期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of ginsenoside of stem and leaf combined with choline on learning and memory ability of rat models with Alzheimer diseases 被引量:1
1
作者 Xiaomin Zhao Xianglin Xie +3 位作者 Zuoli Xia Yunsheng Gao Yuyun Zhu Hongxia Gu 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第4期331-334,共4页
BACKGROUND: Central adrenergic nerve and 5-serotonergic nerve can influence central cholinergic nerve on learning and memory and make easy for study; however, ginsenoside of stem and leaf (GSL) can improve function... BACKGROUND: Central adrenergic nerve and 5-serotonergic nerve can influence central cholinergic nerve on learning and memory and make easy for study; however, ginsenoside of stem and leaf (GSL) can improve functions of central adrenergic nerve; moreover, 5-serotonergic nerve and the combination with choline can produce synergistic effect and enhance learning and memory ability so as to improve learning and memory disorder of patients with Alzheimer disease (AD). OBJECTIVE : To observe the effects of GSL combining with choline on learning and memory of AD model rats DESIGN : Randomized grouping design and controlled animal study SETIING : Department of Pharmacology, Taishan Medical College MATERIALS : The experiment was carried out in the Pharmacological Department of Medical College of Jilin University from October 1996 to January 1997. Forty healthy male Wistar rats of clean grade were randomly divided into 5 groups, including sham-injury group, model group, GSL group, choline group and combination group, with 8 rats in each group. Main medications: GSL with the volume more than 92.8% was provided by Department of Chemistry, Norman Bethune Medical College of Jilin University. Panaxatriol, the main component, was detected with thin layer scanning technique and regarded as the index of GSL quality [(55±1)%, CV= 2%, n = 5]. Choline was provided by the Third Shanghai Laboratory Factory. METHODS : 150 nmol quinolinic acid was used to damage bilateral Meynert basal nuclei of adult rats so as to establish AD models. Rats in GSL, choline and combination groups were intragastric administrated with 400 mg/kg GSL, 200 mg/kg choline (20 mL/kg), and both respectively last for 17 days starting from two days before operation. Rats in sham-injury group and model group were perfused with the same volume of distilled water once in each morning for the same days. (1) Passive avoidance step-down test: Five minutes later, rats jumped up safe platform when they were shocked with 36 V alternating current. If rats jumped down from the platform and the feet touched railings, the response was wrong. Numbers of wrong response were recorded within 3 minutes, and then the test was redone after 24 hours. (2) Morris water-maze spatial localization task: Swimming from jumping-off to platform directly was regarded as right response. Additionally, 4 successively right responses were regarded as the standard. Each rat was trained 10 times a day with 120 s per time for 3 successive days. The interval was 30 s. Three days later, numbers of right response were recorded. The training times were increased to 30 for unlearned rats. (3) Measurement of activity of choline acetylase in cerebral cortex: Rats were sacrificed at 17 days after operation to obtain cerebral cortex to measure activity of choline acetylase with radiochemistry technique. (4) Synergistic effect: It was expressed as Q value: Q value = factual incorporative effect/anticipant incorporative effect; Q ≥ 1 was regarded as synergistic effect. Anticipant incorporative effect = (EA+EB-EA·EB), EA and EB were single timing effect, respectively in GSL group and choline group. E(step-down test and Morris water maze test) = (x in model group - factual value in medicine groups)/x in model group; E (activity of choline acetylase) = (factual value in medicine groups -xin model group)/xin model group. MAIN OUTCOME MEASURES : (1) Passive avoidance step-down test and Morris water-maze spatial localization task in the study of learning and memory; (2) activity of choline acetylase. RESULTS : All 40 rats were involved in the final analysis. (1) Passive avoidance response: At learning phase on first day and retesting phase on the next day, numbers of wrong responses within 3 minutes were more in model group than sham operation group, and there was significant difference [(5.88±1.46), (2.25±0.87) times; (2.63±1.06), (0.50±0.53) times; P 〈 0.01]; numbers of wrong responses within 3 minutes were less in combination group than model group, and there was significant difference [learning phase: (1.12±0.83), (5.88±1.46) times; retesting phase: (0.38±0.74), (2.63±1.06)times, P 〈 0.01]; moreover, effect was stronger than that in GSL group and choline group. The Q value was 1.07 and 1.59, respectively and it showed synergistic effect. Spatial localization task: Training times were more in model group than sham operation group, and there was significant difference [(2.9±2.5), (12.6±3.5) times; P 〈 0.01]. Training times were less in combination group than model group, and there was significant difference [(11.8±2.4), (27.9±2.5) times, P 〈 0.01]; moreover, effect was stronger than that in GSL group and choline group. The Q value was 1.07 and it showed synergistic effect. (3) Activity of choline acetylase: Activity was lower in model group than sham operation group, and there was significant difference [(30.56±8.33), (61.11 ±8.33) nkat/g; P 〈 0.01]. Activity was higher in combination group than model group and there was significant difference [(50.00±8.33), (30.56±8.33) nkat/g, P 〈 0.01];moreover, effect was stronger than that in GSL group and choline group. The Q value was 1.5 and it showed synergistic effect. CONCLUSZON: GSL in combination with choline can synergically improve the disorder of learning and memory of AD model rats. Its mechanism may be involved in enhancing the function of central cholinergic system. 展开更多
