Deepwater oil and gas exploration is the key to sustainable breakthroughs in petroleum exploration worldwide.The Central Canyon gas field has confirmed the Lingshui Sag is a hydrocarbon-generating sag,and the deepwate...Deepwater oil and gas exploration is the key to sustainable breakthroughs in petroleum exploration worldwide.The Central Canyon gas field has confirmed the Lingshui Sag is a hydrocarbon-generating sag,and the deepwater reservoirs in the Lingshui Sag still have more fabulous oil and gas exploration potential.Based on drilling data and three-dimensional(3D)seismic data,this paper uses seismic facies analysis,seismic attribute analysis,and coherence slice analysis to identify the types of submarine fans(lobe-shaped and band-shaped submarine fans)that developed in the Lingshui Sag during the Middle Miocene,clarify the source-to-sink system of the submarine fans and discuss the genesis mechanism of the submarine fans.The results show that:(1)the deepwater source-to-sink system of the Lingshui Sag in the Middle Miocene mainly consisted of a“delta(sediment supply)-submarine canyon(sediment transport channel)-submarine fan(deepwater sediment sink)”association;(2)the main factor controlling the formation of the submarine fans developed in the Lingshui Sag was on the relative sea level decline;and(3)the bottom current reworked the lobe-shaped submarine fan that developed in the northern Lingshui Sag and formed the band-shaped submarine fan with a greater sand thickness.This paper aims to provide practical geological knowledge for subsequent petroleum exploration and development in the deepwater area of the Qiongdongnan Basin through a detailed analysis of the Middle Miocene submarine fan sedimentary system developed in the Lingshui Sag.展开更多
Among the common hazards related to alluvial fans,flooding is one of the most important.Nonetheless,in populated alluvial fans,not only the natural processes are effective in floods,but the artificial structures and m...Among the common hazards related to alluvial fans,flooding is one of the most important.Nonetheless,in populated alluvial fans,not only the natural processes are effective in floods,but the artificial structures and modifications can change the behavior of flooding and its potential risks.This study aims to indicate the flood-prone landforms in a set of populated alluvial fans in an arid region and investigate the role of anthropogenic activities in controlling/exacerbating flooding in alluvial fans.To achieve this goal,15 Ground Range Detected in High resolution(GRDH)SAR Sentinel-1 images,covering a total of 24 alluvial fans,were acquired.Pre-processing and post-processing steps were applied to all images to identify flood-prone sections of the studied alluvial fans.The results showed that feeder channels,spreading sites,and wide interfluves are the most flood-prone landforms of alluvial fans.In terms of anthropogenic modifications to mitigate flooding,a rampart system is distributed in the study area.Ramparts are levee like structures formed from the fan material.They aim to mitigate flood hazard on residential areas,infrastructures,and agricultural lands of the study area.Results show that the rampart system can reduce the danger of floods,but it cannot be considered a long-term solution.Therefore,a comprehensive flood protection system distributed throughout the whole alluvial fan system is needed.Results also reveal that in regions where flood monitoring is challenging,SAR images can be used as a freely available data set to monitor and identify flooding hotspots.展开更多
Coarse-grained subaqueous fans are vital oil and gas exploration targets in the Bohai Bay basin,China.The insufficient understanding of their sedimentary processes,depositional patterns,and controlling factors restric...Coarse-grained subaqueous fans are vital oil and gas exploration targets in the Bohai Bay basin,China.The insufficient understanding of their sedimentary processes,depositional patterns,and controlling factors restricts efficient exploration and development.Coarse-grained subaqueous fans in the Yong′an area,Dongying Depression,are investigated in this study.These fans include nearshore subaqueous fans,and sublacustrine fans,and their sedimentary processes,depositional patterns and distribution characteristics are mainly controlled by tectonic activity and paleogeomorphology.Nearshore subaqueous fans developed near the boundary fault during the early–middle deposition stage due to strong tectonic activity and large topographic subsidence.Early sublacustrine fans developed at the front of the nearshore subaqueous fans in the area where the topography changed from gentle to steep along the source direction.While the topography was gentle,sublacustrine fans did not develop.During the late weak tectonic activity stage,late sublacustrine fans developed with multiple stages superimposed.Frequent fault activity and related earthquakes steepened the basin margin,and the boundary fault slopes were 25.9°–34°.During the early–middle deposition stage,hyperpycnal flows triggered by outburst floods developed.During the late deposition stage,with weak tectonic activity,seasonal floods triggered hyperpycnal flows,and hybrid event beds developed distally.展开更多
