Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf...Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.展开更多
This paper proposes a new distributed formation flight protocol for unmanned aerial vehicles(UAVs)to perform coordinated circular tracking around a set of circles on a target sphere.Different from the previous results...This paper proposes a new distributed formation flight protocol for unmanned aerial vehicles(UAVs)to perform coordinated circular tracking around a set of circles on a target sphere.Different from the previous results limited in bidirectional networks and disturbance-free motions,this paper handles the circular formation flight control problem with both directed network and spatiotemporal disturbance with the knowledge of its upper bound.Distinguishing from the design of a common Lyapunov fiunction for bidirectional cases,we separately design the control for the circular tracking subsystem and the formation keeping subsystem with the circular tracking error as input.Then the whole control system is regarded as a cascade connection of these two subsystems,which is proved to be stable by input-tostate stability(ISS)theory.For the purpose of encountering the external disturbance,the backstepping technology is introduced to design the control inputs of each UAV pointing to North and Down along the special sphere(say,the circular tracking control algorithm)with the help of the switching function.Meanwhile,the distributed linear consensus protocol integrated with anther switching anti-interference item is developed to construct the control input of each UAV pointing to east along the special sphere(say,the formation keeping control law)for formation keeping.The validity of the proposed control law is proved both in the rigorous theory and through numerical simulations.展开更多
For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. A...For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control(DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error(ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to drivers is relieved.展开更多
In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent v...In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent vehicle systems. Based on the dynamical model of vehicle, by applying Lyapunov function method, the control problem for lane keeping in the presence of parametric uncertainty is studied, the direct adaptive algorithm to compensate for parametric variations is proposed and the terminal sliding mode variable structure control laws are designed with look-ahead references systems. The stability of the system is investigated from the zero dynamics analysis. Simulation results show that convergence rates of the lateral displacement error, yaw angle error and slid angle are fast.展开更多
Combined with the characteristics of the distributed-drive electric vehicle and direct yaw moment control,a double-layer structure direct yaw moment controller is designed.The upper additional yaw moment controller is...Combined with the characteristics of the distributed-drive electric vehicle and direct yaw moment control,a double-layer structure direct yaw moment controller is designed.The upper additional yaw moment controller is constructed based on model predictive control.Aiming at minimizing the utilization rate of tire adhesion and constrained by the working characteristics of motor system and brake system,a quadratic programming active set was designed to optimize the distribution of additional yaw moments.The road surface adhesion coefficient has a great impact on the reliability of direct yaw moment control,for which joint observer of vehicle state parameters and road surface parameters is designed by using unscented Kalman filter algorithm,which correlates vehicle state observer and road surface parameter observer to form closed-loop feedback correction.The results show that compared to the“feedforward+feedback”control,the vehicle’s error of yaw rate and sideslip angle by the model predictive control is smaller,which can improve the vehicle stability effectively.In addition,according to the results of the docking road simulation test,the joint observer of vehicle state and road surface parameters can improve the adaptability of the vehicle stability controller to the road conditions with variable adhesion coefficients.展开更多
A consensus algorithm proposed in the paper is applied to tackle remarkable problems of unmeasurable velocities,the environmental disturbances, and the limited communication environment for the multiple unmanned under...A consensus algorithm proposed in the paper is applied to tackle remarkable problems of unmeasurable velocities,the environmental disturbances, and the limited communication environment for the multiple unmanned underwater vehicles(multi-UUVs). Firstly, for a complex nonlinear and coupled model of the unmanned underwater vehicle(UUV), a technique of feedback linearization is developed to transform the nonlinear UUV model into a secondorder integral UUV model. Secondly, to address the problem of the unavailable velocity information and environmental disturbances for the multi-UUVs system, we design a distributed extended state observer(DESO) to estimate the unmeasurable velocities and environmental disturbances using the relative position information. Finally,we propose a protocol based on the estimation information from the DESO and demonstrate that the multi-UUVs system with the switching directed topologies under the protocol can reach consensus asymptotically. The theoretical result proposed in the literature is verified by one numerical example.展开更多
