This paper deals with the stabilization of dynamic systems for two omni directional mobile robots by using the inner product of two vectors, one is from a robot's position to another's, the other is from a ro...This paper deals with the stabilization of dynamic systems for two omni directional mobile robots by using the inner product of two vectors, one is from a robot's position to another's, the other is from a robot's target point to another's. The multi step control laws given can exponentially stabilize the dynamic system and make the distance between two robots be greater than or equal to the collision free safe distance. The application of it to two omni directional mobile robots is described. Simulation result shows that the proposed controller is effective.展开更多
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base...The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.展开更多
Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of th...Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of the neighborhood search strategy,the robots could hardly obtain the most optimal global path.A global path planning algorithm,denoted as EDG*,is proposed by expanding nodes using a well-designed expanding disconnected graph operator(EDG)in this paper.Firstly,all obstacles are marked and their corners are located through the map pre-processing.Then,the EDG operator is designed to find points in non-obstruction areas to complete the rapid expansion of disconnected nodes.Finally,the EDG*heuristic iterative algorithm is proposed.It selects the candidate node through a specific valuation function and realizes the node expansion while avoiding collision with a minimum offset.Path planning experiments were conducted in a typical indoor environment and on the public dataset CSM.The result shows that the proposed EDG*reduced the planning time by more than 90%and total length of paths reduced by more than 4.6%.Compared to A*,Dijkstra and JPS,EDG*does not show an exponential explosion effect in map size.The EDG*showed better performance in terms of path smoothness,and collision avoidance.This shows that the EDG*algorithm proposed in this paper can improve the efficiency of path planning and enhance path quality.展开更多
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ...This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.展开更多
Object tracking is one of the major tasks for mobile robots in many real-world applications.Also,artificial intelligence and automatic control techniques play an important role in enhancing the performance of mobile r...Object tracking is one of the major tasks for mobile robots in many real-world applications.Also,artificial intelligence and automatic control techniques play an important role in enhancing the performance of mobile robot navigation.In contrast to previous simulation studies,this paper presents a new intelligent mobile robot for accomplishing multi-tasks by tracking red-green-blue(RGB)colored objects in a real experimental field.Moreover,a practical smart controller is developed based on adaptive fuzzy logic and custom proportional-integral-derivative(PID)schemes to achieve accurate tracking results,considering robot command delay and tolerance errors.The design of developed controllers implies some motion rules to mimic the knowledge of experienced operators.Twelve scenarios of three colored object combinations have been successfully tested and evaluated by using the developed controlled image-based robot tracker.Classical PID control failed to handle some tracking scenarios in this study.The proposed adaptive fuzzy PID control achieved the best accurate results with the minimum average final error of 13.8 cm to reach the colored targets,while our designed custom PID control is efficient in saving both average time and traveling distance of 6.6 s and 14.3 cm,respectively.These promising results demonstrate the feasibility of applying our developed image-based robotic system in a colored object-tracking environment to reduce human workloads.展开更多
This paper presents an effective way to support motion planning of legged mobile robots—Inverted Modelling,based on the equivalent metamorphic mechanism concept.The difference from the previous research is that we he...This paper presents an effective way to support motion planning of legged mobile robots—Inverted Modelling,based on the equivalent metamorphic mechanism concept.The difference from the previous research is that we herein invert the equivalent parallel mechanism.Assuming the leg mechanisms are hybrid links,the body of robot being considered as fixed platform,and ground as moving platform.The motion performance is transformed and measured in the body frame.Terrain and joint limits are used as input parameters to the model,resulting in the representation which is independent of terrains and particular poses in Inverted Modelling.Hence,it can universally be applied to any kind of legged robots as global motion performance framework.Several performance measurements using Inverted Modelling are presented and used in motion performance evaluation.According to the requirements of actual work like motion continuity and stability,motion planning of legged robot can be achieved using different measurements on different terrains.Two cases studies present the simulations of quadruped and hexapod robots walking on rugged roads.The results verify the correctness and effectiveness of the proposed method.展开更多
Dynamic path planning is crucial for mobile robots to navigate successfully in unstructured envi-ronments.To achieve globally optimal path and real-time dynamic obstacle avoidance during the movement,a dynamic path pl...Dynamic path planning is crucial for mobile robots to navigate successfully in unstructured envi-ronments.To achieve globally optimal path and real-time dynamic obstacle avoidance during the movement,a dynamic path planning algorithm incorporating improved IB-RRT∗and deep reinforce-ment learning(DRL)is proposed.Firstly,an improved IB-RRT∗algorithm is proposed for global path planning by combining double elliptic subset sampling and probabilistic central circle target bi-as.Then,to tackle the slow response to dynamic obstacles and inadequate obstacle avoidance of tra-ditional local path planning algorithms,deep reinforcement learning is utilized to predict the move-ment trend of dynamic obstacles,leading to a dynamic fusion path planning.Finally,the simulation and experiment results demonstrate that the proposed improved IB-RRT∗algorithm has higher con-vergence speed and search efficiency compared with traditional Bi-RRT∗,Informed-RRT∗,and IB-RRT∗algorithms.Furthermore,the proposed fusion algorithm can effectively perform real-time obsta-cle avoidance and navigation tasks for mobile robots in unstructured environments.展开更多