Currently, the differences in gravity flow deposits within different systems tracts in continental lacustrine basins are not clear. Taking the middle submember of the third member of Paleogene Shahejie Formation(Sha 3...Currently, the differences in gravity flow deposits within different systems tracts in continental lacustrine basins are not clear. Taking the middle submember of the third member of Paleogene Shahejie Formation(Sha 3 Member) in the Shishen 100 area of the Dongying Sag in the Bohai Bay Basin as an example, the depositional architecture of sublacustrine fans during forced regression and the impact of the fourth-order base-level changes on their growth were investigated using cores, well logs and 3D seismic data. Sublacustrine fans were mainly caused by hyperpycnal flow during the fourth-order base-level rise, while the proportion of slump-induced sublacustrine fans gradually increased during the late fourth-order base-level fall. From rising to falling of the fourth-order base-level, the extension distance of channels inside hyperpycnal-fed sublacustrine fans reduced progressively, resulting in the transformation in their morphology from a significantly channelized fan to a skirt-like fan. Furthermore, the depositional architecture of distributary channel complexes in sublacustrine fans changed from vertical aggradation to lateral migration, and the lateral size of individual channel steadily decreased. The lobe complex's architectural patterns evolved from compensational stacking of lateral migration to aggradational stacking, and the lateral size of individual lobe steadily grew. This study deepens the understanding of depositional features of gravity flow in high-frequency sequence stratigraphy and provides a geological foundation for the fine development of sublacustrine fan reservoirs.展开更多
Ash-rich pyroclastic flows from the cataclysmic eruption of Mount Mazama (~7700 yr. B. P.), Cascade volcanic arc, Oregon, entered and blocked the narrow, bedrock-lined canyon of the Williamson River approximately 35 t...Ash-rich pyroclastic flows from the cataclysmic eruption of Mount Mazama (~7700 yr. B. P.), Cascade volcanic arc, Oregon, entered and blocked the narrow, bedrock-lined canyon of the Williamson River approximately 35 to 44 km from the source volcano. The blockage impounded a body of water which then released producing four stratigraphic units in the downstream debris fan. The four stratigraphic units are a boulder core comprised of locally sourced bedrock boulders and three sand-rich units including a fine-grained sand unit, a sandy pumice gravel (±basalt/hydrovolcanic tuff) unit, and a pumice pebble-bearing, crystal-rich sand unit. Hand-drilled auger holes up to ~1.6 m deep were used to obtain samples of the sand-rich units. Units were delimited using surface and down-hole observations, composition and texture, estimated density, statistical parameters of grain size, and vertical and lateral distribution of properties. Overtopping followed by rapid incision into the ash-rich pyroclastic flows progressively cleared the canyon, but a bedrock knickpoint near the head of the canyon limited the volume of debris available for transport to about 0.04 km<sup>3</sup> to 0.08 km<sup>3</sup>. Co-deposition of bedrock boulders and lithic-rich sand was followed by rapid deposition with minimal reworking of remobilized pyroclastics. Continued draining of the impounded lake sent hyperconcentrated flows onto the debris fan depositing pumice-rich gravels that graded upward to crystal-rich sands.展开更多
树是连通的无圈图,研究树的拉普拉斯矩阵具有重要的图论和实际意义.设G是一个有n个点和m个边的图,A(G)和D(G)分别是图G的邻接矩阵和对角度矩阵,那么G的拉普拉斯矩阵定义为L(G)=D(G)-A(G).LI矩阵定义为LI(G)=L(G)-(2m/n)I_(n),其中I_(n)...树是连通的无圈图,研究树的拉普拉斯矩阵具有重要的图论和实际意义.设G是一个有n个点和m个边的图,A(G)和D(G)分别是图G的邻接矩阵和对角度矩阵,那么G的拉普拉斯矩阵定义为L(G)=D(G)-A(G).LI矩阵定义为LI(G)=L(G)-(2m/n)I_(n),其中I_(n)是单位矩阵.图的LI矩阵的Ky Fan k-范数代表了拉普拉斯特征值和拉普拉斯特征值平均值之间距离的有序和.研究了双星图的LI矩阵的Ky Fan k-范数,证明了双星图的LI矩阵的Ky Fan k-范数满足文献[6]中提出的猜想.展开更多
