期刊文献+
共找到339,546篇文章
< 1 2 250 >
每页显示 20 50 100
Prediction of Shear Bond Strength of Asphalt Concrete Pavement Using Machine Learning Models and Grid Search Optimization Technique
1
作者 Quynh-Anh Thi Bui Dam Duc Nguyen +2 位作者 Hiep Van Le Indra Prakash Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期691-712,共22页
Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Ext... Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Extra Trees(ET),and Light Gradient Boosting Machine(LGBM),to predict SBS based on easily determinable input parameters.Also,the Grid Search technique was employed for hyper-parameter tuning of the ML models,and cross-validation and learning curve analysis were used for training the models.The models were built on a database of 240 experimental results and three input variables:temperature,normal pressure,and tack coat rate.Model validation was performed using three statistical criteria:the coefficient of determination(R2),the Root Mean Square Error(RMSE),and the mean absolute error(MAE).Additionally,SHAP analysis was also used to validate the importance of the input variables in the prediction of the SBS.Results show that these models accurately predict SBS,with LGBM providing outstanding performance.SHAP(Shapley Additive explanation)analysis for LGBM indicates that temperature is the most influential factor on SBS.Consequently,the proposed ML models can quickly and accurately predict SBS between two layers of asphalt concrete,serving practical applications in flexible pavement structure design. 展开更多
关键词 Shear bond asphalt pavement grid search optimization machine learning
下载PDF
Quafu-Qcover:Explore combinatorial optimization problems on cloud-based quantum computers 被引量:1
2
作者 许宏泽 庄伟峰 +29 位作者 王正安 黄凯旋 时运豪 马卫国 李天铭 陈驰通 许凯 冯玉龙 刘培 陈墨 李尚书 杨智鹏 钱辰 靳羽欣 马运恒 肖骁 钱鹏 顾炎武 柴绪丹 普亚南 张翼鹏 魏世杰 增进峰 李行 龙桂鲁 金贻荣 于海峰 范桁 刘东 胡孟军 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期104-115,共12页
We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and c... We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers. 展开更多
关键词 quantum cloud platform combinatorial optimization problems quantum software
下载PDF
Optimization Strategies of Na_(3)V_(2)(PO_(4))_(3) Cathode Materials for Sodium‑Ion Batteries
3
作者 Jiawen Hu Xinwei Li +4 位作者 Qianqian Liang Li Xu Changsheng Ding Yu Liu Yanfeng Gao 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期204-251,共48页
Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stab... Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs. 展开更多
关键词 Sodium-ion batteries Na_(3)V_(2)(PO_(4))_(3) Cathode materials Electrochemical performance optimization strategies
下载PDF
A Subdivision-Based Combined Shape and Topology Optimization in Acoustics
4
作者 Chuang Lu Leilei Chen +1 位作者 Jinling Luo Haibo Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期847-872,共26页
We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces.The existing structural optimization methods... We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces.The existing structural optimization methods mainly contain shape and topology schemes,with the former changing the surface geometric profile of the structure and the latter changing thematerial distribution topology or hole topology of the structure.In the present acoustic performance optimization,the coordinates of the control points in the subdivision surfaces fine mesh are selected as the shape design parameters of the structure,the artificial density of the sound absorbing material covered on the structure surface is set as the topology design parameter,and the combined topology and shape optimization approach is established through the sound field analysis of the subdivision surfaces boundary element method as a bridge.The topology and shape sensitivities of the approach are calculated using the adjoint variable method,which ensures the efficiency of the optimization.The geometric jaggedness and material distribution discontinuities that appear in the optimization process are overcome to a certain degree by the multiresolution method and solid isotropic material with penalization.Numerical examples are given to validate the effectiveness of the presented optimization approach. 展开更多
关键词 Subdivision surfaces boundary element method topology optimization shape optimization combined optimization
下载PDF
Multi-Level Image Segmentation Combining Chaotic Initialized Chimp Optimization Algorithm and Cauchy Mutation
5
作者 Shujing Li Zhangfei Li +2 位作者 Wenhui Cheng Chenyang Qi Linguo Li 《Computers, Materials & Continua》 SCIE EI 2024年第8期2049-2063,共15页
To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cau... To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cauchy mutation.First,Sin chaos is introduced to improve the random population initialization scheme of the CHOA,which not only guarantees the diversity of the population,but also enhances the distribution uniformity of the initial population.Next,Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position(threshold)updating to avoid the CHOA falling into local optima.Finally,an improved CHOA was formed through the combination of chaos initialization and Cauchy mutation(CICMCHOA),then taking fuzzy Kapur as the objective function,this paper applied CICMCHOA to natural and medical image segmentation,and compared it with four algorithms,including the improved Satin Bowerbird optimizer(ISBO),Cuckoo Search(ICS),etc.The experimental results deriving from visual and specific indicators demonstrate that CICMCHOA delivers superior segmentation effects in image segmentation. 展开更多