Autonomous navigation of mobile robots is a challenging task that requires them to travel from their initial position to their destination without collision in an environment.Reinforcement Learning methods enable a st...Autonomous navigation of mobile robots is a challenging task that requires them to travel from their initial position to their destination without collision in an environment.Reinforcement Learning methods enable a state action function in mobile robots suited to their environment.During trial-and-error interaction with its surroundings,it helps a robot tofind an ideal behavior on its own.The Deep Q Network(DQN)algorithm is used in TurtleBot 3(TB3)to achieve the goal by successfully avoiding the obstacles.But it requires a large number of training iterations.This research mainly focuses on a mobility robot’s best path prediction utilizing DQN and the Artificial Potential Field(APF)algorithms.First,a TB3 Waffle Pi DQN is built and trained to reach the goal.Then the APF shortest path algorithm is incorporated into the DQN algorithm.The proposed planning approach is compared with the standard DQN method in a virtual environment based on the Robot Operation System(ROS).The results from the simulation show that the combination is effective for DQN and APF gives a better optimal path and takes less time when compared to the conventional DQN algo-rithm.The performance improvement rate of the proposed DQN+APF in comparison with DQN in terms of the number of successful targets is attained by 88%.The performance of the proposed DQN+APF in comparison with DQN in terms of average time is achieved by 0.331 s.The performance of the proposed DQN+APF in comparison with DQN average rewards in which the positive goal is attained by 85%and the negative goal is attained by-90%.展开更多
Motion planning is critical to realize the autonomous operation of mobile robots.As the complexity and randomness of robot application scenarios increase,the planning capability of the classical hierarchical motion pl...Motion planning is critical to realize the autonomous operation of mobile robots.As the complexity and randomness of robot application scenarios increase,the planning capability of the classical hierarchical motion planners is challenged.With the development of machine learning,the deep reinforcement learning(DRL)-based motion planner has gradually become a research hotspot due to its several advantageous feature.The DRL-based motion planner is model-free and does not rely on the prior structured map.Most importantly,the DRL-based motion planner achieves the unification of the global planner and the local planner.In this paper,we provide a systematic review of various motion planning methods.Firstly,we summarize the representative and state-of-the-art works for each submodule of the classical motion planning architecture and analyze their performance features.Then,we concentrate on summarizing reinforcement learning(RL)-based motion planning approaches,including motion planners combined with RL improvements,map-free RL-based motion planners,and multi-robot cooperative planning methods.Finally,we analyze the urgent challenges faced by these mainstream RLbased motion planners in detail,review some state-of-the-art works for these issues,and propose suggestions for future research.展开更多
The electrically driven large-load-ratio six-legged robot with engineering capability can be widely used in outdoor and planetary exploration.However,due to the particularity of its parallel structure,the effective ut...The electrically driven large-load-ratio six-legged robot with engineering capability can be widely used in outdoor and planetary exploration.However,due to the particularity of its parallel structure,the effective utilization rate of energy is not high,which has become an important obstacle to its practical application.To research the power consumption characteristics of robot mobile system is beneficial to speed up it toward practicability.Based on the configuration and walking modes of robot,the mathematical model of the power consumption of mobile system is set up.In view of the tripod gait is often selected for the six-legged robots,the simplified power consumption model of mobile system under the tripod gait is established by means of reducing the dimension of the robot’s statically indeterminate problem and constructing the equal force distribution.Then,the power consumption of robot mobile system is solved under different working conditions.The variable tendencies of the power consumption of robot mobile system are respectively obtained with changes in the rotational angles of hip joint and knee joint,body height,and span.The articulated rotational zones and the ranges of body height and span are determined under the lowest power consumption.According to the walking experiments of prototype,the variable tendencies of the average power consumption of robot mobile system are respectively acquired with changes in duty ratio,body height,and span.Then,the feasibility and correctness of theory analysis are verified in the power consumption of robot mobile system.The proposed analysis method in this paper can provide a reference on the lower power research of the large-load-ratio multi-legged robots.展开更多
Current research on autonomous mobile robots focuses primarily on perceptual accuracy and autonomous performance.In commercial and domestic constructions,concrete,wood,and glass are typically used.Laser and visual map...Current research on autonomous mobile robots focuses primarily on perceptual accuracy and autonomous performance.In commercial and domestic constructions,concrete,wood,and glass are typically used.Laser and visual mapping or planning algorithms are highly accurate in mapping wood panels and concrete walls.However,indoor and outdoor glass curtain walls may fail to perceive these transparent materials.In this study,a novel indoor glass recognition and map optimization method based on boundary guidance is proposed.First,the status of glass recognition techniques is analyzed comprehensively.Next,a glass image segmentation network based on boundary data guidance and the optimization of a planning map based on depth repair are proposed.Finally,map optimization and path-planning tests are conducted and compared using different algorithms.The results confirm the favorable adaptability of the proposed method to indoor transparent plates and glass curtain walls.Using the proposed method,the recognition accuracy of a public test set increases to 94.1%.After adding the planning map,incorrect coverage redundancies for two test scenes reduce by 59.84%and 55.7%.Herein,a glass recognition and map optimization method is proposed that offers sufficient capacity in perceiving indoor glass materials and recognizing indoor no-entry regions.展开更多