The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high...The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high-resolution 3D seismic,logging and core data of Pearl River Mouth Basin(PRMB),this paper dissected the shelf-edge delta to deep-water fan(SEDDF)depositional system in the Oligocene Zhuhai Formation of Paleogene in south subsag of Baiyun Sag,and revealed the complex coupling relationship from the continental shelf edge to deep-water fan sedimentation and its genetic mechanisms.The results show that during the deposition of the fourth to first members of the Zhuhai Formation,the scale of the SEDDF depositional system in the study area showed a pattern of first increasing and then decreasing,with deep-water fan developed in the third to first members and the largest plane distribution scale developed in the late stage of the second member.Based on the development of SEDDF depositional system along the source direction,three types of coupling relationships are divided,namely,deltas that are linked downdip to fans,deltas that lack downdip fans and fans that lack updip coeval deltas,with different depositional characteristics and genetic mechanisms.(1)Deltas that are linked downdip to fans:with the development of shelf-edge deltas in the shelf area and deep-water fans in the downdip slope area,and the strong source supply and relative sea level decline are the two key factors which control the development of this type of source-to-sink(S2S).The development of channels on the continental shelf edge is conducive to the formation of this type of S2S system even with weak source supply and high sea level.(2)Deltas that lack downdip fans:with the development of shelf edge deltas in shelf area,while deep water fans are not developed in the downdip slope area.The lack of“sources”and“channels”,and fluid transformation are the three main reasons for the formation of this type of S2S system.(3)Fans that lack updip coeval deltas:with the development of deep-water fans in continental slope area and the absence of updip coeval shelf edge deltas,which is jointly controlled by the coupling of fluid transformation at the shelf edge and the“channels”in the continental slope area.展开更多
It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of s...It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of soil enzyme activities and SOC fractions(particulate organic carbon(POC)and mineral-associated organic carbon(MAOC))to five typical desert plant communities(Convolvulus tragacanthoides,Ephedra rhytidosperma,Stipa breviflora,Stipa tianschanica var.gobica,and Salsola laricifolia communities)in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia Hui Autonomous Region,China.We recorded the plant community information mainly including the plant coverage and herb and shrub species,and obtained the aboveground biomass and plant species diversity through sample surveys in late July 2023.Soil samples were also collected at depths of 0–10 cm(topsoil)and 10–20 cm(subsoil)to determine the soil physicochemical properties and enzyme activities.The results showed that the plant coverage and aboveground biomass of S.laricifolia community were significantly higher than those of C.tragacanthoides,S.breviflora,and S.tianschanica var.gobica communities(P<0.05).Soil enzyme activities varied among different plant communities.In the topsoil,the enzyme activities of alkaline phosphatase(ALP)andβ-1,4-glucosidas(βG)were significantly higher in E.rhytidosperma and S.tianschanica var.gobica communities than in other plant communities(P<0.05).The topsoil had higher POC and MAOC contents than the subsoil.Specifically,the content of POC in the topsoil was 18.17%–42.73%higher than that in the subsoil.The structural equation model(SEM)indicated that plant species diversity,soil pH,and soil water content(SWC)were the main factors influencing POC and MAOC.The soil pH inhibited the formation of POC and promoted the formation of MAOC.Conversely,SWC stimulated POC production and hindered MAOC formation.Our study aimed to gain insight into the effects of desert plant communities on soil enzyme activities and SOC fractions,as well as the drivers of SOC fractions in the proluvial fan in the eastern foothills of the Helan Mountain and other desert ecosystems.展开更多
As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study ai...As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study aims to develop a temperature-feedback-based fan speed optimization strategy to achieve higher energy efficiency and user comfort.Firstly,by analyzing existing fan speed control technologies,their main limitations are identified,such as the inability to achieve smooth speed transitions.To address this issue,a BP-PID speed control algorithm is designed,which dynamically adjusts fan speed based on indoor temperature changes.Experimental validation demonstrates that the designed system can achieve smooth speed transitions compared to traditional fan systems while maintaining stable indoor temperatures.Furthermore,the real-time responsiveness of the system is crucial for enhancing user comfort.Our research not only demonstrates the feasibility of temperature-based fan speed optimization strategies in both theory and practice but also provides valuable insights for energy management in future smart home environments.Ultimately,this research outcome will facilitate the development of smart home systems and have a positive impact on environmental sustainability.展开更多