The design and development of the traction controller for electric vehicle is introduced, which is based on the induction motor. This drive is developed by using a digital signal processor at low cost and carried out ...The design and development of the traction controller for electric vehicle is introduced, which is based on the induction motor. This drive is developed by using a digital signal processor at low cost and carried out with the module design concept of both software and hardware. Nevertheless, a scheme of the sensorless direct torque control is based on the developed hardware, of which the feasibility is tested by a trial program. Additionally, both the interface function of the drive hardware and the feasibility of its software are proved to be good by the trail programs. A test motor can run about 18?r/min by a variable frequency program with the space vector pulse width modulation technology, of which the torque is visible pulsatile. In this presentation, based on the theoretical approach, the sensorless torque control is to be studied and applied to electric vehicles, of which the quick, smooth and stable torque response is emphasized because it quite benefits improving the drive performance of electric vehicles.展开更多
The current research of autonomous vehicle motion control mainly focuses on trajectory tracking and velocity tracking. However, numerous studies deal with trajectory tracking and velocity tracking separately, and the ...The current research of autonomous vehicle motion control mainly focuses on trajectory tracking and velocity tracking. However, numerous studies deal with trajectory tracking and velocity tracking separately, and the yaw stability is seldom considered during trajectory tracking. In this research, a combination of the longitudinal–lateral control method with the yaw stability in the trajectory tracking for autonomous vehicles is studied. Based on the vehicle dynamics, considering the longitudinal and lateral motion of the vehicle, the velocity tracking and trajectory tracking problems can be attributed to the longitudinal and lateral control. A sliding mode variable structure control method is used in the longitudinal control. The total driving force is obtained from the velocity error in order to carry out velocity tracking. A linear time-varying model predictive control method is used in the lateral control to predict the required front wheel angle for trajectory tracking. Furthermore, a combined control framework is established to control the longitudinal and lateral motions and improve the reliability of the longitudinal and lateral direction control. On this basis, the driving force of a tire is allocated reasonably by using the direct yaw moment control, which ensures good yaw stability of the vehicle when tracking the trajectory. Simulation results indicate that the proposed control strategy is good in tracking the reference velocity and trajectory and improves the performance of the stability of the vehicle.展开更多
The current research of direct yaw moment control(DYC) system focus on the design of target yaw moment and the distribution of wheel brake force. The differential braking intervention can effectively improve the lat...The current research of direct yaw moment control(DYC) system focus on the design of target yaw moment and the distribution of wheel brake force. The differential braking intervention can effectively improve the lateral stability of the vehicle, however, the effect of DYC can be improved a step further by applying the control of vehicle longitudinal velocity. In this paper, the relationship between the vehicle longitudinal velocity and lateral stability is studied, and the simulation results show that a decrease of 5 km/h of longitudinal velocity at a particular situation can bring 100° increasing of stable steering upper limit. A critical stable velocity considering the effect of steering and yaw rate measurement is defined to evaluate the risk of losing steer-ability or stability. A novel velocity pre-control method is proposed by using a hierarchical pre-control logic and is integrated with the traditional DYC system. The control algorithm is verified through a hardware in-the-loop simulation system. Double lane change(DLC) test results on both high friction coefficient(μ) and low μ roads show that by using the pre-control method, the steering effort in DLC test can be reduced by 38% and 51% and the peak value of brake pressure control can be reduced by 20% and 12% respectively on high μ and low μ roads, the lateral stability is also improved. This research proposes a novel DYC system with lighter control effort and better control effect.展开更多