Four-wheeled,individual-driven,nonholonomic structured mobile robots are widely used in industries for automated work,inspection and explora-tion purposes.The trajectory tracking control of the four-wheel individual-d...Four-wheeled,individual-driven,nonholonomic structured mobile robots are widely used in industries for automated work,inspection and explora-tion purposes.The trajectory tracking control of the four-wheel individual-driven mobile robot is one of the most blooming research topics due to its nonholonomic structure.The wheel velocities are separately adjusted to follow the trajectory in the old-fashioned kinematic control of skid-steered mobile robots.However,there is no consideration for robot dynamics when using a kinematic controller that solely addresses the robot chassis’s motion.As a result,the mobile robot has lim-ited performance,such as chattering during curved movement.In this research work,a three-tiered adaptive robust control with fuzzy parameter estimation,including dynamic modeling,direct torque control and wheel slip control is pro-posed.Fuzzy logic-based parameter estimation is a valuable tool for adjusting adaptive robust controller(ARC)parameters and tracking the trajectories with less tracking error as well as high tracking accuracy.This research considers the O type and 8 type trajectories for performance analysis of the proposed novel control technique.Our suggested approach outperforms the existing control methods such as Fuzzy,proportional–integral–derivative(PID)and adaptive robust controller with discrete projection(ARC–DP).The experimental results show that the scheduled performance index decreases by 2.77%and 4.76%.All the experimen-tal simulations obviously proved that the proposed ARC-Fuzzy performed well in smooth groud surfaces compared to other approaches.展开更多
In this paper,the fault-tolerant formation control(FTFC)problem is investigated for a group of uncertain nonholonomic mobile robots with limited communication ranges and unpredicted actuator faults,where the communica...In this paper,the fault-tolerant formation control(FTFC)problem is investigated for a group of uncertain nonholonomic mobile robots with limited communication ranges and unpredicted actuator faults,where the communication between the robots is in a directed one-to-one way.In order to guarantee the connectivity preservation and collision avoidance among the robots,some properly chosen performance functions are incorporated into the controller to per-assign the asymmetrical bounds for relative distance and bearing angle between each pair of adjacent mobile robots.Particularly,the resultant control scheme remains at a costeffective level because its design does not use any velocity information from neighbors,any prior knowledge of system nonlinearities or any nonlinear approximator to account for them despite the presence of modeling uncertainties,unknown external disturbances,and unexpected actuator faults.Meanwhile,each follower is derived to track the leader with the tracking errors regarding relative distance and bearing angle subject to prescribed transient and steady-state performance guarantees,respectively.Moreover,all the closed-loop signals are ensured to be ultimately uniformly bounded.Finally,a numerical example is simulated to verify the effectiveness of this methodology.展开更多
A robust fault diagnosis approach is developed by incorporating a set-membership identification (SMI) method. A class of systems with linear models in the form of fault related parameters is investigated, with model u...A robust fault diagnosis approach is developed by incorporating a set-membership identification (SMI) method. A class of systems with linear models in the form of fault related parameters is investigated, with model uncertainties and parameter variations taken into account explicitly and treated as bounded errors. An ellipsoid bounding set-membership identification algorithm is proposed to propagate bounded uncertainties rigorously and the guaranteed feasible set of faults parameters enveloping true parameter values is given. Faults arised from abrupt parameter variations can be detected and isolated on-line by consistency check between predicted and observed parameter sets obtained in the identification procedure. The proposed approach provides the improved robustness with its ability to distinguish real faults from model uncertainties, which comes with the inherent guaranteed robustness of the set-membership framework. Efforts are also made in this work to balance between conservativeness and computation complexity of the overall algorithm. Simulation results for the mobile robot with several slipping faults scenarios demonstrate the correctness of the proposed approach for faults detection and isolation (FDI).展开更多
In this paper,a robust tracking control scheme based on nonlinear disturbance observer is developed for the self-balancing mobile robot with external unknown disturbances.A desired velocity control law is firstly desi...In this paper,a robust tracking control scheme based on nonlinear disturbance observer is developed for the self-balancing mobile robot with external unknown disturbances.A desired velocity control law is firstly designed using the Lyapunov analysis method and the arctan function.To improve the tracking control performance,a nonlinear disturbance observer is developed to estimate the unknown disturbance of the self-balancing mobile robot.Using the output of the designed disturbance observer,the robust tracking control scheme is presented employing the sliding mode method for the selfbalancing mobile robot.Numerical simulation results further demonstrate the effectiveness of the proposed robust tracking control scheme for the self-balancing mobile robot subject to external unknown disturbances.展开更多
Target tracking control for wheeled mobile robot (WMR) need resolve the problems of kinematics model and tracking algorithm.High-order sliding mode control is a valid method used in the nonlinear tracking control sy...Target tracking control for wheeled mobile robot (WMR) need resolve the problems of kinematics model and tracking algorithm.High-order sliding mode control is a valid method used in the nonlinear tracking control system,which can eliminate the chattering of sliding mode control.Currently there lacks the research of robustness and uncertain factors for high-order sliding mode control.To address the fast convergence and robustness problems of tracking target,the tracking mathematical model of WMR and the target is derived.Based on the finite-time convergence theory and second order sliding mode method,a nonlinear tracking algorithm is designed which guarantees that WMR can catch the target in finite time.At the same time an observer is applied to substitute the uncertain acceleration of the target,then a smooth nonlinear tracking algorithm is proposed.Based on Lyapunov stability theory and finite-time convergence,a finite time convergent smooth second order sliding mode controller and a target tracking algorithm are designed by using second order sliding mode method.The simulation results verified that WMR can catch up the target quickly and reduce the control discontinuity of the velocity of WMR.展开更多
Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so...Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so that these controllers are difficult to realize satisfactory control in practical application. Besides, many of the approaches suffer from the initial speed and torque jump which are not practical in the real world. Considering the kinematics and dynamics, a two-stage visual controller for solving the stabilization problem of a mobile robot is presented, applying the integration of adaptive control, sliding-mode control, and neural dynamics. In the first stage, an adaptive kinematic stabilization controller utilized to generate the command of velocity is developed based on Lyapunov theory. In the second stage, adopting the sliding-mode control approach, a dynamic controller with a variable speed function used to reduce the chattering is designed, which is utilized to generate the command of torque to make the actual velocity of the mobile robot asymptotically reach the desired velocity. Furthermore, to handle the speed and torque jump problems, the neural dynamics model is integrated into the above mentioned controllers. The stability of the proposed control system is analyzed by using Lyapunov theory. Finally, the simulation of the control law is implemented in perturbed case, and the results show that the control scheme can solve the stabilization problem effectively. The proposed control law can solve the speed and torque jump problems, overcome external disturbances, and provide a new solution for the vision-based stabilization of the mobile robot.展开更多
In order to reduce the system errors of dead reckoning and improve the localization accu- racy, a new model for systematic error of mobile robot was defined and a UMBmark-based method for calibrating and compensating ...In order to reduce the system errors of dead reckoning and improve the localization accu- racy, a new model for systematic error of mobile robot was defined and a UMBmark-based method for calibrating and compensating systematic error was presented. Three dominant reasons causing systematic errors were considered: imprecise average wheel diameter, uncertainty about the effec- tive wheelbase and unequal wheel' s diameter. The new model for systematic errors is considering the coupling effect of the three factors during the localization of mobile robot. Three coefficients to calibrate average wheel diameter, effective wheelbase, left and right wheels' diameter were ob- tained. Then these three coefficients were used to make improvements on robot kinematic equations. The experiments on the dual-wheel drive mobile robot DaNI show that the presented method has achieveda significant improvement in the location accuracy compared with the UMBmark calibration.展开更多
Odometry using incremental wheel encoder odometry suffers from the accumulation of kinematic sensors provides the relative robot pose estimation. However, the modeling errors of wheels as the robot's travel distance ...Odometry using incremental wheel encoder odometry suffers from the accumulation of kinematic sensors provides the relative robot pose estimation. However, the modeling errors of wheels as the robot's travel distance increases. Therefore, the systematic errors need to be calibrated. The University of Michigan Benchmark(UMBmark) method is a widely used calibration scheme of the systematic errors in two wheel differential mobile robots. In this paper, the accurate parameter estimation of systematic errors is proposed by extending the conventional method. The contributions of this paper can be summarized as two issues. The first contribution is to present new calibration equations that reduce the systematic odometry errors. The new equations were derived to overcome the limitation of conventional schemes. The second contribu tion is to propose the design guideline of the test track for calibration experiments. The calibration performance can be im proved by appropriate design of the test track. The simulations and experimental results show that the accurate parameter es timation can be implemented by the proposed method.展开更多
This paper presents an optimisatiombased verification process for obstacle avoidance systems of a unicycle-like mobile robot. It is a novel approach for the collision avoidance verification process. Local and global o...This paper presents an optimisatiombased verification process for obstacle avoidance systems of a unicycle-like mobile robot. It is a novel approach for the collision avoidance verification process. Local and global optimisation based verification processes are developed to find the worst-case parameters and the worst-case distance between the robot and an obstacle. The kinematic and dynamic model of the unicycle-like mobile robot is first introduced with force and torque as the inputs. The design of the control system is split into two parts. One is velocity and rotation using the robot dynamics, and the other is the incremental motion planning for robot kinematics. The artificial potential field method is chosen as a path planning and obstacle avoidance candidate technique for verification study as it is simple and widely used. Different optimisation algorithms are applied and compared for the purpose of verification. It is shown that even for a simple case study where only mass and inertia variations are considered, a local optimization based verification method may fail to identify the worst case. Two global optimisation methods have been investigated: genetic algorithms (GAs) and GLOBAL algorithms. Both of these methods successfully find the worst case. The verification process confirms that the obstacle avoidance algorithm functions correctly in the presence of all the possible parameter variations.展开更多
文摘This paper deals with the stabilization of dynamic systems for two omni directional mobile robots by using the inner product of two vectors, one is from a robot's position to another's, the other is from a robot's target point to another's. The multi step control laws given can exponentially stabilize the dynamic system and make the distance between two robots be greater than or equal to the collision free safe distance. The application of it to two omni directional mobile robots is described. Simulation result shows that the proposed controller is effective.