Diagenetic traps in conglomerate in nearshore subaqueous fans in the steep slope zones of rift basins have been important exploration targets for subtle reservoirs in eastern China. However, the mechanism of how those...Diagenetic traps in conglomerate in nearshore subaqueous fans in the steep slope zones of rift basins have been important exploration targets for subtle reservoirs in eastern China. However, the mechanism of how those traps were formed is not clear, which inhibits further exploration for this type of reservoir. In order to solve the problem, we take as an example nearshore subaqueous fans in the upper part of the fourth member of the Shahejie Formation (Es4s) on the north slope of the Minfeng Subsag in the Dongying Sag. Combining different research methods, such as core observation, thin section examination, scanning electron microscope (SEM) observation, fluid-inclusion analysis, carbon and oxygen isotope analysis of carbonate cements, and analysis of core properties, we studied the genetic mechanisms of diagenetic traps on the basis of diagenetic environment evolution and diagenetic evolution sequence in different sub/micro-facies. Conglomerate in Es4s in the north Minfeng Subsag experienced several periods of transition between alkaline and acidic environments as "alkaline-acidic-alkaline-acidic-weak alkaline". As a result, dissolution and cementation are also very complex, and the sequence is "early pyrite cementation / siderite cementation / gypsum cementation / calcite and dolomite cementation- feldspar dissolution / quartz overgrowth quartz dissolution / ferroan calcite cementation / ankerite cementation / lime-mud matrix recrystallization / feldspar overgrowth carbonate dissolution / feldspar dissolution / quartz overgrowth / pyrite cementation". The difference in sedimentary characteristics between different sub/micro-facies of nearshore subaqueous fans controls diagenetic characteristics. Inner fan conglomerates mainly experienced compaction and lime-mud matrix recrystallization, with weak dissolution, which led to a reduction in the porosity and permeability crucial to reservoir formation. Lime-mud matrix recrystallization results in a rapid decrease in porosity and permeability in inner fan conglomerates in middle-to-deep layers. Because acid dissolution reworks reservoirs and hydrocarbon filling inhibits cementation, reservoirs far from mudstone layers in middle fan braided channels develop a great number of primary pores and secondary pores, and are good enough to be effective reservoirs of hydrocarbon. With the increase of burial depth, both the decrease of porosity and permeability of inner fan conglomerates and the increase of the physical property difference between inner fans and middle fans enhance the quality of seals in middle-to-deep layers. As a result, inner fan conglomerates can be sealing layers in middle-to-deep buried layers. Reservoirs adjacent to mudstones in middle fan braided channels and reservoirs in middle fan interdistributaries experienced extensive cementation, and tight cemented crusts formed at both the top and bottom of conglomerates, which can then act as cap rocks. In conclusion, diagenetic traps in conglomerates of nearshore subaqueous fans could be developed with inner fan conglomerates as lateral or vertical sealing layers, tight carbonate crusts near mudstone layers in middle fan braided channels as well as lacustrine mudstones as cap rocks, and conglomerates far from mudstone layers in middle fan braided channels as reservoirs. Lime-mud matrix recrystallization of inner fan conglomerates and carbonate cementation of conglomerates adjacent to mudstone layers in middle fan braided channels took place from 32 Ma B.R to 24.6 Ma B.P., thus the formation of diagenetic traps was from 32 Ma B.R to 24.6 Ma B.R and diagenetic traps have a better hydrocarbon sealing ability from 24 Ma B.P.. The sealing ability of inner fans gradually increases with the increase of burial depth and diagenetic traps buried more than 3,200 m have better seals.展开更多
基金The National Natural Science Foundation of China under contract No.42372154。
