期刊文献+
共找到10,537篇文章
< 1 2 250 >
每页显示 20 50 100
Adaptive Trajectory Tracking Control for Nonholonomic Wheeled Mobile Robots:A Barrier Function Sliding Mode Approach 被引量:1
1
作者 Yunjun Zheng Jinchuan Zheng +3 位作者 Ke Shao Han Zhao Hao Xie Hai Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1007-1021,共15页
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base... The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances. 展开更多
关键词 Adaptive sliding mode barrier function nonholonomic wheeled mobile robot(NWMR) trajectory tracking control
下载PDF
Adaptive admittance tracking control for interactive robot with prescribed performance
2
作者 MENG Qingrui LIN Yan 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期444-450,共7页
An adaptive control approach is presented in this paper for tracking desired trajectories in interactive manipulators. The controller design incorporates prescribed performance functions (PPFs) to improve dynamic perf... An adaptive control approach is presented in this paper for tracking desired trajectories in interactive manipulators. The controller design incorporates prescribed performance functions (PPFs) to improve dynamic performance. Notably, the performance of the output error is confined in an envelope characterized by exponential convergence, leading to convergence to zero. This feature ensures a prompt response from admittance control and establishes a reliable safety framework for interactions. Simulation results provide practical insights,demonstrating the viability of the control scheme proposed in this paper. 展开更多
关键词 prescribed performance admittance control adaptive control robotS
下载PDF
Adaptive state-constrained/model-free iterative sliding mode control for aerial robot trajectory tracking
3
作者 Chen AN Jiaxi ZHOU Kai WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期603-618,共16页
This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sl... This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sliding mode controller and a model-free iterative sliding mode controller(MFISMC).A position controller is designed based on adaptive sliding mode control(SMC)to safely drive the aerial robot and ensure fast state convergence under external disturbances.Additionally,the MFISMC acts as an attitude controller to estimate the unmodeled dynamics without detailed knowledge of aerial robots.Then,the adaption laws are derived with the Lyapunov theory to guarantee the asymptotic tracking of the system state.Finally,to demonstrate the performance and robustness of the proposed control strategy,numerical simulations are carried out,which are also compared with other conventional strategies,such as proportional-integralderivative(PID),backstepping(BS),and SMC.The simulation results indicate that the proposed hierarchical control strategy can fulfill zero steady-state error and achieve faster convergence compared with conventional strategies. 展开更多
关键词 aerial robot hierarchical control strategy model-free iterative sliding mode controller(MFISMC) trajectory tracking reinforcement learning
下载PDF
A Novel Disturbance Observer Based Fixed-Time Sliding Mode Control for Robotic Manipulators With Global Fast Convergence
4
作者 Dan Zhang Jiabin Hu +2 位作者 Jun Cheng Zheng-Guang Wu Huaicheng Yan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期661-672,共12页
This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with th... This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance. 展开更多
关键词 Disturbance observer(DO) fixed-time non-singular sliding mode control robotic manipulator trajectory tracking
下载PDF
Tension Active Disturbance Rejection Control of Automatic Yarn Splicing Robots for Ring Spinning
5
作者 WANG Lisu CAI Yun +1 位作者 JI Cheng WANG Junliang 《Journal of Donghua University(English Edition)》 CAS 2024年第5期505-512,共8页
Automatic splicing of interrupted yarns in ring spinning has always been a problem in the industry.Factors such as low yarn strengths and environmental influence on yarn tensions make it difficult to control the yarn ... Automatic splicing of interrupted yarns in ring spinning has always been a problem in the industry.Factors such as low yarn strengths and environmental influence on yarn tensions make it difficult to control the yarn tension during the robotic splicing process.The purpose of this research is to design active disturbance rejection control(ADRC)for a third-order nonlinear tension system subject to external disturbances.Firstly,a third-order extended state observer(ESO)is designed to achieve the suppression and the compensation of the internal modeling error and the external disturbances of the system.Secondly,the adaptive gain error feedback control and the filtering process are designed to reduce the influence of sensor noise on the disturbance observation.Finally,the tension control during the splicing process is simulated and experimented,and the experiments show that the method has good robustness in the tension tracking task under a dynamic environment,which verifies the effectiveness of the method. 展开更多
