guangdong Province (No. 021195).
文摘Objective: To study the differences and similarities of the antisense drugs with different structures on the biological functions of K562 cells. Methods: Cytotoxic effects were measured by use of a cell viability assay. Flow cytometric analysis and agarose gel electrophoresis of DNA fragmentation were also performed. The expression level of protein was assayed by immunofluorescence using fluoresce isothiocyanate label. Results: PNA targeting the coding region of the Bcl-2 messenger RNA could effectively inhibit K562 cell viability, down-regulate the synthesis of the Bcl-2 protein and increase cell apoptosis. By 72 h after the Bcl-2 antisense PNA treatment, K562 cells showed more reduction in the level of Bcl-2 protein compared with cells treated with the antisense ODN. After treatment with 10 μmol/L of Bcl-2 antisense PNA or antisense ODN for 72 h, apoptotic rates of K562 cells were 13.15±1.13 and 11.72±1.12, respectively. Furthermore, there was significant difference in the percentage of apoptotic cells between antisense PNA group and antisense ODN group. Conclusion: The results suggest that antisense PNA targeting the coding region of Bcl-2 mRNA has better antisense effects than the antisense oligonucleotides on inducing apoptosis of K562 cells. Key words Bcl-2 - Antisense peptide nucleic acid - Antisense oligonucleotide - K562 cells - Apoptosis CLC number Q255 Foundation item: This work was supported by the Key Foundation of Science & Technology Program of Guangzhou (No.2001-Z-037-01), and the Nature Science Key Foundation of Guangdong Province (No. 021195).Biography: LEI Xiao-yong(1970–), male, associate professor, doctor of medicine, Institute of Pharmacy and Pharmacology, Nanhua University, majors in tumor pharmacology.
基金the Natural Science Foundation of Gansu Province,China,No.ZS981-A23-086-Y
文摘INTRODUCTION Human tissue homeostasis is precisely regulated bycellular division,differentiation and death.Normalhuman somatic cells progressively lose telomererestriction fragment(TRF)length with eachsuccessive cell division,eventually leading tocellular quiescence,chromosomal end-degradationand apoptosis.On the contrary,stabilization oftelomere lengths by expressing telomerase,an RNA-dependent DNA polymerase,may be involved incellular immortality and carcinogenesis.
文摘AIM To further investigate the effect of cyclin D1 on the biologic behavior of cancer cells and its potential role in gene therapy of tumor. METHODS A cyclin D1 subcloning plasmid termed BKSD1 was constructed by subcloning the human cyclin D1 cDNA into Bluescript KS, a plasmid vector with a pair of T7 and T3 promoters, with recombinant DNA technology of molecular biology. So, it is easy to generate digoxigenin (DIG) labeled RNA probes of antisense and sense to cyclin D1 using RKSD1 as a template vector. PDORD1AS, an eukaryotic expression vector containing the full length human cyclin D1 cDNA in its antisense orientation cloned into the retroviral vector pDOR neo, was successfully constructed with BKSD1 to change restriction sites. A gastric cancer cell line, SGC7901/VCR, was transfected with pDORD1AS by Lipofect Amine mediated introduction and a subline termed SGC7901/VCRD1AS, which had stable overexpression of antisense RNA to cyclin D1, was obtained by selection in G418. The subline, control subline transfected pDOR neo and SGC7901/VCR were evaluated by methods of immunohistochemistry, flow cytometry, molecular hybridization, morphology and cell biology. RESULTS Compared with control cell lines, SGC7901/VCRD1AS had a reduced expression of cyclin D1 (inhibition rate was about 36%), increased cell size and cytoplasm to nucleus ratio, increased doubling time (42 2h to 26 8h and 26 4h), decreased saturation density (18 9×10 4 to 4 8×10 5 and 4 8×10 5), increased percentage of cells in the G1/G0 phase (80 9%-64 6% and 63 8%), reacquired serum dependence, and a loss of tumorigenicity in nude mice (0/4 to 4/4 and 4/4). CONCLUSION Stable overexpression of antisense RNA to cyclin D1 can reverse the transformed phenotype of human gastric cancer cells and may provide an approach of gene therapy for gastric cancer.