文摘Deepwater oil and gas exploration is the key to sustainable breakthroughs in petroleum exploration worldwide.The Central Canyon gas field has confirmed the Lingshui Sag is a hydrocarbon-generating sag,and the deepwater reservoirs in the Lingshui Sag still have more fabulous oil and gas exploration potential.Based on drilling data and three-dimensional(3D)seismic data,this paper uses seismic facies analysis,seismic attribute analysis,and coherence slice analysis to identify the types of submarine fans(lobe-shaped and band-shaped submarine fans)that developed in the Lingshui Sag during the Middle Miocene,clarify the source-to-sink system of the submarine fans and discuss the genesis mechanism of the submarine fans.The results show that:(1)the deepwater source-to-sink system of the Lingshui Sag in the Middle Miocene mainly consisted of a“delta(sediment supply)-submarine canyon(sediment transport channel)-submarine fan(deepwater sediment sink)”association;(2)the main factor controlling the formation of the submarine fans developed in the Lingshui Sag was on the relative sea level decline;and(3)the bottom current reworked the lobe-shaped submarine fan that developed in the northern Lingshui Sag and formed the band-shaped submarine fan with a greater sand thickness.This paper aims to provide practical geological knowledge for subsequent petroleum exploration and development in the deepwater area of the Qiongdongnan Basin through a detailed analysis of the Middle Miocene submarine fan sedimentary system developed in the Lingshui Sag.
文摘Among the common hazards related to alluvial fans,flooding is one of the most important.Nonetheless,in populated alluvial fans,not only the natural processes are effective in floods,but the artificial structures and modifications can change the behavior of flooding and its potential risks.This study aims to indicate the flood-prone landforms in a set of populated alluvial fans in an arid region and investigate the role of anthropogenic activities in controlling/exacerbating flooding in alluvial fans.To achieve this goal,15 Ground Range Detected in High resolution(GRDH)SAR Sentinel-1 images,covering a total of 24 alluvial fans,were acquired.Pre-processing and post-processing steps were applied to all images to identify flood-prone sections of the studied alluvial fans.The results showed that feeder channels,spreading sites,and wide interfluves are the most flood-prone landforms of alluvial fans.In terms of anthropogenic modifications to mitigate flooding,a rampart system is distributed in the study area.Ramparts are levee like structures formed from the fan material.They aim to mitigate flood hazard on residential areas,infrastructures,and agricultural lands of the study area.Results show that the rampart system can reduce the danger of floods,but it cannot be considered a long-term solution.Therefore,a comprehensive flood protection system distributed throughout the whole alluvial fan system is needed.Results also reveal that in regions where flood monitoring is challenging,SAR images can be used as a freely available data set to monitor and identify flooding hotspots.
基金supported by the National Science Foundation of China(Grant Nos.41972099,4217020246)the National Science and Technology Major of China(Grant Nos.2017ZX05009-002,2017ZX05072-002)。
文摘Coarse-grained subaqueous fans are vital oil and gas exploration targets in the Bohai Bay basin,China.The insufficient understanding of their sedimentary processes,depositional patterns,and controlling factors restricts efficient exploration and development.Coarse-grained subaqueous fans in the Yong′an area,Dongying Depression,are investigated in this study.These fans include nearshore subaqueous fans,and sublacustrine fans,and their sedimentary processes,depositional patterns and distribution characteristics are mainly controlled by tectonic activity and paleogeomorphology.Nearshore subaqueous fans developed near the boundary fault during the early–middle deposition stage due to strong tectonic activity and large topographic subsidence.Early sublacustrine fans developed at the front of the nearshore subaqueous fans in the area where the topography changed from gentle to steep along the source direction.While the topography was gentle,sublacustrine fans did not develop.During the late weak tectonic activity stage,late sublacustrine fans developed with multiple stages superimposed.Frequent fault activity and related earthquakes steepened the basin margin,and the boundary fault slopes were 25.9°–34°.During the early–middle deposition stage,hyperpycnal flows triggered by outburst floods developed.During the late deposition stage,with weak tectonic activity,seasonal floods triggered hyperpycnal flows,and hybrid event beds developed distally.