关键词 yarn splicing robot tension control active disturbance rejection control(ADRC) extended state observer(ESO)
下载PDF
A finite-time fuzzy adaptive output-feedback fault-tolerant control for underactuated wheeled mobile robots systems
6
作者 Pingfan Liu Shaocheng Tong 《Journal of Automation and Intelligence》 2024年第2期111-118,共8页
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ... This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach. 展开更多
关键词 Underactuated wheeled mobile robots system FINITE-TIME Fuzzy adaptive fault-tolerant control OUTPUT-FEEDBACK Intermittent actuator faults
下载PDF
Intelligent Sensing and Control of Road Construction Robot Scenes Based on Road Construction
7
作者 Zhongping Chen Weigong Zhang 《Structural Durability & Health Monitoring》 EI 2024年第2期111-124,共14页
Automatic control technology is the basis of road robot improvement,according to the characteristics of construction equipment and functions,the research will be input type perception from positioning acquisition,real... Automatic control technology is the basis of road robot improvement,according to the characteristics of construction equipment and functions,the research will be input type perception from positioning acquisition,real-world monitoring,the process will use RTK-GNSS positional perception technology,by projecting the left side of the earth from Gauss-Krueger projection method,and then carry out the Cartesian conversion based on the characteristics of drawing;steering control system is the core of the electric drive unmanned module,on the basis of the analysis of the composition of the steering system of unmanned engineering vehicles,the steering system key components such as direction,torque sensor,drive motor and other models are established,the joint simulation model of unmanned engineering vehicles is established,the steering controller is designed using the PID method,the simulation results show that the control method can meet the construction path demand for automatic steering.The path planning will first formulate the construction area with preset values and realize the steering angle correction during driving by PID algorithm,and never realize the construction-based path planning,and the results show that the method can control the straight path within the error of 10 cm and the curve error within 20 cm.With the collaboration of various modules,the automatic construction simulation results of this robot show that the design path and control method is effective. 展开更多
关键词 Scene perception remote control technology cartesian coordinate system construction robot highway construction
下载PDF
Adaptive Robust Control with Leakage-Type Control Law for Trajectory Tracking of Exoskeleton Robots
8
作者 Jin Tian Xiulai Wang +1 位作者 Ningling Ma Yutao Zhang 《Advances in Internet of Things》 2024年第3期53-66,共14页
This paper investigates the trajectory following problem of exoskeleton robots with numerous constraints. However, as a typical nonlinear system with variability and parameter uncertainty, it is difficult to accuratel... This paper investigates the trajectory following problem of exoskeleton robots with numerous constraints. However, as a typical nonlinear system with variability and parameter uncertainty, it is difficult to accurately achieve the trajectory tracking control for exoskeletons. In this paper, we present a robust control of trajectory tracking control based on servo constraints. Firstly, we consider the uncertainties (e.g., modelling errors, initial condition deviations, structural vibrations, and other unknown external disturbances) in the exoskeleton system, which are time-varying and bounded. Secondly, we establish the dynamic model and formulate a close-loop connection between the dynamic model and the real world. Then, the trajectory tracking issue is regarded as a servo constraint problem, and an adaptive robust control with leakage-type adaptive law is proposed with the guaranteed Lyapunov stability. Finally, we conduct numerical simulations to verify the performance of the proposed controller. 展开更多
关键词 Trajectory Tracking Adaptive Robust control Exoskeleton robots UNCERTAINTIES
下载PDF
Modeling and Adaptive Neural Network Control for a Soft Robotic Arm With Prescribed Motion Constraints 被引量:2
9
作者 Yan Yang Jiangtao Han +2 位作者 Zhijie Liu Zhijia Zhao Keum-Shik Hong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第2期501-511,共11页