基金the National Natural Science Foundation of Guangdong Province,No.940319.
文摘INIRODUCTIONAccording to the therapeutic effect and strategy ofantisense RNA for hepatoccllular carcinoma(HCC),we have specifically synthesized partialcDNA of human insulin-like growth factor Ⅱ(IGF-Ⅱ)and constructed IGF-Ⅱ cDNA antisenseeukaryotic expression vector.The constructedvector was introduced into hepatoma cell lineSMMC-7721 to block the intrinsic IGF-Ⅱexpression.The biological behavior changes ofhepatoma cells were observed.All these
文摘AIM To study the specific inhibition of HBV gene expression by liver-targeting antisense oligonucleotide (ASON) directed against pre-c and c regious in a sequence-specific manner.METHODS According to the result of direct sequencing of PCR amplified products, a 16-mer phosphorothioate analogue of the antisense oligonucleotide (PS-ASOn) directed against the HBV U5-like region was synthesized and then linked with one live-targeting ligand, the galactosylated poly-L-lysine. Their effect on the expression of HBV gene was observed using the 2.2.15 cells.RESULTS HBV DNA in the 2.2.15 cells was from HBV with surface antigen subtype ayw1 by sequencing so that antisense oligonucleotides could bind specifically to the target sequence through base piring. Under the same experimental conditions, the inhibitory rates of PS-ASON to HBsAg and HBeAg were 70% and 58% at a concentration of 10μmol/L, while by ligand-PS-ASON they were 96% and 82%, the amount of HBV DNA in cultured supernatant and cells was reduced significantly. An unrelated sequence oligonucleotide showed no effectiveness. All the oligonucleotides had no cytotoxicity.CONCLUSION Antisense oligonucleotides complexed by the liver-targeting ligand can be targeted to cells via asialoglycoprotein receptors, resulting in supecific inhibition of HBV gene expression and replication.
文摘AIM: To study the distribution and stability of antisense oligodeoxynucleotide (ASODN) in Walker-256 cells and their distribution in liver, lung and kidney tissues after being infused alone or mixed with lipiodol via hepatic artery in a rat liver tumor model.METHODS: 5'-Isothiocyananate (FITC)-labeled vascular endothelial growth factor (VEGF) ASODN was added into Walker-256 cell culture media. Its distribution in cells was observed by fluorescence microscope at different time points. Walker-256 carcinosarcoma was transplanted into Wistar rat liver to establish a liver cancer model. 5'-FITC-labeled VEGF ASODN mixed with (mixed group, n = 6) or without (TAI group, n = 6)ultra-fluid lipiodol was administrated via hepatic artery.Frozen samples of liver, lung and kidney tissue were taken from rats after 1, 3 and 6 d, respectively. The distribution of ASODN was observed under fluorescent microscope.RESULTS: ASODN could enter cytoplasm within 2 h and nuclei within 6 h. Accumulation of ASODN reached the peak point in nuclei at 12 h, and then disappeared gradually. No fluorescence could be seen in cells at 48 h. In vivo experiment, on d 1 and 3 the fluorescence staining in liver was stronger in mixed group than in TAI group and more fluorescence could be detected in lung and kidney in TAI group than in mixed group. On d 6, no fluorescence could be detected in TAI group, but faint fluorescence could be seen in mixed group. ASODN could be seen in cancer cells and normal hepatic cells. In mixed group, ASODN was mainly distributed in liver tumor tissues.CONCLUSION: ASODN can transfect Walker-256 cells.ASODN mixed with lipiodol infusion via hepatic artery can be used in the treatment of HCC.