基金Supported by the National Natural Science Foundation of China (41872113,42172109,42202170)CNPC–China University of Petroleum (Beijing) Strategic Cooperation Science and Technology Project (ZLZX2020-02)。
文摘Currently, the differences in gravity flow deposits within different systems tracts in continental lacustrine basins are not clear. Taking the middle submember of the third member of Paleogene Shahejie Formation(Sha 3 Member) in the Shishen 100 area of the Dongying Sag in the Bohai Bay Basin as an example, the depositional architecture of sublacustrine fans during forced regression and the impact of the fourth-order base-level changes on their growth were investigated using cores, well logs and 3D seismic data. Sublacustrine fans were mainly caused by hyperpycnal flow during the fourth-order base-level rise, while the proportion of slump-induced sublacustrine fans gradually increased during the late fourth-order base-level fall. From rising to falling of the fourth-order base-level, the extension distance of channels inside hyperpycnal-fed sublacustrine fans reduced progressively, resulting in the transformation in their morphology from a significantly channelized fan to a skirt-like fan. Furthermore, the depositional architecture of distributary channel complexes in sublacustrine fans changed from vertical aggradation to lateral migration, and the lateral size of individual channel steadily decreased. The lobe complex's architectural patterns evolved from compensational stacking of lateral migration to aggradational stacking, and the lateral size of individual lobe steadily grew. This study deepens the understanding of depositional features of gravity flow in high-frequency sequence stratigraphy and provides a geological foundation for the fine development of sublacustrine fan reservoirs.
文摘Ash-rich pyroclastic flows from the cataclysmic eruption of Mount Mazama (~7700 yr. B. P.), Cascade volcanic arc, Oregon, entered and blocked the narrow, bedrock-lined canyon of the Williamson River approximately 35 to 44 km from the source volcano. The blockage impounded a body of water which then released producing four stratigraphic units in the downstream debris fan. The four stratigraphic units are a boulder core comprised of locally sourced bedrock boulders and three sand-rich units including a fine-grained sand unit, a sandy pumice gravel (±basalt/hydrovolcanic tuff) unit, and a pumice pebble-bearing, crystal-rich sand unit. Hand-drilled auger holes up to ~1.6 m deep were used to obtain samples of the sand-rich units. Units were delimited using surface and down-hole observations, composition and texture, estimated density, statistical parameters of grain size, and vertical and lateral distribution of properties. Overtopping followed by rapid incision into the ash-rich pyroclastic flows progressively cleared the canyon, but a bedrock knickpoint near the head of the canyon limited the volume of debris available for transport to about 0.04 km<sup>3</sup> to 0.08 km<sup>3</sup>. Co-deposition of bedrock boulders and lithic-rich sand was followed by rapid deposition with minimal reworking of remobilized pyroclastics. Continued draining of the impounded lake sent hyperconcentrated flows onto the debris fan depositing pumice-rich gravels that graded upward to crystal-rich sands.
文摘树是连通的无圈图,研究树的拉普拉斯矩阵具有重要的图论和实际意义.设G是一个有n个点和m个边的图,A(G)和D(G)分别是图G的邻接矩阵和对角度矩阵,那么G的拉普拉斯矩阵定义为L(G)=D(G)-A(G).LI矩阵定义为LI(G)=L(G)-(2m/n)I_(n),其中I_(n)是单位矩阵.图的LI矩阵的Ky Fan k-范数代表了拉普拉斯特征值和拉普拉斯特征值平均值之间距离的有序和.研究了双星图的LI矩阵的Ky Fan k-范数,证明了双星图的LI矩阵的Ky Fan k-范数满足文献[6]中提出的猜想.
基金Supported by the National Natural Science Foundation of China(91528303)CNOOC Technology Project(2021-KT-YXKY-05).