This paper presents a dynamic model and performance constraint control of a line-driven soft robotic arm.The dynamics model of the soft robotic arm is established by combining the screw theory and the Cosserat theory.... This paper presents a dynamic model and performance constraint control of a line-driven soft robotic arm.The dynamics model of the soft robotic arm is established by combining the screw theory and the Cosserat theory.The unmodeled dynamics of the system are considered,and an adaptive neural network controller is designed using the backstepping method and radial basis function neural network.The stability of the closed-loop system and the boundedness of the tracking error are verified using Lyapunov theory.The simulation results show that our approach is a good solution to the motion constraint problem of the line-driven soft robotic arm. 展开更多
关键词 Adaptive control cosserat theory prescribed motion constraints soft robotic arm
下载PDF
Human-Robot Collaboration Framework Based on Impedance Control in Robotic Assembly 被引量:1
10
作者 Xingwei Zhao Yiming Chen +2 位作者 Lu Qian Bo Tao Han Ding 《Engineering》 SCIE EI CAS CSCD 2023年第11期83-92,共10页
Human–robot(HR)collaboration(HRC)is an emerging research field because of the complementary advantages of humans and robots.An HRC framework for robotic assembly based on impedance control is proposed in this paper.I... Human–robot(HR)collaboration(HRC)is an emerging research field because of the complementary advantages of humans and robots.An HRC framework for robotic assembly based on impedance control is proposed in this paper.In the HRC framework,the human is the decision maker,the robot acts as the executor,while the assembly environment provides constraints.The robot is the main executor to perform the assembly action,which has the position control,drag and drop,positive impedance control,and negative impedance control modes.To reveal the characteristics of the HRC framework,the switch condition map of different control modes and the stability analysis of the HR coupled system are discussed.In the end,HRC assembly experiments are conducted,where the HRC assembly task can be accomplished when the assembling tolerance is 0.08 mm or with the interference fit.Experiments show that the HRC assembly has the complementary advantages of humans and robots and is efficient in finishing complex assembly tasks. 展开更多
关键词 Human-robot collaboration Impedance control robotic assembly
下载PDF
Differential flatness-based distributed control of underactuated robot swarms 被引量:1
11
作者 Ningbo AN Qishao WANG +1 位作者 Xiaochuan ZHAO Qingyun WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第10期1777-1790,共14页
This paper proposes a distributed control method based on the differential flatness(DF) property of robot swarms. The swarm DF mapping is established for underactuated differentially flat dynamics, according to the co... This paper proposes a distributed control method based on the differential flatness(DF) property of robot swarms. The swarm DF mapping is established for underactuated differentially flat dynamics, according to the control objective. The DF mapping refers to the fact that the system state and input of each robot can be derived algebraically from the flat outputs of the leaders and the cooperative errors and their finite order derivatives. Based on the proposed swarm DF mapping, a distributed controller is designed. The distributed implementation of swarm DF mapping is achieved through observer design. The effectiveness of the proposed method is validated through a numerical simulation of quadrotor swarm synchronization. 展开更多
关键词 differential flatness(DF) underactuated robot distributed control SYNCHRONIZATION
下载PDF
Vision Navigation Based PID Control for Line Tracking Robot 被引量:1
12
作者 Rihem Farkh Khaled Aljaloud 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期901-911,共11页
In a controlled indoor environment,line tracking has become the most practical and reliable navigation strategy for autonomous mobile robots.A line tracking robot is a self-mobile machine that can recognize and track ... In a controlled indoor environment,line tracking has become the most practical and reliable navigation strategy for autonomous mobile robots.A line tracking robot is a self-mobile machine that can recognize and track a painted line on thefloor.In general,the path is set and can be visible,such as a black line on a white surface with high contrasting colors.The robot’s path is marked by a distinct line or track,which the robot follows to move.Several scientific contributions from the disciplines of vision and control have been made to mobile robot vision-based navigation.Localization,automated map generation,autonomous navigation and path tracking is all becoming more frequent in vision applications.A visual navigation line tracking robot should detect the line with a camera using an image processing technique.The paper focuses on combining computer vision techniques with a proportional-integral-derivative(PID)control-ler for automatic steering and speed control.A prototype line tracking robot is used to evaluate the proposed control strategy. 展开更多
关键词 Line tracking robot vision navigation PID control image processing OPENCV raspberry pi
下载PDF
Fault Detection for Motor Drive Control System of Industrial Robots Using CNN-LSTM-based Observers 被引量:1
