The power module of the Insulated Gate Bipolar Transistor(IGBT)is the core component of the traction transmission system of high-speed trains.The module's junction temperature is a critical factor in determining d...The power module of the Insulated Gate Bipolar Transistor(IGBT)is the core component of the traction transmission system of high-speed trains.The module's junction temperature is a critical factor in determining device reliability.Existing temperature monitoring methods based on the electro-thermal coupling model have limitations,such as ignoring device interactions and high computational complexity.To address these issues,an analysis of the parameters influencing IGBT failure is conducted,and a temperature monitoring method based on the Macro-Micro Attention Long Short-Term Memory(MMALSTM)recursive neural network is proposed,which takes the forward voltage drop and collector current as features.Compared with the traditional electricalthermal coupling model method,it requires fewer monitoring parameters and eliminates the complex loss calculation and equivalent thermal resistance network establishment process.The simulation model of a highspeed train traction system has been established to explore the accuracy and efficiency of MMALSTM-based prediction methods for IGBT power module junction temperature.The simulation outcomes,which deviate only 3.2% from the theoretical calculation results of the electric-thermal coupling model,confirm the reliability of this approach for predicting the temperature of IGBT power modules.展开更多
In an era where digital technology is paramount, higher education institutions like the University of Zambia (UNZA) are employing advanced computer networks to enhance their operational capacity and offer cutting-edge...In an era where digital technology is paramount, higher education institutions like the University of Zambia (UNZA) are employing advanced computer networks to enhance their operational capacity and offer cutting-edge services to their academic fraternity. Spanning across the Great East Road campus, UNZA has established one of the most extensive computer networks in Zambia, serving a burgeoning community of over 20,000 active users through a Metropolitan Area Network (MAN). However, as the digital landscape continues to evolve, it is besieged with burgeoning challenges that threaten the very fabric of network integrity—cyber security threats and the imperatives of maintaining high Quality of Service (QoS). In an effort to mitigate these threats and ensure network efficiency, the development of a mobile application to monitor temperatures in the server room was imperative. According to L. Wei, X. Zeng, and T. Shen, the use of wireless sensory networks to monitor the temperature of train switchgear contact points represents a cost-effective solution. The system is based on wireless communication technology and is detailed in their paper, “A wireless solution for train switchgear contact temperature monitoring and alarming system based on wireless communication technology”, published in the International Journal of Communications, Network and System Sciences, vol. 8, no. 4, pp. 79-87, 2015 [1]. Therefore, in this study, a mobile application technology was explored for monitoring of temperatures in the server room in order to aid Cisco device performance. Additionally, this paper also explores the hardening of Cisco device security and QoS which are the cornerstones of this study.展开更多
The transmission line tower will be affected by bad weather and artificial subsidence caused by the foundation and other factors in the power transmission.The tower’s tilt and severe deformation will cause the buildi...The transmission line tower will be affected by bad weather and artificial subsidence caused by the foundation and other factors in the power transmission.The tower’s tilt and severe deformation will cause the building to collapse.Many small changes caused the tower’s collapse,but the early staff often could not intuitively notice the changes in the tower’s state.In the current tower online monitoring system,terminal equipment often needs to replace batteries frequently due to premature exhaustion of power.According to the need for real-time measurement of power line tower,this research designed a real-time monitoring device monitoring the transmission tower attitude tilting and foundation state based on the inertial sensor,the acceleration of 3 axis inertial sensor and angular velocity raw data to pole average filtering pre-processing,and then through the complementary filtering algorithm for comprehensive calculation of tilt angle,the system meets the demand for inclined online monitoring of power line poles and towers regarding measurement accuracy,with low cost and power consumption.The optimization multi-sensor cooperative detection and correction measured tilt angle result relative accuracy can reach 1.03%,which has specific promotion and application value since the system has the advantages of unattended and efficient calculation.展开更多
HadISDH.extremes is an annually updated global gridded monthly monitoring product of wet and dry bulb temperature–based extremes indices,from January 1973 to December 2022.Data quality,including spatial and temporal ...HadISDH.extremes is an annually updated global gridded monthly monitoring product of wet and dry bulb temperature–based extremes indices,from January 1973 to December 2022.Data quality,including spatial and temporal stability,is a key focus.The hourly data are quality controlled.Homogeneity is assessed on monthly means and used to score each gridbox according to its homogeneity rather than to apply adjustments.This enables user-specific screening for temporal stability and avoids errors from inferring adjustments from monthly means for the daily maximum values.For general use,a score(HQ Flag)of 0 to 6 is recommended.A range of indices are presented,aligning with existing standardised indices.Uniquely,provision of both wet and dry bulb indices allows exploration of heat event character—whether it is a“humid and hot”,“dry and hot”or“humid and warm”event.It is designed for analysis of long-term trends in regional features.HadISDH.extremes can be used to study local events,but given the greater vulnerability to errors of maximum compared to mean values,cross-validation with independent information is advised.展开更多