基金the China Scholarship Council(202106690037)the Natural Science Foundation of Anhui Province(19080885QE194)。
文摘The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFB4700402).
文摘Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of the neighborhood search strategy,the robots could hardly obtain the most optimal global path.A global path planning algorithm,denoted as EDG*,is proposed by expanding nodes using a well-designed expanding disconnected graph operator(EDG)in this paper.Firstly,all obstacles are marked and their corners are located through the map pre-processing.Then,the EDG operator is designed to find points in non-obstruction areas to complete the rapid expansion of disconnected nodes.Finally,the EDG*heuristic iterative algorithm is proposed.It selects the candidate node through a specific valuation function and realizes the node expansion while avoiding collision with a minimum offset.Path planning experiments were conducted in a typical indoor environment and on the public dataset CSM.The result shows that the proposed EDG*reduced the planning time by more than 90%and total length of paths reduced by more than 4.6%.Compared to A*,Dijkstra and JPS,EDG*does not show an exponential explosion effect in map size.The EDG*showed better performance in terms of path smoothness,and collision avoidance.This shows that the EDG*algorithm proposed in this paper can improve the efficiency of path planning and enhance path quality.
基金the National Natural Science Foundation of China under Grant U22A2043.
文摘This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.
基金The authors extend their appreciation to the Deanship of Scientific Research at Shaqra University for funding this research work through the Project Number(SU-ANN-2023016).
文摘Object tracking is one of the major tasks for mobile robots in many real-world applications.Also,artificial intelligence and automatic control techniques play an important role in enhancing the performance of mobile robot navigation.In contrast to previous simulation studies,this paper presents a new intelligent mobile robot for accomplishing multi-tasks by tracking red-green-blue(RGB)colored objects in a real experimental field.Moreover,a practical smart controller is developed based on adaptive fuzzy logic and custom proportional-integral-derivative(PID)schemes to achieve accurate tracking results,considering robot command delay and tolerance errors.The design of developed controllers implies some motion rules to mimic the knowledge of experienced operators.Twelve scenarios of three colored object combinations have been successfully tested and evaluated by using the developed controlled image-based robot tracker.Classical PID control failed to handle some tracking scenarios in this study.The proposed adaptive fuzzy PID control achieved the best accurate results with the minimum average final error of 13.8 cm to reach the colored targets,while our designed custom PID control is efficient in saving both average time and traveling distance of 6.6 s and 14.3 cm,respectively.These promising results demonstrate the feasibility of applying our developed image-based robotic system in a colored object-tracking environment to reduce human workloads.
基金National Natural Science Foundation of China(Grant No.51735009)。
文摘This paper presents an effective way to support motion planning of legged mobile robots—Inverted Modelling,based on the equivalent metamorphic mechanism concept.The difference from the previous research is that we herein invert the equivalent parallel mechanism.Assuming the leg mechanisms are hybrid links,the body of robot being considered as fixed platform,and ground as moving platform.The motion performance is transformed and measured in the body frame.Terrain and joint limits are used as input parameters to the model,resulting in the representation which is independent of terrains and particular poses in Inverted Modelling.Hence,it can universally be applied to any kind of legged robots as global motion performance framework.Several performance measurements using Inverted Modelling are presented and used in motion performance evaluation.According to the requirements of actual work like motion continuity and stability,motion planning of legged robot can be achieved using different measurements on different terrains.Two cases studies present the simulations of quadruped and hexapod robots walking on rugged roads.The results verify the correctness and effectiveness of the proposed method.
基金the National Natural Science Foundation of China(No.61973275)。
文摘Dynamic path planning is crucial for mobile robots to navigate successfully in unstructured envi-ronments.To achieve globally optimal path and real-time dynamic obstacle avoidance during the movement,a dynamic path planning algorithm incorporating improved IB-RRT∗and deep reinforce-ment learning(DRL)is proposed.Firstly,an improved IB-RRT∗algorithm is proposed for global path planning by combining double elliptic subset sampling and probabilistic central circle target bi-as.Then,to tackle the slow response to dynamic obstacles and inadequate obstacle avoidance of tra-ditional local path planning algorithms,deep reinforcement learning is utilized to predict the move-ment trend of dynamic obstacles,leading to a dynamic fusion path planning.Finally,the simulation and experiment results demonstrate that the proposed improved IB-RRT∗algorithm has higher con-vergence speed and search efficiency compared with traditional Bi-RRT∗,Informed-RRT∗,and IB-RRT∗algorithms.Furthermore,the proposed fusion algorithm can effectively perform real-time obsta-cle avoidance and navigation tasks for mobile robots in unstructured environments.