关键词 Image segmentation image thresholding chimp optimization algorithm chaos initialization Cauchy mutation
下载PDF
Learning to Branch in Combinatorial Optimization With Graph Pointer Networks
6
作者 Rui Wang Zhiming Zhou +4 位作者 Kaiwen Li Tao Zhang Ling Wang Xin Xu Xiangke Liao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期157-169,共13页
Traditional expert-designed branching rules in branch-and-bound(B&B) are static, often failing to adapt to diverse and evolving problem instances. Crafting these rules is labor-intensive, and may not scale well wi... Traditional expert-designed branching rules in branch-and-bound(B&B) are static, often failing to adapt to diverse and evolving problem instances. Crafting these rules is labor-intensive, and may not scale well with complex problems.Given the frequent need to solve varied combinatorial optimization problems, leveraging statistical learning to auto-tune B&B algorithms for specific problem classes becomes attractive. This paper proposes a graph pointer network model to learn the branch rules. Graph features, global features and historical features are designated to represent the solver state. The graph neural network processes graph features, while the pointer mechanism assimilates the global and historical features to finally determine the variable on which to branch. The model is trained to imitate the expert strong branching rule by a tailored top-k Kullback-Leibler divergence loss function. Experiments on a series of benchmark problems demonstrate that the proposed approach significantly outperforms the widely used expert-designed branching rules. It also outperforms state-of-the-art machine-learning-based branch-and-bound methods in terms of solving speed and search tree size on all the test instances. In addition, the model can generalize to unseen instances and scale to larger instances. 展开更多
关键词 Branch-and-bound(B&B) combinatorial optimization deep learning graph neural network imitation learning
下载PDF
Control effect and optimization scheme of combined rockboltecable support for a tunnel in horizontally layered limestone:A case study
7
作者 Jiachen Wang Dingli Zhang +1 位作者 Zhenyu Sun Feng Peng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4586-4604,共19页
This study focused on the mechanical behavior of a deep-buried tunnel constructed in horizontally layered limestone,and investigated the effect of a new combined rockboltecable support system on the tunnel response.Th... This study focused on the mechanical behavior of a deep-buried tunnel constructed in horizontally layered limestone,and investigated the effect of a new combined rockboltecable support system on the tunnel response.The Yujingshan Tunnel,excavated through a giant karst cave,was used as a case study.Firstly,a multi-objective optimization model for the rockboltecable support was proposed by using fuzzy mathematics and multi-objective comprehensive decision-making principles.Subsequently,the parameters of the surrounding rock were calibrated by comparing the simulation results obtained by the discrete element method(DEM)with the field monitoring data to obtain an optimized support scheme based on the optimization model.Finally,the optimization scheme was applied to the karst cave section,which was divided into the B-and C-shaped sections.The distribution range of the rockboltecable support in the C-shaped section was larger than that in the B-shaped section.The field monitoring results,including tunnel crown settlement,horizontal convergence,and axial force of the rockboltecable system,were analyzed to assess the effectiveness of the optimization scheme.The maximum crown settlement and horizontal convergence were measured to be 25.9 mm and 35 mm,accounting for 0.1%and 0.2%of the tunnel height and span,respectively.Although the C-shaped section had poorer rock properties than the B-shaped section,the crown settlement and horizontal convergence in the C-shaped section ranged from 46%to 97%of those observed in the B-shaped section.The cable axial force in the Bshaped section was approximately 60%of that in the C-shaped section.The axial force in the crown rockbolt was much smaller than that in the sidewall rockbolt.Field monitoring results demonstrated that the optimized scheme effectively controlled the deformation of the layered surrounding rock,ensuring that it remained within a safe range.These results provide valuable references for the design of support systems in deep-buried tunnels situated in layered rock masses. 展开更多
关键词 Giant karst cave Multi-objective optimization model Numerical simulation Combined rockboltecable support Field monitoring
下载PDF
Optimization and Characterization of Combined Degumming Process of Typha angustata L. Stem Fibers
8
作者 Sana Rezig Foued Khoffi +2 位作者 Mounir Jaouadi Asma Eloudiani Slah Msahli 《Journal of Renewable Materials》 EI CAS 2024年第6期1071-1086,共16页
Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to... Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to study their physical,chemical,and mechanical properties.In this context,the present study relates to the extraction,characterization,and optimization of Typha angustata L.stem fibers.For this purpose,desirability functions and response surface methodology were applied to simultaneously optimize the diameter(D),linear density(LD);yield(Y),lignin fraction(L),and tenacity(T)of Typha stem fibers.Typha stems have been subjected to both alkali(NaOH)and enzymatic(pectinex ultra-SPL)treatments.Three levels of process variables including enzyme concentration(10,15,and 20 ml/L)and treatment duration(10,15,and 20 days)were used to design the experiments according to the factorial design.Experimental results were examined by analysis of variance and fitted to second order polynomial model using multiple regression analysis.The Derringer’s desirability function released that the values of process variables generating optimized diameter,linear density,yield,lignin ratio and tenacity are 20 ml/L and 20 days for concentration of pectinex ultra-SPL enzyme and treatment duration,respectively.Confirmation was performed and high degree of correlation was found between the experimental and statistical values.Moreover,the morphological structure has been investigated by the scanning electron microscope,showing a crenelated structure of ultimate fiber bundles of cellulose composing the Typha fiber.Compared to Typha stem non-treated fibers(TSNTF),Typha stem combined treated fibers(TSCTF),brings to improve mechanical properties.This change in mechanical properties is affected by modifying the fiber structure showing alpha cellulose of(66.86%)and lignin ratio of(10.83%)with a crystallinity index of(58.47%). 展开更多
关键词 Typha angustata L.stems fibers combined treatment optimization process desirability function chemical and physical properties morphological structure
下载PDF
Desulfurization characteristics of slaked lime and regulation optimization of circulating fluidized bed flue gas desulfurization process--A combined experimental and numerical simulation study
9
作者 Jing Chen Wenqi Zhong +2 位作者 Guanwen Zhou Jinming Li Shasha Ding 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期163-175,共13页
Circulating fluidized bed flue gas desulfurization(CFB-FGD) process has been widely applied in recent years. However, high cost caused by the use of high-quality slaked lime and difficult operation due to the complex ... Circulating fluidized bed flue gas desulfurization(CFB-FGD) process has been widely applied in recent years. However, high cost caused by the use of high-quality slaked lime and difficult operation due to the complex flow field are two issues which have received great attention. Accordingly, a laboratory-scale fluidized bed reactor was constructed to investigate the effects of physical properties and external conditions on desulfurization performance of slaked lime, and the conclusions were tried out in an industrial-scale CFB-FGD tower. After that, a numerical model of the tower was established based on computational particle fluid dynamics(CPFD) and two-film theory. After comparison and validation with actual operation data, the effects of operating parameters on gas-solid distribution and desulfurization characteristics were investigated. The results of experiments and industrial trials showed that the use of slaked lime with a calcium hydroxide content of approximately 80% and particle size greater than 40 μm could significantly reduce the cost of desulfurizer. Simulation results showed that the flow field in the desulfurization tower was skewed under the influence of circulating ash. We obtained optimal operating conditions of 7.5 kg·s^(-1)for the atomized water flow, 70 kg·s^(-1)for circulating ash flow, and 0.56 kg·s^(-1)for slaked lime flow, with desulfurization efficiency reaching 98.19% and the exit flue gas meeting the ultraclean emission and safety requirements. All parameters selected in the simulation were based on engineering examples and had certain application reference significance. 展开更多
关键词 Circulating fluidized bed flue gas desulfurization(CFB-FGD) Desulfurization characteristics Computational particle fluid dynamics (CPFD)numerical simulation Operational optimization Gasesolid flow
下载PDF
A Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller Model Combined with an Improved Particle Swarm Optimization Method for Fall Detection
10
作者 Jyun-Guo Wang 《Computer Systems Science & Engineering》 2024年第5期1149-1170,共22页
In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible t... In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%. 展开更多
关键词 Double interactively recurrent fuzzy cerebellar model articulation controller(D-IRFCMAC) improved particle swarm optimization(IPSO) fall detection
下载PDF
Combinational Optimization of Strut Placement for Intracranial Stent Using a Realistic Aneurysm
11
作者 Hitomi Anzai Bastien Chopard Makoto Ohta 《Journal of Flow Control, Measurement & Visualization》 2014年第2期67-77,共11页