Electrical sensing systems, such as those involving eutectic salt, are mostly used in connection to leakage from existing airborne high-temperature air-conducting pipelines. Such complex structured systems are suscept...Electrical sensing systems, such as those involving eutectic salt, are mostly used in connection to leakage from existing airborne high-temperature air-conducting pipelines. Such complex structured systems are susceptible to external interferences and, thus, cannot meet the increasingly strict monitoring needs of a complex air-conducting pipeline system of an aircraft. In view of this point, this paper studies an alternative sensor system based on a dense array fiber grating. To obtain a compact and light-weight airborne signal processing system, a field programmable gate array is used as the main control core that controls the output of the light source. The functions of pulse modulation, analog-to-digital conversion,data buffering and transmission are integrated into a single system, while the linear sensing monitoring is obtained by detecting the time-division and wavelength-division wavelength drift signals of the fiber Bragg grating array. Our experiments show that the spatial resolution of the linear sensing system approaches 5 cm, the temperature measurement accuracy reaches 2 ℃, the temperature measurement range is between 0–250 ℃, and the response time is within 4 s. Compared with the existing electrical monitoring systems, various monitoring indicators have been greatly improved and have broad application prospects.展开更多
The low temperature cold damage of paddy rice is the major agricultural meteorological disaster in Ningxia.The real-time monitoring and early warning of low temperature cold damage are very important to develop the ad...The low temperature cold damage of paddy rice is the major agricultural meteorological disaster in Ningxia.The real-time monitoring and early warning of low temperature cold damage are very important to develop the advantages,avoid the disadvantages and reduce the disaster losses.Based on the prior researches on the low temperature cold damage indexes of paddy rice,we improved the small grid reckoning method of temperature and the reckoning precision with the support of GIS.By using the multitemporal remote sensing data,the paddy rice planting zone was picked.The calculation results of low temperature cold damage monitoring indexes were combined with the paddy rice planting zone,which judged the grade distribution and zone of low temperature cold damage in real time.Meanwhile,the low temperature cold damage of paddy rice was done the early warning,and the automatic monitoring early warning system was developed by using the weather forecast data.This method and system were applied to the business works,and the monitoring and early warning products of paddy rice low temperature cold damage business were made.The monitoring results basically corresponded with the actual situation,and the better monitoring service effect was gained.展开更多
High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and eco...High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and economic operation of boiler. An on-line life monitoring model of high-temperature heating surface was set up according to the well-known L-M formula of the creep damages. The tube wall metal temperature and working stress was measured by on-line monitoring, and with this model, the real-time calculation of the life expenditure of the heating surface tube bundles were realized. Based on the technique the on-line life monitoring and management system of high-temperature heating surface was developed for a 300 MW utility boiler. An effective device was thus suggested for the implementation of the safe operation and the condition-based maintenance of utility boilers.展开更多
53 rice germplasm resources warehoused during 1981-1984 were regarded as materials to monitor the viability at warehouse time and different years after warehoused. The results showed that seed germination rates of dif...53 rice germplasm resources warehoused during 1981-1984 were regarded as materials to monitor the viability at warehouse time and different years after warehoused. The results showed that seed germination rates of different rice germplasm resources assumed descending trend in storage, with annual decreasing rate between 0.12%-3.05% ; the seed germination rates of most cultivars were above 75% after stored for 26 years; forecasting analysis based on the germination rate of 75% as reference showed a huge difference of safe storage life for different rice germplasm resources, ranging from 12 to 50 years, even longer time. The results suggest that track monitoring on viability and regeneration of rice cultivars is of great importance for germplasm resources conservation.展开更多
High purity SiC crystal was used as a passive monitor to measure neutron irradiation temperature in the 49-2 research reactor.The SiC monitors were irradiated with fast neutrons at elevated temperatures to 3.2×10...High purity SiC crystal was used as a passive monitor to measure neutron irradiation temperature in the 49-2 research reactor.The SiC monitors were irradiated with fast neutrons at elevated temperatures to 3.2×10^(20)n/cm^(2).The isochronal and isothermal annealing behaviors of the irradiated SiC were investigated by x-ray diffraction and four-point probe techniques.Invisible point defects and defect clusters are found to be the dominating defect types in the neutron-irradiated SiC.The amount of defect recovery in SiC reaches a maximum value after isothermal annealing for 30 min.Based on the annealing temperature dependences of both lattice swelling and material resistivity,the irradiation temperature of the SiC monitors is determined to be~410℃,which is much higher than the thermocouple temperature of 275℃ recorded during neutron irradiation.The possible reasons for the difference are carefully discussed.展开更多
