期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dynamic Modeling, Testing, and Stability Analysis of an Ornithoptic Blimp 被引量:1
1
作者 John Dietl Thomas Herrmann +1 位作者 Gregory Reich Ephrahim Garcia 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第4期375-386,共12页
In order to study omithopter flight and to improve a dynamic model of flapping propulsion, a series 0f tests are conducted on a flapping-wing blimp. The blimp is designed and constructed from mylar plastic and balsa w... In order to study omithopter flight and to improve a dynamic model of flapping propulsion, a series 0f tests are conducted on a flapping-wing blimp. The blimp is designed and constructed from mylar plastic and balsa wood as a test platform for aerodynamics and flight dynamics. The blimp, 2.3 meters long and 420 gram mass, is propelled by its flapping wings. Due to buoyancy the wings have no lift requirement so that the distinction between lift and propulsion can be analyzed in a flight platform at low flight speeds. The blimp is tested using a Vicon motion tracking system and various initial conditions are tested including accelerating flight from standstill, decelerating from an initial speed higher than its steady state, and from its steady-state speed but disturbed in pitch angle. Test results are used to estimate parameters in a coupled quasi-steady aerodynamics/Newtonian flight dynamics model. This model is then analyzed using Floquet theory to determine local dynamic modes and stability. It is concluded that the dynamic model adequately describes the vehicle's nonlinear behavior near the steady-state velocity and that the vehicle's linearized modes are akin to those of a fixed-wing aircraft. 展开更多
关键词 omithopter blimp flight dynamics stability analysis
下载PDF
Periodic Tail Motion Linked to Wing Motion Affects the Longitudinal Stability of Ornithopter Flight 被引量:4
2
作者 Jun-seong Lee Joong-kwan Kim +1 位作者 Jae-hung Han Charles P. Ellington 《Journal of Bionic Engineering》 SCIE EI CSCD 2012年第1期18-28,共11页
During slow level flight of a pigeon, a caudal muscle involved in tail movement, the levator caudae pars vertebralis, is activated at a particular phase with the pectoralis wing muscle. Inspired by mechanisms for the ... During slow level flight of a pigeon, a caudal muscle involved in tail movement, the levator caudae pars vertebralis, is activated at a particular phase with the pectoralis wing muscle. Inspired by mechanisms for the control of stability in flying animals, especially the role of the tail in avian flight, we investigated how periodic tail motion linked to motion of the wings affects the longitudinal stability of ornithopter flight. This was achieved by using an integrative ornithopter flight simulator that included aeroelastic behaviour of the flexible wings and tail. Trim flight trajectories of the simulated omithopter model were calculated by time integration of the nonlinear equations of a flexible multi-body dynamics coupled with a semi-empirical flapping-wing and tail aerodynamic models. The unique trim flight characteristics of ornithopter, Limit-Cycle Oscillation, were found under the sets of wingbeat frequency and tail elevation angle, and the appropriate phase angle of tail motion was determined by parameter studies minimizing the amplitude of the oscillations. The numerical simulation results show that tail actuation synchronized with wing motion suppresses the oscillation of body pitch angle over a wide range of wingbeat frequencies. 展开更多
关键词 omithopter flapping flight periodic tail motion longitudinal flight stability aeroelasticity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部