文摘AIM To compare the expression level of Fas gene and Bcl-2 gene in gastric cancer cells SGC7901 and gastric cancer MDR (multidrug resistant) cells SGC7901/VCR, to transduce Fas cDNA and Bcl-2 antisense nucleic acid into SGC7901/VCR cells respectively, and to observe the expression of two genes in transfectants and non-transfectants as well as their drug sensitivity.METHODS Eukaryotic expression vector pBK-Fas cDNA and pDOR-anti Bcl-2 were constructed and transfected into SGC7901/VCR cells by lipofectamine, respectively. Northern blot and Western blot were used to detect the expression of mRNA and protein in SGC7901/VCR and SGC7901 cells and transfectants, and drug sensitivity of transfectants for VCR, CDDP and 5-FU was analyzed with MTT assay.RESULTS After gene transfection, 80 for Fas and 120 for antisense Bcl-2 drug-resistant clones were selected from 2×105 cells, transfection rate being 0.04% and 0.06%. Two clones of SGC7901 Fas/VCR cells and SGC7901 anti Bcl-2/VCR cells were randomly selected for further incubation. Hybridization results showed that the expression level of Fas mRNA and protein in SGC7901/VCR cells was much lower, but that of Bcl-2 mRNA and protein was higher than that in SGC7901 cells. The expression of Fas mRNA and protein in SGC7901 Fas/VCR cells was higher, and of Bcl-2 mRNA and protein was lower in SGC7901 anti Bcl-2/VCR cells than that in non-transfectants. MTT assay showed that transfectants were more sensitive to VCR, CDDP, 5-FU than non-transfectants.CONCLUSION Bcl-2 gene displayed high expression while Fas gene had low expression in drug resistant gastric cancer cells. Expression of Bcl-2 protein was effectively blocked in SGC7901 anti Bcl-2/VCR cells by gene transfection. In contrast, the expression of Fas mRNA and protein in SGC7901 Fas/VCR cells increased. Fas gene and Bcl-2 antisense nucleic acid transfection sensitized drug resistant gastric cancer cells to chemotherapeutic drugs. These results suggest cell apoptosis plays an important role in the mechanism of MDR, and enhancing apoptosis might reverse MDR.
基金This study was supported by the grant from National Natural Science Foundation of China (No: 30170925).
文摘BACKGROUND: Multidrug resistance is a major obstacle in cancer chemotherapy. We examined whether the antisense RNA of multidrug resistance gene 1 (mdr1) could reverse multidrug resistance in the human hepatocellular carcinoma (HCC) cell line SMMC7721/ADM. METHODS: The recombinant adenoviruses pAdEasy- GFP-ASmdr1 product was produced by the adenoviral vector AdEasy system, which can express antisense RNA against the mdr1 gene. Following that, the recombinant adenovirus was transfected into the P-glycoprotein- producing multidrug resistance cell line, SMMC7721/ADM human HCC cells resistant to adriamycin (ADM) and daunorubicin (DNR). In order to investigate the reversal of multidrug resistance phenotype, we measured the expression of mdr1 mRNA by RT-PCR and the production of P-glycoprotein by flow cytometry. The sensitivities for ADM and DNR SMMC7721/ADM cells were examined by [3-(4, 5-dimethylthi-azol-2-yl)-2,5 diphenyl-terazolium bromide] (MTT) analysis. RESULTS: The low-level expression of mdr1 mRNA and P-glycoprotein production were observed in parental sensitive cells SMMC/7721 in addition to the overexpressionof mdr1 mRNA and P-glycoprotein in SMMC7721/ADM cells. The transfection of antisense-RNA into SMMC7721/ ADM cells resulted in decreases of mdr1 mRNA and P-glycoprotein, but increase of drug sensitivities. The sensitivities of transfected SMMC7721/ADM cells to ADM and DNR in IC50 reduced by 31.25% and 62.96% respectively. CONCLUSIONS: Mdr1 antisense RNA can increase the sensitivities of SMMC7721/ADM cells to anticancer drug by decreasing the expression of the mdr1 gene and inhibiting P-glycoprotein expression. This strategy may be applicable to cancer patients with P-glycoportein mediated multidrug resistance.