The temperature field in laser line scanning thermography is investigated comprehensively in this work,including analytical calculation and experiment.Firstly,the principle of laser line scanning thermography is analy...The temperature field in laser line scanning thermography is investigated comprehensively in this work,including analytical calculation and experiment.Firstly,the principle of laser line scanning thermography is analyzed.On this basis,a physical laser line scanning model is proposed.Afterwards,based on Fourier transform(FT)and segregation variablemethod(SVM),the heat conduction differential equation in laser line scanning thermography is derived in detail.The temperature field of the composite-based coatings model with defects is simulated numerically.The results show that the laser line scanning thermography can effectively detect the defects in the model.The correctness of the analytical calculation is verified by comparing the surface temperature distribution obtained by analytical calculation and numerical simulation.Additionally,an experiment is carried out and the changeable surface temperature obtained by analytical calculation is compared with the experimental results.It shows that the error of maximum temperature obtained by analytical calculation and by experiment is 8%with high accuracy,which proves the correctness of analytical calculation and enriches the theoretical foundation of laser line scanning thermography.展开更多
Using Moderate Resolution Imaging Spectroradiometer(MODIS) data from the dry season during 2010–2012 over the whole Yunnan Province, an improved temperature vegetation dryness index(iTVDI), in which a parabolic dry-e...Using Moderate Resolution Imaging Spectroradiometer(MODIS) data from the dry season during 2010–2012 over the whole Yunnan Province, an improved temperature vegetation dryness index(iTVDI), in which a parabolic dry-edge equation replaces the traditional linear dry-edge equation, was developed, to reveal the regional drought regime in the dry season. After calculating the correlation coefficient, root-mean-square error, and standard deviation between the iTVDI and observed topsoil moisture at 10 and 20 cm for seven sites, the effectiveness of the new index in depicting topsoil moisture conditions was verified. The drought area indicated by iTVDI mapping was then compared with the drought-affected area reported by the local government. The results indicated that the iTVDI can monitor drought more accurately than the traditional TVDI during the dry season in Yunnan Province. Using iTVDI facilitates drought warning and irrigation scheduling, and the expectation is that this new index can be broadly applied in other areas.展开更多
High-temperature electromagnetic(EM) protection materials integrated of multiple EM protection mechanisms and functions are regarded as desirable candidates for solving EM interference over a wide temperature range.In...High-temperature electromagnetic(EM) protection materials integrated of multiple EM protection mechanisms and functions are regarded as desirable candidates for solving EM interference over a wide temperature range.In this work,a novel microwave modulator is fabricated by introducing carbonyl iron particles(CIP)/resin into channels of carbonized wood(C-wood).Innovatively,the spaced arrangement of two microwave absorbents not only achieves a synergistic enhancement of magnetic and dielectric losses,but also breaks the translational invariance of EM characteristics in the horizontal direction to obtain multiple phase discontinuities in the frequency range of 8.2-18.0 GHz achieving modulation of reflected wave radiation direction.Accordingly,CIP/C-wood microwave modulator demonstrates the maximum effective bandwidth of 5.2 GHz and the maximum EM protection efficiency over 97% with a thickness of only 1.5 mm in the temperature range 298-673 K.Besides,CIP/C-wood microwave modulator shows stable and low thermal conductivities,as well as monotonic electrical conductivity-temperature characteristics,therefore it can also achieve thermal infrared stealth and working temperature monitoring in wide temperature ranges.This work provides an inspiration for the design of high-temperature EM protection materials with multiple EM protection mechanisms and functions.展开更多
In order to study the stability of the Qinghai-Tibet Highway embankment at Chumaerhe in the permafrost region of northwest China, the ground temperature and deformation at different depths were monitored under the lef...In order to study the stability of the Qinghai-Tibet Highway embankment at Chumaerhe in the permafrost region of northwest China, the ground temperature and deformation at different depths were monitored under the left and right shoulders of the embankment where thermosyphons were set up only on the left shoulder. Based on the monitored data, characteristics of ground temperature and deformation of the left and right shoulders are analyzed and discussed. The results show that the start time of freezing or thawing of the seasonal active layer was about one to two months later than that of the embankment body itself. The stability of each shoulder was mainly controlled by the settlement of different soil layers, whereas frost heave of soil had scarcely any effect on the stability of the embankment. For the left shoulder, the settlement was mainly influenced by the seasonal active layer and then by the embankment body itself, due to freeze-thaw cycles which may change the soil properties; however, the permafrost layer remained fairly stable. For the right shoulder, creep of the warm permafrost layer was the main influence factor on its stability, followed by settlement of embankment body itself, and finally settlement of the seasonal active layer. Compared with the deformation of the left shoulder, the permafrost layer under the right shoulder was less stable, which indicates that the thermosyphons had a significantly positive effect on the stability of warm permafrost.展开更多