文摘Autonomous navigation of mobile robots is a challenging task that requires them to travel from their initial position to their destination without collision in an environment.Reinforcement Learning methods enable a state action function in mobile robots suited to their environment.During trial-and-error interaction with its surroundings,it helps a robot tofind an ideal behavior on its own.The Deep Q Network(DQN)algorithm is used in TurtleBot 3(TB3)to achieve the goal by successfully avoiding the obstacles.But it requires a large number of training iterations.This research mainly focuses on a mobility robot’s best path prediction utilizing DQN and the Artificial Potential Field(APF)algorithms.First,a TB3 Waffle Pi DQN is built and trained to reach the goal.Then the APF shortest path algorithm is incorporated into the DQN algorithm.The proposed planning approach is compared with the standard DQN method in a virtual environment based on the Robot Operation System(ROS).The results from the simulation show that the combination is effective for DQN and APF gives a better optimal path and takes less time when compared to the conventional DQN algo-rithm.The performance improvement rate of the proposed DQN+APF in comparison with DQN in terms of the number of successful targets is attained by 88%.The performance of the proposed DQN+APF in comparison with DQN in terms of average time is achieved by 0.331 s.The performance of the proposed DQN+APF in comparison with DQN average rewards in which the positive goal is attained by 85%and the negative goal is attained by-90%.
基金supported by the National Natural Science Foundation of China (62173251)the“Zhishan”Scholars Programs of Southeast University+1 种基金the Fundamental Research Funds for the Central UniversitiesShanghai Gaofeng&Gaoyuan Project for University Academic Program Development (22120210022)
文摘Motion planning is critical to realize the autonomous operation of mobile robots.As the complexity and randomness of robot application scenarios increase,the planning capability of the classical hierarchical motion planners is challenged.With the development of machine learning,the deep reinforcement learning(DRL)-based motion planner has gradually become a research hotspot due to its several advantageous feature.The DRL-based motion planner is model-free and does not rely on the prior structured map.Most importantly,the DRL-based motion planner achieves the unification of the global planner and the local planner.In this paper,we provide a systematic review of various motion planning methods.Firstly,we summarize the representative and state-of-the-art works for each submodule of the classical motion planning architecture and analyze their performance features.Then,we concentrate on summarizing reinforcement learning(RL)-based motion planning approaches,including motion planners combined with RL improvements,map-free RL-based motion planners,and multi-robot cooperative planning methods.Finally,we analyze the urgent challenges faced by these mainstream RLbased motion planners in detail,review some state-of-the-art works for these issues,and propose suggestions for future research.
基金National Natural Science Foundation of China(Grant No.51505335)Industry University Cooperation Collaborative Education Project of the Department of Higher Education of the Ministry of Education of China(Grant No.202102517001)Doctor Startup Projects of TUTE of China(Grant No.KYQD1806)。
文摘The electrically driven large-load-ratio six-legged robot with engineering capability can be widely used in outdoor and planetary exploration.However,due to the particularity of its parallel structure,the effective utilization rate of energy is not high,which has become an important obstacle to its practical application.To research the power consumption characteristics of robot mobile system is beneficial to speed up it toward practicability.Based on the configuration and walking modes of robot,the mathematical model of the power consumption of mobile system is set up.In view of the tripod gait is often selected for the six-legged robots,the simplified power consumption model of mobile system under the tripod gait is established by means of reducing the dimension of the robot’s statically indeterminate problem and constructing the equal force distribution.Then,the power consumption of robot mobile system is solved under different working conditions.The variable tendencies of the power consumption of robot mobile system are respectively obtained with changes in the rotational angles of hip joint and knee joint,body height,and span.The articulated rotational zones and the ranges of body height and span are determined under the lowest power consumption.According to the walking experiments of prototype,the variable tendencies of the average power consumption of robot mobile system are respectively acquired with changes in duty ratio,body height,and span.Then,the feasibility and correctness of theory analysis are verified in the power consumption of robot mobile system.The proposed analysis method in this paper can provide a reference on the lower power research of the large-load-ratio multi-legged robots.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFB4700400).
文摘Current research on autonomous mobile robots focuses primarily on perceptual accuracy and autonomous performance.In commercial and domestic constructions,concrete,wood,and glass are typically used.Laser and visual mapping or planning algorithms are highly accurate in mapping wood panels and concrete walls.However,indoor and outdoor glass curtain walls may fail to perceive these transparent materials.In this study,a novel indoor glass recognition and map optimization method based on boundary guidance is proposed.First,the status of glass recognition techniques is analyzed comprehensively.Next,a glass image segmentation network based on boundary data guidance and the optimization of a planning map based on depth repair are proposed.Finally,map optimization and path-planning tests are conducted and compared using different algorithms.The results confirm the favorable adaptability of the proposed method to indoor transparent plates and glass curtain walls.Using the proposed method,the recognition accuracy of a public test set increases to 94.1%.After adding the planning map,incorrect coverage redundancies for two test scenes reduce by 59.84%and 55.7%.Herein,a glass recognition and map optimization method is proposed that offers sufficient capacity in perceiving indoor glass materials and recognizing indoor no-entry regions.