Stent insertion for cerebral aneurysm has been studied using ideal and realistic aneurysms in recent years. Stent insertion aims at reducing the flow in an aneurysm. To minimize the average velocity in an aneurysm, we... Stent insertion for cerebral aneurysm has been studied using ideal and realistic aneurysms in recent years. Stent insertion aims at reducing the flow in an aneurysm. To minimize the average velocity in an aneurysm, we applied optimization to the strut position in a realistic aneurysm based on computational fluid dynamics. The result shows the effect on velocity reduction of strut placement in the inflow area. 展开更多
关键词 CEREBRAL ANEURYSM Flow Diverter CFD Design optimization
下载PDF
Combining the genetic algorithms with artificial neural networks for optimization of board allocating 被引量:2
12
作者 曹军 张怡卓 岳琪 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期87-88,共2页
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa... This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum. 展开更多
关键词 Artificial neural network Genetic algorithms Back propagation model (BP model) optimization
下载PDF
Optimization of Hybrid Combination and an Application Example for Strawberry Breeding
13
作者 李金凤 吉沐祥 +4 位作者 糜林 万春雁 霍恒志 陈丙义 陈雪平 《Agricultural Science & Technology》 CAS 2014年第12期2103-2107,共5页
This study was conducted to select new strawberry cultivars with early maturity, disease resistance and high quality, by optimizing the hybrid combinations of Benihoppe, a Japanese strawberry cultivar, which is extens... This study was conducted to select new strawberry cultivars with early maturity, disease resistance and high quality, by optimizing the hybrid combinations of Benihoppe, a Japanese strawberry cultivar, which is extensively planted but not resistant to anthrax. The reciprocal crosses were performed using Benihoppe, as the female parent, four disease-resistant European cultivars Albion, Camino Real, Ven- tana and Virginia, and one Japanese cultivar Meiho as the male parent. Then, the seedling propagation coefficient, disease resistance, fruit quality and yield of F1 gen- eration of the combinations were detected and compared. Besides, the breeding and traits of a new cultivar F1-40 developed from the cross between Benihoppe and Mei- ho were introduced as an instance to prove the feasibility of the combinations/lines. 展开更多
关键词 STRAWBERRY Hybrid combination optimization APPLICATION
下载PDF
Multi-Strategy Assisted Multi-Objective Whale Optimization Algorithm for Feature Selection 被引量:1
14
作者 Deng Yang Chong Zhou +2 位作者 Xuemeng Wei Zhikun Chen Zheng Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1563-1593,共31页
In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature sel... In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA. 展开更多
关键词 Multi-objective optimization whale optimization algorithm multi-strategy feature selection
下载PDF
MCWOA Scheduler:Modified Chimp-Whale Optimization Algorithm for Task Scheduling in Cloud Computing 被引量:1
15
作者 Chirag Chandrashekar Pradeep Krishnadoss +1 位作者 Vijayakumar Kedalu Poornachary Balasundaram Ananthakrishnan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2593-2616,共24页
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ... Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO). 展开更多
关键词 Cloud computing SCHEDULING chimp optimization algorithm whale optimization algorithm
下载PDF
Accelerated design of high-performance Mg-Mn-based magnesium alloys based on novel bayesian optimization 被引量:2
16
作者 Xiaoxi Mi Lili Dai +4 位作者 Xuerui Jing Jia She Bjørn Holmedal Aitao Tang Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期750-766,共17页
Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing ... Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation. 展开更多
关键词 Mg-Mn-based alloys HIGH-PERFORMANCE Alloy design Machine learning Bayesian optimization
下载PDF
Optimization Design of the Multi-Layer Cross-Sectional Layout of An Umbilical Based on the GA-GLM 被引量:1
17
作者 YANG Zhi-xun YIN Xu +5 位作者 FAN Zhi-rui YAN Jun LU Yu-cheng SU Qi MAO Yandong WANG Hua-lin 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期247-254,共8页
Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components direct... Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry. 展开更多
关键词 UMBILICAL cross-sectional layout MULTI-LAYERS GA-GLM optimization
下载PDF
Design and optimization of a greener sinomenine hydrochloride preparation process considering variations among different batches of the medicinal herb 被引量:1
18
作者 Dandan Ren Jiale Xie +2 位作者 Tianle Chen Haibin Qu Xingchu Gong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期77-90,共14页