In the constrained reentry trajectory design of hypersonic vehicles, multiple objectives with priorities bring about more difficulties to find the optimal solution. Therefore, a multi-objective reentry trajectory opti...In the constrained reentry trajectory design of hypersonic vehicles, multiple objectives with priorities bring about more difficulties to find the optimal solution. Therefore, a multi-objective reentry trajectory optimization (MORTO) approach via generalized varying domain (GVD) is proposed. Using the direct collocation approach, the trajectory optimization problem involving multiple objectives is discretized into a nonlinear multi-objective programming with priorities. In terms of fuzzy sets, the objectives are fuzzified into three types of fuzzy goals, and their constant tolerances are substituted by the varying domains. According to the principle that the objective with higher priority has higher satisfactory degree, the priority requirement is modeled as the order constraints of the varying domains. The corresponding two-side, single-side, and hybrid-side varying domain models are formulated for three fuzzy relations respectively. By regulating the parameter, the optimal reentry trajectory satisfying priorities can be achieved. Moreover, the performance about the parameter is analyzed, and the algorithm to find its specific value for maximum priority difference is proposed. The simulations demonstrate the effectiveness of the proposed method for hypersonic vehicles, and the comparisons with the traditional methods and sensitivity analysis are presented.展开更多
This paper proposes the nonlinear direct data-driven control from theoretical analysis and practical engineering,i.e.,unmanned aerial vehicle(UAV)formation flight system.Firstly,from the theoretical point of view,cons...This paper proposes the nonlinear direct data-driven control from theoretical analysis and practical engineering,i.e.,unmanned aerial vehicle(UAV)formation flight system.Firstly,from the theoretical point of view,consider one nonlinear closedloop system with a nonlinear plant and nonlinear feed-forward controller simultaneously.To avoid the complex identification process for that nonlinear plant,a nonlinear direct data-driven control strategy is proposed to design that nonlinear feed-forward controller only through the input-output measured data sequence directly,whose detailed explicit forms are model inverse method and approximated analysis method.Secondly,from the practical point of view,after reviewing the UAV formation flight system,nonlinear direct data-driven control is applied in designing the formation controller,so that the followers can track the leader’s desired trajectory during one small time instant only through solving one data fitting problem.Since most natural phenomena have nonlinear properties,the direct method must be the better one.Corresponding system identification and control algorithms are required to be proposed for those nonlinear systems,and the direct nonlinear controller design is the purpose of this paper.展开更多
美国定向能机动近程防空(directed energy maneuver-short range air defense,DE M-SHORAD)计划通过击伤、摧毁或压制旋转翼无人机、固定翼无人机以及火箭弹、火炮炮弹、迫击炮弹(rockets,artillery and mortar,RAM)等威胁目标,为机动...美国定向能机动近程防空(directed energy maneuver-short range air defense,DE M-SHORAD)计划通过击伤、摧毁或压制旋转翼无人机、固定翼无人机以及火箭弹、火炮炮弹、迫击炮弹(rockets,artillery and mortar,RAM)等威胁目标,为机动部队提供伴随防空,对抗新兴威胁,属于美国陆军防空反导现代化的优先项目之一。首先介绍了DE M-SHORAD研制计划;其次详细分析了系统结构,并由系统参数评估了系统的作战性能;最后梳理了系统的研制进展。通过综合分析可知,DE M-SHORAD系统采用最佳组件,通过快速原型方法实现激光武器系统在装甲车上的集成;为降低技术风险,该计划在发展方式上分为两个阶段,首先集成、测试2 kW~5 kW机动实验型高能激光器(mobile experimental high-energy laser,MEHEL),然后再研制50 kW级的多任务高能激光器(multi-mission high-energy laser,MMHEL)。经计算可得:MEHEL和MMHEL对无人机的最大射程分别约为0.77 km、4.8 km。展开更多
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324)。
文摘Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.
基金supported in part by the National Natural Science Foundation of China(61673106)the Natural Science Foundation of Jiangsu Province(BK20171362)the Fundamental Research Funds for the Central Universities(2242019K40024)
文摘This paper proposes a new distributed formation flight protocol for unmanned aerial vehicles(UAVs)to perform coordinated circular tracking around a set of circles on a target sphere.Different from the previous results limited in bidirectional networks and disturbance-free motions,this paper handles the circular formation flight control problem with both directed network and spatiotemporal disturbance with the knowledge of its upper bound.Distinguishing from the design of a common Lyapunov fiunction for bidirectional cases,we separately design the control for the circular tracking subsystem and the formation keeping subsystem with the circular tracking error as input.Then the whole control system is regarded as a cascade connection of these two subsystems,which is proved to be stable by input-tostate stability(ISS)theory.For the purpose of encountering the external disturbance,the backstepping technology is introduced to design the control inputs of each UAV pointing to North and Down along the special sphere(say,the circular tracking control algorithm)with the help of the switching function.Meanwhile,the distributed linear consensus protocol integrated with anther switching anti-interference item is developed to construct the control input of each UAV pointing to east along the special sphere(say,the formation keeping control law)for formation keeping.The validity of the proposed control law is proved both in the rigorous theory and through numerical simulations.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2011CB711200)National Science and Technology Support Program of China(Grant No.2015BAG17B00)National Natural Science Foundation of China(Grant No.51475333)
文摘For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control(DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error(ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to drivers is relieved.