文摘Four-wheeled,individual-driven,nonholonomic structured mobile robots are widely used in industries for automated work,inspection and explora-tion purposes.The trajectory tracking control of the four-wheel individual-driven mobile robot is one of the most blooming research topics due to its nonholonomic structure.The wheel velocities are separately adjusted to follow the trajectory in the old-fashioned kinematic control of skid-steered mobile robots.However,there is no consideration for robot dynamics when using a kinematic controller that solely addresses the robot chassis’s motion.As a result,the mobile robot has lim-ited performance,such as chattering during curved movement.In this research work,a three-tiered adaptive robust control with fuzzy parameter estimation,including dynamic modeling,direct torque control and wheel slip control is pro-posed.Fuzzy logic-based parameter estimation is a valuable tool for adjusting adaptive robust controller(ARC)parameters and tracking the trajectories with less tracking error as well as high tracking accuracy.This research considers the O type and 8 type trajectories for performance analysis of the proposed novel control technique.Our suggested approach outperforms the existing control methods such as Fuzzy,proportional–integral–derivative(PID)and adaptive robust controller with discrete projection(ARC–DP).The experimental results show that the scheduled performance index decreases by 2.77%and 4.76%.All the experimen-tal simulations obviously proved that the proposed ARC-Fuzzy performed well in smooth groud surfaces compared to other approaches.
基金supported in part by the National KeyResearch and Development Program of China under Grant 2021ZD0201300Fundamental Research Funds for the Central Universities under Project 2021CDJXKJC001in part by the Chongqing Human Resources and Social Security Bureau under Grant cx2021114.
文摘In this paper,the fault-tolerant formation control(FTFC)problem is investigated for a group of uncertain nonholonomic mobile robots with limited communication ranges and unpredicted actuator faults,where the communication between the robots is in a directed one-to-one way.In order to guarantee the connectivity preservation and collision avoidance among the robots,some properly chosen performance functions are incorporated into the controller to per-assign the asymmetrical bounds for relative distance and bearing angle between each pair of adjacent mobile robots.Particularly,the resultant control scheme remains at a costeffective level because its design does not use any velocity information from neighbors,any prior knowledge of system nonlinearities or any nonlinear approximator to account for them despite the presence of modeling uncertainties,unknown external disturbances,and unexpected actuator faults.Meanwhile,each follower is derived to track the leader with the tracking errors regarding relative distance and bearing angle subject to prescribed transient and steady-state performance guarantees,respectively.Moreover,all the closed-loop signals are ensured to be ultimately uniformly bounded.Finally,a numerical example is simulated to verify the effectiveness of this methodology.
基金supported by the National Natural Science Foundation of China(616732546157310061573101)
文摘A robust fault diagnosis approach is developed by incorporating a set-membership identification (SMI) method. A class of systems with linear models in the form of fault related parameters is investigated, with model uncertainties and parameter variations taken into account explicitly and treated as bounded errors. An ellipsoid bounding set-membership identification algorithm is proposed to propagate bounded uncertainties rigorously and the guaranteed feasible set of faults parameters enveloping true parameter values is given. Faults arised from abrupt parameter variations can be detected and isolated on-line by consistency check between predicted and observed parameter sets obtained in the identification procedure. The proposed approach provides the improved robustness with its ability to distinguish real faults from model uncertainties, which comes with the inherent guaranteed robustness of the set-membership framework. Efforts are also made in this work to balance between conservativeness and computation complexity of the overall algorithm. Simulation results for the mobile robot with several slipping faults scenarios demonstrate the correctness of the proposed approach for faults detection and isolation (FDI).
基金supported by the National Natural Science Foundation of China(61573184)the Specialized Research Fund for the Doctoral Program of Higher Education(20133218110013)+1 种基金the Six Talents Peak Project of Jainism Province(2012-XRAY-010)the Fundamental Research Funds for theCentral Universities(NE2016101)
文摘In this paper,a robust tracking control scheme based on nonlinear disturbance observer is developed for the self-balancing mobile robot with external unknown disturbances.A desired velocity control law is firstly designed using the Lyapunov analysis method and the arctan function.To improve the tracking control performance,a nonlinear disturbance observer is developed to estimate the unknown disturbance of the self-balancing mobile robot.Using the output of the designed disturbance observer,the robust tracking control scheme is presented employing the sliding mode method for the selfbalancing mobile robot.Numerical simulation results further demonstrate the effectiveness of the proposed robust tracking control scheme for the self-balancing mobile robot subject to external unknown disturbances.
基金supported by National Natural Science Foundation of China (Grant No. 61075081)State Key Laboratory of Robotics Technique and System Foundation,Harbin Institute of Technology,China(Grant No. SKIRS200802A02)
文摘Target tracking control for wheeled mobile robot (WMR) need resolve the problems of kinematics model and tracking algorithm.High-order sliding mode control is a valid method used in the nonlinear tracking control system,which can eliminate the chattering of sliding mode control.Currently there lacks the research of robustness and uncertain factors for high-order sliding mode control.To address the fast convergence and robustness problems of tracking target,the tracking mathematical model of WMR and the target is derived.Based on the finite-time convergence theory and second order sliding mode method,a nonlinear tracking algorithm is designed which guarantees that WMR can catch the target in finite time.At the same time an observer is applied to substitute the uncertain acceleration of the target,then a smooth nonlinear tracking algorithm is proposed.Based on Lyapunov stability theory and finite-time convergence,a finite time convergent smooth second order sliding mode controller and a target tracking algorithm are designed by using second order sliding mode method.The simulation results verified that WMR can catch up the target quickly and reduce the control discontinuity of the velocity of WMR.