13
作者 Tao Wang Le Zhang Xuefei Wang 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第2期144-152,共9页
The complex working conditions and nonlinear characteristics of the motor drive control system of industrial robots make it difficult to detect faults.In this paper,a deep learning-based observer,which combines the co... The complex working conditions and nonlinear characteristics of the motor drive control system of industrial robots make it difficult to detect faults.In this paper,a deep learning-based observer,which combines the convolutional neural network(CNN)and the long short-term memory network(LSTM),is employed to approximate the nonlinear driving control system.CNN layers are introduced to extract dynamic features of the data,whereas LSTM layers perform time-sequential prediction of the target system.In terms of application,normal samples are fed into the observer to build an offline prediction model for the target system.The trained CNN-LSTM-based observer is then deployed along with the target system to estimate the system outputs.Online fault detection can be realized by analyzing the residuals.Finally,an application of the proposed fault detection method to a brushless DC motor drive system is given to verify the effectiveness of the proposed scheme.Simulation results indicate the impressive fault detection capability of the presented method for driving control systems of industrial robots. 展开更多
关键词 Fault detection Motor drive control system Deep learning CNN-LSTM Industrial robot
下载PDF
A Closed-Loop Dynamic Controller for Active Vibration Isolation Working on A Parallel Wheel-Legged Robot
14
作者 Fei Guo Shoukun Wang +1 位作者 Daohe Liu Junzheng Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第3期147-160,共14页
Serving the Stewart mechanism as a wheel-legged structure,the most outstanding superiority of the proposed wheel-legged hybrid robot(WLHR)is the active vibration isolation function during rolling on rugged terrain.How... Serving the Stewart mechanism as a wheel-legged structure,the most outstanding superiority of the proposed wheel-legged hybrid robot(WLHR)is the active vibration isolation function during rolling on rugged terrain.However,it is difficult to obtain its precise dynamic model,because of the nonlinearity and uncertainty of the heavy robot.This paper presents a dynamic control framework with a decentralized structure for single wheel-leg,position tracking based on model predictive control(MPC)and adaptive impedance module from inside to outside.Through the Newton-Euler dynamic model of the Stewart mechanism,the controller first creates a predictive model by combining Newton-Raphson iteration of forward kinematic and inverse kinematic calculation of Stewart.The actuating force naturally enables each strut to stretch and retract,thereby realizing six degrees-of-freedom(6-DOFs)position-tracking for Stewart wheel-leg.The adaptive impedance control in the outermost loop adjusts environmental impedance parameters by current position and force feedback of wheel-leg along Z-axis.This adjustment allows the robot to adequately control the desired support force tracking,isolating the robot body from vibration that is generated from unknown terrain.The availability of the proposed control methodology on a physical prototype is demonstrated by tracking a Bezier curve and active vibration isolation while the robot is rolling on decelerate strips.By comparing the proportional and integral(PI)and constant impedance controllers,better performance of the proposed algorithm was operated and evaluated through displacement and force sensors internally-installed in each cylinder,as well as an inertial measurement unit(IMU)mounted on the robot body.The proposed algorithm structure significantly enhances the control accuracy and vibration isolation capacity of parallel wheel-legged robot. 展开更多
关键词 Wheel-legged hybrid robot Adaptive impedance control Model predictive control Stewart mechanism Vibration isolation Parallel robot
下载PDF
Computing and Implementation of a Controlled Telepresence Robot
15
作者 Ali A.Altalbe Aamir Shahzad Muhammad Nasir Khan 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1569-1585,共17页