关键词 stem Effects of ginsenoside of stem and leaf combined with choline on learning and memory ability of rat models with Alzheimer diseases
下载PDF
Effects of melatonin on learning abilities, cholinergic fibers and nitric oxide synthase expression in rat cerebral cortex
2
作者 Bin Xu1, Junpao Chen2, Hailing Zhao3 1Department of Neurology, the 187 Hospital of Chinese PLA, Haikou 571159, Hainan Province, China 2Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China 3Outpatient Department, Haikou Hospital of Traditional Chinese Medicine, Haikou 570003, Hainan Province, China 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第8期677-680,共4页
BACKGROUND: Melatonin is a kind of hormones derived from pineal gland. Recent researches demonstrate that melatonin is characterized by anti-oxidation, anti-senility and destroying free radicals. While, effect and pat... BACKGROUND: Melatonin is a kind of hormones derived from pineal gland. Recent researches demonstrate that melatonin is characterized by anti-oxidation, anti-senility and destroying free radicals. While, effect and pathogenesis of pineal gland on learning ability should be further studied. OBJECTIVE: To investigate the effects of pinealectomy on learning abiliy, distribution of cholinesterase and expression of neuronal nitric oxide synthase (nNOS) in cerebral cortex of rats and probe into the effect of melatonin on learning ability, central cholinergic system and nNOS expression. DESIGN: Randomized grouping design and animal study. SETTING: Department of Neurology, the 187 Hospital of Chinese PLA. MATERIALS: A total of 12 male SD rats, of normal learning ability testing with Y-tape maze, of clean grade, weighing 190-210 g, aged 6 weeks, were selected in this study. METHODS: The experiment was carried out in the Department of Neurology, Zhujiang Hospital from July 1997 to June 2000. All SD rats were divided into experimental group (n =6, pinealectomy) and control group (n =6, sham operation). Seven days later, rats in both two groups were continuously fed for 33 days. ① Learning ability test: The learning ability of rats was tested by trisection Y-type maze and figured as attempting times. ② Expression of acetylcholinesterase (AchE) was detected by enzyme histochemistry and nNOS was measured by SABC method. ③ Quantitative analysis of AchE fibers: AchE fibers density in unit area (surface density) was surveyed with Leica Diaplan microscope and Leica Quantimet 500+ image analytic apparatus and quantitative parameter was set up for AchE fibers covering density (μm2) per 374 693.656 μm2, moreover, the AchE fibers density was measured in Ⅱ-Ⅳ layers of motor and somatosensory cortex (showing three layers per field of vision at one time), in radiative, lacunaria and molecular layers of CA1, CA2 and CA3 areas, and in lamina multiforms of dentate gyrus. Three tissue slices were picked up randomly in the same part of each rat, together six tissue slices for nNOS expression and four near view (× 400) were selected in the parts of right neocortex, medial septal nucleus-diagonal band nucleus (SM-DB), corpus striatus and hippocampus to count nNOS-positive cells. MAIN OUTCOME MEASURES: Learning ability; distribution and quantitative analysis of AchE fibers; expression of nNOS in various cerebral areas. RESULTS: The twelve rats were all involved in the final analysis. ① Learning ability test: The learning abilities before operation in the experimental group [(14.67±4.97) times] were consistent with those in the control group [(14.33±4.32) times, P > 0.05], the learning abilities in the experimental group at 40 days after pinealectomy [(28.67±2.42) times] were obviously more than those before pinealectomy and those in the control group after operation [(13.83±8.33) times, P < 0.01]. ② Results of AchE-positive fibers density in cerebral cortex of rats: The AChE-positive fibers densities in motor and somatosensory cortex, CA1, CA2 and CA3 areas of hippocampus and in lamina multiforms of dentate gyrus in the experimental group were obviously lower than those in the control group [experimental group: (15 244±1 339), (14 764±1 391), (12 991±970), (15 077±1 020), (19 546±1 489), (19 337±1 378) μm2; control group: (21 001±1 021), (17 930±2 225), (17 260±1 342), (18 911±1 048), (24 108±1 671), (22 917±1 909) μm2, P < 0.01]. ③ Expression of nNOS in various cerebral areas: nNOS-positive cells in cerebral cortex of rats of the experimental group were more, furthermore the ones in somatosensory cortex were slightly more in motor cortex and the number (5.90±0.68) was more than that in the control group (3.68±0.39,P < 0.05). The nNOS-positive cells in SM-DB (16.21±2.03) were markedly more than those in the control group (9.32±1.05,P < 0.01). The nNOS-positive cells in hippocampus (4.27±0.75) and in corpus striatus (9.35±2.58) were not different with those in the control group (3.94±0.53, 8.96±2.31, P > 0.05). CONCLUSION: Decrease of melatonin due to pinealectomy of rats can result in learning disorder, which may be related to trauma of cholinergic neuron in cerebral cortex which were caused by nitric oxide neurotoxicity arose from the overexpression of nNOS in cerebral neocortex and SM-DB. 展开更多
关键词 Effects of melatonin on learning abilities cholinergic fibers and nitric oxide synthase expression in rat cerebral cortex NNOS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部