文摘The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high-resolution 3D seismic,logging and core data of Pearl River Mouth Basin(PRMB),this paper dissected the shelf-edge delta to deep-water fan(SEDDF)depositional system in the Oligocene Zhuhai Formation of Paleogene in south subsag of Baiyun Sag,and revealed the complex coupling relationship from the continental shelf edge to deep-water fan sedimentation and its genetic mechanisms.The results show that during the deposition of the fourth to first members of the Zhuhai Formation,the scale of the SEDDF depositional system in the study area showed a pattern of first increasing and then decreasing,with deep-water fan developed in the third to first members and the largest plane distribution scale developed in the late stage of the second member.Based on the development of SEDDF depositional system along the source direction,three types of coupling relationships are divided,namely,deltas that are linked downdip to fans,deltas that lack downdip fans and fans that lack updip coeval deltas,with different depositional characteristics and genetic mechanisms.(1)Deltas that are linked downdip to fans:with the development of shelf-edge deltas in the shelf area and deep-water fans in the downdip slope area,and the strong source supply and relative sea level decline are the two key factors which control the development of this type of source-to-sink(S2S).The development of channels on the continental shelf edge is conducive to the formation of this type of S2S system even with weak source supply and high sea level.(2)Deltas that lack downdip fans:with the development of shelf edge deltas in shelf area,while deep water fans are not developed in the downdip slope area.The lack of“sources”and“channels”,and fluid transformation are the three main reasons for the formation of this type of S2S system.(3)Fans that lack updip coeval deltas:with the development of deep-water fans in continental slope area and the absence of updip coeval shelf edge deltas,which is jointly controlled by the coupling of fluid transformation at the shelf edge and the“channels”in the continental slope area.
基金the Key Project of the Natural Science Foundation of Ningxia Hui Autonomous Region,China(2022AAC02020)the Major Strategic Research Project of the Chinese Academy of Engineering and Local Cooperation(2021NXZD8)the Key Research and Development Plan Project of Ningxia Hui Autonomous Region,China(2022004129003).We are grateful to the editors and anonymous reviewers for their insightful comments and suggestions in improving this manuscript.
文摘It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of soil enzyme activities and SOC fractions(particulate organic carbon(POC)and mineral-associated organic carbon(MAOC))to five typical desert plant communities(Convolvulus tragacanthoides,Ephedra rhytidosperma,Stipa breviflora,Stipa tianschanica var.gobica,and Salsola laricifolia communities)in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia Hui Autonomous Region,China.We recorded the plant community information mainly including the plant coverage and herb and shrub species,and obtained the aboveground biomass and plant species diversity through sample surveys in late July 2023.Soil samples were also collected at depths of 0–10 cm(topsoil)and 10–20 cm(subsoil)to determine the soil physicochemical properties and enzyme activities.The results showed that the plant coverage and aboveground biomass of S.laricifolia community were significantly higher than those of C.tragacanthoides,S.breviflora,and S.tianschanica var.gobica communities(P<0.05).Soil enzyme activities varied among different plant communities.In the topsoil,the enzyme activities of alkaline phosphatase(ALP)andβ-1,4-glucosidas(βG)were significantly higher in E.rhytidosperma and S.tianschanica var.gobica communities than in other plant communities(P<0.05).The topsoil had higher POC and MAOC contents than the subsoil.Specifically,the content of POC in the topsoil was 18.17%–42.73%higher than that in the subsoil.The structural equation model(SEM)indicated that plant species diversity,soil pH,and soil water content(SWC)were the main factors influencing POC and MAOC.The soil pH inhibited the formation of POC and promoted the formation of MAOC.Conversely,SWC stimulated POC production and hindered MAOC formation.Our study aimed to gain insight into the effects of desert plant communities on soil enzyme activities and SOC fractions,as well as the drivers of SOC fractions in the proluvial fan in the eastern foothills of the Helan Mountain and other desert ecosystems.