基金Sponsored by the National Natural Science Foundation of China(Grant No.10772152)
文摘In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent vehicle systems. Based on the dynamical model of vehicle, by applying Lyapunov function method, the control problem for lane keeping in the presence of parametric uncertainty is studied, the direct adaptive algorithm to compensate for parametric variations is proposed and the terminal sliding mode variable structure control laws are designed with look-ahead references systems. The stability of the system is investigated from the zero dynamics analysis. Simulation results show that convergence rates of the lateral displacement error, yaw angle error and slid angle are fast.
基金funded by Youth Program of National Natural Science Foundation of China(52002034)National Key R&D Program of China(2018YFB1600701)+2 种基金Key Research and Development Program of Shaanxi(2020ZDLGY16-01,2019ZDLGY15-02)Natural Science Basic Research Program of Shaanxi(2020JQ-381)Fundamental Research Funds for the Central Universities,CHD(300102220113).
文摘Combined with the characteristics of the distributed-drive electric vehicle and direct yaw moment control,a double-layer structure direct yaw moment controller is designed.The upper additional yaw moment controller is constructed based on model predictive control.Aiming at minimizing the utilization rate of tire adhesion and constrained by the working characteristics of motor system and brake system,a quadratic programming active set was designed to optimize the distribution of additional yaw moments.The road surface adhesion coefficient has a great impact on the reliability of direct yaw moment control,for which joint observer of vehicle state parameters and road surface parameters is designed by using unscented Kalman filter algorithm,which correlates vehicle state observer and road surface parameter observer to form closed-loop feedback correction.The results show that compared to the“feedforward+feedback”control,the vehicle’s error of yaw rate and sideslip angle by the model predictive control is smaller,which can improve the vehicle stability effectively.In addition,according to the results of the docking road simulation test,the joint observer of vehicle state and road surface parameters can improve the adaptability of the vehicle stability controller to the road conditions with variable adhesion coefficients.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51679057 and 51709062)Heilongjiang Province Outstanding Youth Fund (Grant No. J2016JQ0052)+2 种基金Equipment Preresearch Key Lab Fund (Grant No. 614221580107)China Postdoctoral Science Foundation (Grant No. 2019M651265)Harbin Science and Technology Talent Research Special Fund (Grant No.2017RAQXJ150)。
文摘A consensus algorithm proposed in the paper is applied to tackle remarkable problems of unmeasurable velocities,the environmental disturbances, and the limited communication environment for the multiple unmanned underwater vehicles(multi-UUVs). Firstly, for a complex nonlinear and coupled model of the unmanned underwater vehicle(UUV), a technique of feedback linearization is developed to transform the nonlinear UUV model into a secondorder integral UUV model. Secondly, to address the problem of the unavailable velocity information and environmental disturbances for the multi-UUVs system, we design a distributed extended state observer(DESO) to estimate the unmeasurable velocities and environmental disturbances using the relative position information. Finally,we propose a protocol based on the estimation information from the DESO and demonstrate that the multi-UUVs system with the switching directed topologies under the protocol can reach consensus asymptotically. The theoretical result proposed in the literature is verified by one numerical example.
文摘The design and development of the traction controller for electric vehicle is introduced, which is based on the induction motor. This drive is developed by using a digital signal processor at low cost and carried out with the module design concept of both software and hardware. Nevertheless, a scheme of the sensorless direct torque control is based on the developed hardware, of which the feasibility is tested by a trial program. Additionally, both the interface function of the drive hardware and the feasibility of its software are proved to be good by the trail programs. A test motor can run about 18?r/min by a variable frequency program with the space vector pulse width modulation technology, of which the torque is visible pulsatile. In this presentation, based on the theoretical approach, the sensorless torque control is to be studied and applied to electric vehicles, of which the quick, smooth and stable torque response is emphasized because it quite benefits improving the drive performance of electric vehicles.