The development of human-robot interaction has been continu-ously increasing for the last decades.Through this development,it has become simpler and safe interactions using a remotely controlled telepresence robot in ... The development of human-robot interaction has been continu-ously increasing for the last decades.Through this development,it has become simpler and safe interactions using a remotely controlled telepresence robot in an insecure and hazardous environment.The audio-video communication connection or data transmission stability has already been well handled by fast-growing technologies such as 5G and 6G.However,the design of the phys-ical parameters,e.g.,maneuverability,controllability,and stability,still needs attention.Therefore,the paper aims to present a systematic,controlled design and implementation of a telepresence mobile robot.The primary focus of this paper is to perform the computational analysis and experimental implementa-tion design with sophisticated position control,which autonomously controls the robot’s position and speed when reaching an obstacle.A system model and a position controller design are developed with root locus points.The design robot results are verified experimentally,showing the robot’s agreement and control in the desired position.The robot was tested by considering various parameters:driving straight ahead,right turn,self-localization and complex path.The results prove that the proposed approach is flexible and adaptable and gives a better alternative.The experimental results show that the proposed method significantly minimizes the obstacle hits. 展开更多
关键词 COMPUTING TELEPRESENCE healthcare system position controller mobile robot
下载PDF
Telepresence Robots and Controlling Techniques in Healthcare System
16
作者 Fawad Naseer Muhammad Nasir Khan +1 位作者 Zubair Nawaz Qasim Awais 《Computers, Materials & Continua》 SCIE EI 2023年第3期6623-6639,共17页
In this era of post-COVID-19,humans are psychologically restricted to interact less with other humans.According to the world health organization(WHO),there are many scenarios where human interactions cause severe mult... In this era of post-COVID-19,humans are psychologically restricted to interact less with other humans.According to the world health organization(WHO),there are many scenarios where human interactions cause severe multiplication of viruses from human to human and spread worldwide.Most healthcare systems shifted to isolation during the pandemic and a very restricted work environment.Investigations were done to overcome the remedy,and the researcher developed different techniques and recommended solutions.Telepresence robot was the solution achieved by all industries to continue their operations but with almost zero physical interaction with other humans.It played a vital role in this perspective to help humans to perform daily routine tasks.Healthcare workers can use telepresence robots to interact with patients who visit the healthcare center for initial diagnosis for better healthcare system performance without direct interaction.The presented paper aims to compare different telepresence robots and their different controlling techniques to perform the needful in the respective scenario of healthcare environments.This paper comprehensively analyzes and reviews the applications of presented techniques to control different telepresence robots.However,our feature-wise analysis also points to specific technical,appropriate,and ethical challenges that remain to be solved.The proposed investigation summarizes the need for further multifaceted research on the design and impact of a telepresence robot for healthcare centers,building on new perceptions during the COVID-19 pandemic. 展开更多
关键词 Telepresence robot controlling techniques healthcare center unmanned ground vehicle(UGV) TELEHEALTH
下载PDF
Novel ARC-Fuzzy Coordinated Automatic Tracking Control of Four-Wheeled Mobile Robot
17
作者 G.Pandiaraj S.Muralidharan 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3713-3726,共14页
Four-wheeled,individual-driven,nonholonomic structured mobile robots are widely used in industries for automated work,inspection and explora-tion purposes.The trajectory tracking control of the four-wheel individual-d... Four-wheeled,individual-driven,nonholonomic structured mobile robots are widely used in industries for automated work,inspection and explora-tion purposes.The trajectory tracking control of the four-wheel individual-driven mobile robot is one of the most blooming research topics due to its nonholonomic structure.The wheel velocities are separately adjusted to follow the trajectory in the old-fashioned kinematic control of skid-steered mobile robots.However,there is no consideration for robot dynamics when using a kinematic controller that solely addresses the robot chassis’s motion.As a result,the mobile robot has lim-ited performance,such as chattering during curved movement.In this research work,a three-tiered adaptive robust control with fuzzy parameter estimation,including dynamic modeling,direct torque control and wheel slip control is pro-posed.Fuzzy logic-based parameter estimation is a valuable tool for adjusting adaptive robust controller(ARC)parameters and tracking the trajectories with less tracking error as well as high tracking accuracy.This research considers the O type and 8 type trajectories for performance analysis of the proposed novel control technique.Our suggested approach outperforms the existing control methods such as Fuzzy,proportional–integral–derivative(PID)and adaptive robust controller with discrete projection(ARC–DP).The experimental results show that the scheduled performance index decreases by 2.77%and 4.76%.All the experimen-tal simulations obviously proved that the proposed ARC-Fuzzy performed well in smooth groud surfaces compared to other approaches. 展开更多