基金supported by National Key Basic Research and Development Program of China (973 Program,Grant No. 2009CB320602)National Natural Science Foundation of China (Grant Nos. 60834004,61025018)+2 种基金National Science and Technology Major Project of China(Grant No. 2011ZX02504-008)Fundamental Research Funds for the Central Universities of China (Grant No. ZZ1222)Key Laboratory of Advanced Engineering Surveying of NASMG of China (Grant No.TJES1106)
文摘Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so that these controllers are difficult to realize satisfactory control in practical application. Besides, many of the approaches suffer from the initial speed and torque jump which are not practical in the real world. Considering the kinematics and dynamics, a two-stage visual controller for solving the stabilization problem of a mobile robot is presented, applying the integration of adaptive control, sliding-mode control, and neural dynamics. In the first stage, an adaptive kinematic stabilization controller utilized to generate the command of velocity is developed based on Lyapunov theory. In the second stage, adopting the sliding-mode control approach, a dynamic controller with a variable speed function used to reduce the chattering is designed, which is utilized to generate the command of torque to make the actual velocity of the mobile robot asymptotically reach the desired velocity. Furthermore, to handle the speed and torque jump problems, the neural dynamics model is integrated into the above mentioned controllers. The stability of the proposed control system is analyzed by using Lyapunov theory. Finally, the simulation of the control law is implemented in perturbed case, and the results show that the control scheme can solve the stabilization problem effectively. The proposed control law can solve the speed and torque jump problems, overcome external disturbances, and provide a new solution for the vision-based stabilization of the mobile robot.
基金Supported by Basic Research Foundation of Beijing Institute of Technology(20130242015)
文摘In order to reduce the system errors of dead reckoning and improve the localization accu- racy, a new model for systematic error of mobile robot was defined and a UMBmark-based method for calibrating and compensating systematic error was presented. Three dominant reasons causing systematic errors were considered: imprecise average wheel diameter, uncertainty about the effec- tive wheelbase and unequal wheel' s diameter. The new model for systematic errors is considering the coupling effect of the three factors during the localization of mobile robot. Three coefficients to calibrate average wheel diameter, effective wheelbase, left and right wheels' diameter were ob- tained. Then these three coefficients were used to make improvements on robot kinematic equations. The experiments on the dual-wheel drive mobile robot DaNI show that the presented method has achieveda significant improvement in the location accuracy compared with the UMBmark calibration.
基金The MKE(The Ministry of Knowledge Economy),Korea,under the ITRC(Infor mation Technology Research Center)support programsupervised by the NIPA(National ITIndustry Promotion Agency)(NIPA-2012-C1090-1221-0010)TheMKE,Korea,under the Human Resources Development Programfor Convergence Robot Specialists support programsu-pervised by the NIPA(NIPA-2012-H1502-12-1002)Basic Science Research Program through the NRF funded by the MEST(2011-0025980)and MEST(2012-0005487)
文摘Odometry using incremental wheel encoder odometry suffers from the accumulation of kinematic sensors provides the relative robot pose estimation. However, the modeling errors of wheels as the robot's travel distance increases. Therefore, the systematic errors need to be calibrated. The University of Michigan Benchmark(UMBmark) method is a widely used calibration scheme of the systematic errors in two wheel differential mobile robots. In this paper, the accurate parameter estimation of systematic errors is proposed by extending the conventional method. The contributions of this paper can be summarized as two issues. The first contribution is to present new calibration equations that reduce the systematic odometry errors. The new equations were derived to overcome the limitation of conventional schemes. The second contribu tion is to propose the design guideline of the test track for calibration experiments. The calibration performance can be im proved by appropriate design of the test track. The simulations and experimental results show that the accurate parameter es timation can be implemented by the proposed method.
文摘This paper presents an optimisatiombased verification process for obstacle avoidance systems of a unicycle-like mobile robot. It is a novel approach for the collision avoidance verification process. Local and global optimisation based verification processes are developed to find the worst-case parameters and the worst-case distance between the robot and an obstacle. The kinematic and dynamic model of the unicycle-like mobile robot is first introduced with force and torque as the inputs. The design of the control system is split into two parts. One is velocity and rotation using the robot dynamics, and the other is the incremental motion planning for robot kinematics. The artificial potential field method is chosen as a path planning and obstacle avoidance candidate technique for verification study as it is simple and widely used. Different optimisation algorithms are applied and compared for the purpose of verification. It is shown that even for a simple case study where only mass and inertia variations are considered, a local optimization based verification method may fail to identify the worst case. Two global optimisation methods have been investigated: genetic algorithms (GAs) and GLOBAL algorithms. Both of these methods successfully find the worst case. The verification process confirms that the obstacle avoidance algorithm functions correctly in the presence of all the possible parameter variations.