文摘As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study aims to develop a temperature-feedback-based fan speed optimization strategy to achieve higher energy efficiency and user comfort.Firstly,by analyzing existing fan speed control technologies,their main limitations are identified,such as the inability to achieve smooth speed transitions.To address this issue,a BP-PID speed control algorithm is designed,which dynamically adjusts fan speed based on indoor temperature changes.Experimental validation demonstrates that the designed system can achieve smooth speed transitions compared to traditional fan systems while maintaining stable indoor temperatures.Furthermore,the real-time responsiveness of the system is crucial for enhancing user comfort.Our research not only demonstrates the feasibility of temperature-based fan speed optimization strategies in both theory and practice but also provides valuable insights for energy management in future smart home environments.Ultimately,this research outcome will facilitate the development of smart home systems and have a positive impact on environmental sustainability.
基金co-funded by the National Natural Science Foundation of China (41102058)the National Science and Technology Special Grant (2011ZX05006-003)the Fundamental Research Funds for the Central Universities (12CX04001A)
文摘Diagenetic traps in conglomerate in nearshore subaqueous fans in the steep slope zones of rift basins have been important exploration targets for subtle reservoirs in eastern China. However, the mechanism of how those traps were formed is not clear, which inhibits further exploration for this type of reservoir. In order to solve the problem, we take as an example nearshore subaqueous fans in the upper part of the fourth member of the Shahejie Formation (Es4s) on the north slope of the Minfeng Subsag in the Dongying Sag. Combining different research methods, such as core observation, thin section examination, scanning electron microscope (SEM) observation, fluid-inclusion analysis, carbon and oxygen isotope analysis of carbonate cements, and analysis of core properties, we studied the genetic mechanisms of diagenetic traps on the basis of diagenetic environment evolution and diagenetic evolution sequence in different sub/micro-facies. Conglomerate in Es4s in the north Minfeng Subsag experienced several periods of transition between alkaline and acidic environments as "alkaline-acidic-alkaline-acidic-weak alkaline". As a result, dissolution and cementation are also very complex, and the sequence is "early pyrite cementation / siderite cementation / gypsum cementation / calcite and dolomite cementation- feldspar dissolution / quartz overgrowth quartz dissolution / ferroan calcite cementation / ankerite cementation / lime-mud matrix recrystallization / feldspar overgrowth carbonate dissolution / feldspar dissolution / quartz overgrowth / pyrite cementation". The difference in sedimentary characteristics between different sub/micro-facies of nearshore subaqueous fans controls diagenetic characteristics. Inner fan conglomerates mainly experienced compaction and lime-mud matrix recrystallization, with weak dissolution, which led to a reduction in the porosity and permeability crucial to reservoir formation. Lime-mud matrix recrystallization results in a rapid decrease in porosity and permeability in inner fan conglomerates in middle-to-deep layers. Because acid dissolution reworks reservoirs and hydrocarbon filling inhibits cementation, reservoirs far from mudstone layers in middle fan braided channels develop a great number of primary pores and secondary pores, and are good enough to be effective reservoirs of hydrocarbon. With the increase of burial depth, both the decrease of porosity and permeability of inner fan conglomerates and the increase of the physical property difference between inner fans and middle fans enhance the quality of seals in middle-to-deep layers. As a result, inner fan conglomerates can be sealing layers in middle-to-deep buried layers. Reservoirs adjacent to mudstones in middle fan braided channels and reservoirs in middle fan interdistributaries experienced extensive cementation, and tight cemented crusts formed at both the top and bottom of conglomerates, which can then act as cap rocks. In conclusion, diagenetic traps in conglomerates of nearshore subaqueous fans could be developed with inner fan conglomerates as lateral or vertical sealing layers, tight carbonate crusts near mudstone layers in middle fan braided channels as well as lacustrine mudstones as cap rocks, and conglomerates far from mudstone layers in middle fan braided channels as reservoirs. Lime-mud matrix recrystallization of inner fan conglomerates and carbonate cementation of conglomerates adjacent to mudstone layers in middle fan braided channels took place from 32 Ma B.R to 24.6 Ma B.P., thus the formation of diagenetic traps was from 32 Ma B.R to 24.6 Ma B.R and diagenetic traps have a better hydrocarbon sealing ability from 24 Ma B.P.. The sealing ability of inner fans gradually increases with the increase of burial depth and diagenetic traps buried more than 3,200 m have better seals.