关键词 Adaptive robust control coordinated control mobile robot fuzzy adaptation law fuzzy parameter adjustment direct torque allocation
下载PDF
Data Driven Vibration Control:A Review
18
作者 Weiyi Yang Shuai Li Xin Luo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第9期1898-1917,共20页
With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests... With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests from both the industrial and academic communities.Input shaping(IS),as a simple and effective feedforward method,is greatly demanded in DDVC methods.It convolves the desired input command with impulse sequence without requiring parametric dynamics and the closed-loop system structure,thereby suppressing the residual vibration separately.Based on a thorough investigation into the state-of-the-art DDVC methods,this survey has made the following efforts:1)Introducing the IS theory and typical input shapers;2)Categorizing recent progress of DDVC methods;3)Summarizing commonly adopted metrics for DDVC;and 4)Discussing the engineering applications and future trends of DDVC.By doing so,this study provides a systematic and comprehensive overview of existing DDVC methods from designing to optimizing perspectives,aiming at promoting future research regarding this emerging and vital issue. 展开更多
关键词 Data driven vibration control(DDVC) data science designing method feedforward control industrial robot input shaping optimizing method residual vibration
下载PDF
A Practical Study of Intelligent Image-Based Mobile Robot for Tracking Colored Objects
19
作者 Mofadal Alymani Mohamed Esmail Karar Hazem Ibrahim Shehata 《Computers, Materials & Continua》 SCIE EI 2024年第8期2181-2197,共17页
Object tracking is one of the major tasks for mobile robots in many real-world applications.Also,artificial intelligence and automatic control techniques play an important role in enhancing the performance of mobile r... Object tracking is one of the major tasks for mobile robots in many real-world applications.Also,artificial intelligence and automatic control techniques play an important role in enhancing the performance of mobile robot navigation.In contrast to previous simulation studies,this paper presents a new intelligent mobile robot for accomplishing multi-tasks by tracking red-green-blue(RGB)colored objects in a real experimental field.Moreover,a practical smart controller is developed based on adaptive fuzzy logic and custom proportional-integral-derivative(PID)schemes to achieve accurate tracking results,considering robot command delay and tolerance errors.The design of developed controllers implies some motion rules to mimic the knowledge of experienced operators.Twelve scenarios of three colored object combinations have been successfully tested and evaluated by using the developed controlled image-based robot tracker.Classical PID control failed to handle some tracking scenarios in this study.The proposed adaptive fuzzy PID control achieved the best accurate results with the minimum average final error of 13.8 cm to reach the colored targets,while our designed custom PID control is efficient in saving both average time and traveling distance of 6.6 s and 14.3 cm,respectively.These promising results demonstrate the feasibility of applying our developed image-based robotic system in a colored object-tracking environment to reduce human workloads. 展开更多
关键词 Mobile robot autonomous systems fuzzy logic control real-time image processing
下载PDF
Contact detumbling toward a nutating target through deformable effectors and prescribed performance controller
20
作者 ZANG Yue ZHANG Yao +2 位作者 HU Quan LI Mou CHEN Yujun 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期753-768,共16页
Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nut... Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nutating target. A dual-arm robotic system installed with the deformable end-effectors is modeled and the movement of the end-tips is analyzed. The complex operation of the contact toward a nutating target places strict requirements on control accuracy and controller robustness. Thus, an improvement of the tracking error transformation is proposed and an adaptive sliding mode controller with prescribed performance is designed to guarantee the fast and precise motion of the effector during the contact detumbling.Finally, by employing the proposed effector and the controller,numerical simulations are carried out to verify the effectiveness and efficiency of the contact detumbling toward a nutating target. 展开更多
关键词 nutating target contact detumbling dual-arm space robot deformable end-effector prescribed performance controller
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部