基金Supported by National Natural Science Foundation of China(Grant Nos.51575103,11672127,U1664258)Fundamental Research Funds for the Central Universities of China(Grant No.NT2018002)+1 种基金China Postdoctoral Science Foundation(Grant Nos.2017T100365,2016M601799)the Fundation of Graduate Innovation Center in NUAA(Grant No.k j20180207)
文摘The current research of autonomous vehicle motion control mainly focuses on trajectory tracking and velocity tracking. However, numerous studies deal with trajectory tracking and velocity tracking separately, and the yaw stability is seldom considered during trajectory tracking. In this research, a combination of the longitudinal–lateral control method with the yaw stability in the trajectory tracking for autonomous vehicles is studied. Based on the vehicle dynamics, considering the longitudinal and lateral motion of the vehicle, the velocity tracking and trajectory tracking problems can be attributed to the longitudinal and lateral control. A sliding mode variable structure control method is used in the longitudinal control. The total driving force is obtained from the velocity error in order to carry out velocity tracking. A linear time-varying model predictive control method is used in the lateral control to predict the required front wheel angle for trajectory tracking. Furthermore, a combined control framework is established to control the longitudinal and lateral motions and improve the reliability of the longitudinal and lateral direction control. On this basis, the driving force of a tire is allocated reasonably by using the direct yaw moment control, which ensures good yaw stability of the vehicle when tracking the trajectory. Simulation results indicate that the proposed control strategy is good in tracking the reference velocity and trajectory and improves the performance of the stability of the vehicle.
基金Supported by National Natural Science Foundation of China(Grant Nos.51275557,51422505)
文摘The current research of direct yaw moment control(DYC) system focus on the design of target yaw moment and the distribution of wheel brake force. The differential braking intervention can effectively improve the lateral stability of the vehicle, however, the effect of DYC can be improved a step further by applying the control of vehicle longitudinal velocity. In this paper, the relationship between the vehicle longitudinal velocity and lateral stability is studied, and the simulation results show that a decrease of 5 km/h of longitudinal velocity at a particular situation can bring 100° increasing of stable steering upper limit. A critical stable velocity considering the effect of steering and yaw rate measurement is defined to evaluate the risk of losing steer-ability or stability. A novel velocity pre-control method is proposed by using a hierarchical pre-control logic and is integrated with the traditional DYC system. The control algorithm is verified through a hardware in-the-loop simulation system. Double lane change(DLC) test results on both high friction coefficient(μ) and low μ roads show that by using the pre-control method, the steering effort in DLC test can be reduced by 38% and 51% and the peak value of brake pressure control can be reduced by 20% and 12% respectively on high μ and low μ roads, the lateral stability is also improved. This research proposes a novel DYC system with lighter control effort and better control effect.
基金supported by the Natural Science Foundation of Tianjin(12JCZDJC30300)the Research Foundation of Tianjin Key Laboratory of Process Measurement and Control(TKLPMC-201613)the State Scholarship Fund of China
文摘In the constrained reentry trajectory design of hypersonic vehicles, multiple objectives with priorities bring about more difficulties to find the optimal solution. Therefore, a multi-objective reentry trajectory optimization (MORTO) approach via generalized varying domain (GVD) is proposed. Using the direct collocation approach, the trajectory optimization problem involving multiple objectives is discretized into a nonlinear multi-objective programming with priorities. In terms of fuzzy sets, the objectives are fuzzified into three types of fuzzy goals, and their constant tolerances are substituted by the varying domains. According to the principle that the objective with higher priority has higher satisfactory degree, the priority requirement is modeled as the order constraints of the varying domains. The corresponding two-side, single-side, and hybrid-side varying domain models are formulated for three fuzzy relations respectively. By regulating the parameter, the optimal reentry trajectory satisfying priorities can be achieved. Moreover, the performance about the parameter is analyzed, and the algorithm to find its specific value for maximum priority difference is proposed. The simulations demonstrate the effectiveness of the proposed method for hypersonic vehicles, and the comparisons with the traditional methods and sensitivity analysis are presented.
基金Natural Science Basic Research Plan in Shaanxi Province of China(2023-JC-QN-0733).
文摘This paper proposes the nonlinear direct data-driven control from theoretical analysis and practical engineering,i.e.,unmanned aerial vehicle(UAV)formation flight system.Firstly,from the theoretical point of view,consider one nonlinear closedloop system with a nonlinear plant and nonlinear feed-forward controller simultaneously.To avoid the complex identification process for that nonlinear plant,a nonlinear direct data-driven control strategy is proposed to design that nonlinear feed-forward controller only through the input-output measured data sequence directly,whose detailed explicit forms are model inverse method and approximated analysis method.Secondly,from the practical point of view,after reviewing the UAV formation flight system,nonlinear direct data-driven control is applied in designing the formation controller,so that the followers can track the leader’s desired trajectory during one small time instant only through solving one data fitting problem.Since most natural phenomena have nonlinear properties,the direct method must be the better one.Corresponding system identification and control algorithms are required to be proposed for those nonlinear systems,and the direct nonlinear controller design is the purpose of this paper.