The current methods used to industrially produce sinomenine hydrochloride involve several issues,including high solvent toxicity,long process flow,and low atomic utilization efficiency,and the greenness scores of the ... The current methods used to industrially produce sinomenine hydrochloride involve several issues,including high solvent toxicity,long process flow,and low atomic utilization efficiency,and the greenness scores of the processes are below 65 points.To solve these problems,a new process using anisole as the extractant was proposed.Anisole exhibits high selectivity for sinomenine and can be connected to the subsequent water-washing steps.After alkalization of the medicinal material,heating extraction,water washing,and acidification crystallization were carried out.The process was modeled and optimized.The design space was constructed.The recommended operating ranges for the critical process parameters were 3.0–4.0 h for alkalization time,60.0–80.0℃ for extraction temperature,2.0–3.0(volume ratio)for washing solution amount,and 2.0–2.4 mol·L^(-1) for hydrochloric acid concentration.The new process shows good robustness because different batches of medicinal materials did not greatly impact crystal purity or sinomenine transfer rate.The sinomenine transfer rate was about 20%higher than that of industrial processes.The greenness score increased to 90 points since the novel process proposed in this research solves the problems of long process flow,high solvent toxicity,and poor atomic economy,better aligning with the concept of green chemistry. 展开更多
关键词 Sinomenine hydrochloride Process optimization ANISOLE
下载PDF
Frilled Lizard Optimization: A Novel Bio-Inspired Optimizer for Solving Engineering Applications 被引量:1
19
作者 Ibraheem Abu Falahah Osama Al-Baik +6 位作者 Saleh Alomari Gulnara Bektemyssova Saikat Gochhait Irina Leonova OmParkash Malik Frank Werner Mohammad Dehghani 《Computers, Materials & Continua》 SCIE EI 2024年第6期3631-3678,共48页
This research presents a novel nature-inspired metaheuristic algorithm called Frilled Lizard Optimization(FLO),which emulates the unique hunting behavior of frilled lizards in their natural habitat.FLO draws its inspi... This research presents a novel nature-inspired metaheuristic algorithm called Frilled Lizard Optimization(FLO),which emulates the unique hunting behavior of frilled lizards in their natural habitat.FLO draws its inspiration from the sit-and-wait hunting strategy of these lizards.The algorithm’s core principles are meticulously detailed and mathematically structured into two distinct phases:(i)an exploration phase,which mimics the lizard’s sudden attack on its prey,and(ii)an exploitation phase,which simulates the lizard’s retreat to the treetops after feeding.To assess FLO’s efficacy in addressing optimization problems,its performance is rigorously tested on fifty-two standard benchmark functions.These functions include unimodal,high-dimensional multimodal,and fixed-dimensional multimodal functions,as well as the challenging CEC 2017 test suite.FLO’s performance is benchmarked against twelve established metaheuristic algorithms,providing a comprehensive comparative analysis.The simulation results demonstrate that FLO excels in both exploration and exploitation,effectively balancing these two critical aspects throughout the search process.This balanced approach enables FLO to outperform several competing algorithms in numerous test cases.Additionally,FLO is applied to twenty-two constrained optimization problems from the CEC 2011 test suite and four complex engineering design problems,further validating its robustness and versatility in solving real-world optimization challenges.Overall,the study highlights FLO’s superior performance and its potential as a powerful tool for tackling a wide range of optimization problems. 展开更多
关键词 optimization engineering BIO-INSPIRED METAHEURISTIC frilled lizard exploration EXPLOITATION
下载PDF
Towards the performance limit of catenary meta-optics via field-driven optimization 被引量:1
20
作者 Siran Chen Yingli Ha +8 位作者 Fei Zhang Mingbo Pu Hanlin Bao Mingfeng Xu Yinghui Guo Yue Shen Xiaoliang Ma Xiong Li Xiangang Luo 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第5期33-42,共10页
Catenary optics enables metasurfaces with higher efficiency and wider bandwidth,and is highly anticipated in the imaging system,super-resolution lithography,and broadband absorbers.However,the periodic boundary approx... Catenary optics enables metasurfaces with higher efficiency and wider bandwidth,and is highly anticipated in the imaging system,super-resolution lithography,and broadband absorbers.However,the periodic boundary approximation without considering aperiodic electromagnetic crosstalk poses challenges for catenary optical devices to reach their performance limits.Here,perfect control of both local geometric and propagation phases is realized through field-driven optimization,in which the field distribution is calculated under real boundary conditions.Different from other optimization methods requiring a mass of iterations,the proposed design method requires less than ten iterations to get the efficiency close to the optimal value.Based on the library of shape-optimized catenary structures,centimeter-scale devices can be designed in ten seconds,with the performance improved by ~15%.Furthermore,this method has the ability to extend catenary-like continuous structures to arbitrary polarization,including both linear and elliptical polarizations,which is difficult to achieve with traditional design methods.It provides a way for the development of catenary optics and serves as a potent tool for constructing high-performance optical devices. 展开更多
关键词 catenary optics catenary structures field-driven optimization
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部