In this study,a real-time rotor temperature monitoring system for large turbogenerators using SmartMesh IP wireless network communication technology was designed and tested.The system is capable of providing comprehen...In this study,a real-time rotor temperature monitoring system for large turbogenerators using SmartMesh IP wireless network communication technology was designed and tested.The system is capable of providing comprehensive,accurate,continuous,and reliable real-time temperature monitoring for turbogenerators.Additionally,it has demonstrated satisfactory results in a real-time monitoring test of the rotor temperature of various famous large-scale turbogenerators and giant nuclear power half-speed turbogenerators designed and manufactured in China.The development and application of this wireless temperature measurement system would aid in improving the intelligent operation quality,safety,and stability of China’s large turbine generators and even the entire power system.展开更多
By Using ADAM4000 series data acquisition module, squash hall monitoring system was developed based on the LabVIEW platform. The system consists of master control, signal channel, file operations, digital filtering, s...By Using ADAM4000 series data acquisition module, squash hall monitoring system was developed based on the LabVIEW platform. The system consists of master control, signal channel, file operations, digital filtering, spectral analysis, statistic analysis, system monitoring and other modules. The system will alarm at the real time when the result of the average temperature of the squash hall divided by ten is no less than the monitor threshold of 4.3 while athletes are playing squash, by which the temperature and pressure data acquisition, processing and monitoring could be achieved. Application shows that the changes of human exposure temperature between 20°C and 43°C can achieve the comfort level of athletes’ movement, proving that the monitoring system effectively improves the security of squash hall indoor temperature environment.展开更多
We present a temperature monitoring and warning system, which is based on wireless communi- cation technology and applied in train switchgear in this paper. The system is consists of three parts, including wireless te...We present a temperature monitoring and warning system, which is based on wireless communi- cation technology and applied in train switchgear in this paper. The system is consists of three parts, including wireless temperature detection module, inter-vehicle transmission networks module and?remote monitoring server. The switchgear contact temperature data are collected via the wireless temperature detection module and exchanged in inter-vehicle wireless networking by Zigbee modules. Then the temperature of train switchgear cabinets can be monitored remotely through the GPRS wireless communication.展开更多
This paper discusses the influence of environmental factors and of normal material aging on the eigenfrequencies of concrete bridges based on monitoring data registered during 4 years of a specific bridge. It is a new...This paper discusses the influence of environmental factors and of normal material aging on the eigenfrequencies of concrete bridges based on monitoring data registered during 4 years of a specific bridge. It is a new composite steel-concrete bridge built in 2006 in Luxembourg. The measurements are analyzed and compared to literature data. The final objective is the use of real monitored eigenfrequencies for structural health monitoring and damage detection based on identification of stiffness losses in practical applications. Therefore, it is very important to identify and compensate for outdoor influences namely temperature, excitation force level and normal aging effects, like creep and shrinkage of concrete and their impact on material properties. The present paper aims at describing these effects in order to separate them from damage effects. It is shown that temperature change rates and temperature gradients within the bridge have an influence on the eigenfrequencies. Hence the key idea for assessment from the full database is to select only measurements with small temperature differences and slow temperature change rates.展开更多
In the industrial field, long running of the equipment easily leads local temperature of the equipment to rise. This is a security risk. For this problem, we have designed a set of remote wireless temperature monitori...In the industrial field, long running of the equipment easily leads local temperature of the equipment to rise. This is a security risk. For this problem, we have designed a set of remote wireless temperature monitoring system. Based on ZigBee technology, we have a remote wireless networking temperature monitoring of a lot of equipment scattered in various locations of factories and enterprises. The system uses infrared temperature sensor TS118-3 gathering temperature information. After a signal conditioning circuit, we use a wireless RF single-chip CC2530 wirelessly transmitting the temperature of the measured target to the receiving node. The receiving node uploads the data to a computer by RS232.PC software displays real-time temperature information.展开更多
Objective: To explore the application of intelligent blood temperature and humidity monitoring system in cold chain management of blood station. Methods: Through the monitoring of fifty sets of cold-chain equipment in...Objective: To explore the application of intelligent blood temperature and humidity monitoring system in cold chain management of blood station. Methods: Through the monitoring of fifty sets of cold-chain equipment in the central blood station in Hezhou for 6 months, the differences between the management of the automatic temperature and humidity monitoring system and the manual management were compared in terms of real-time recording, equipment alarm, data storage, historical data traceability and data analysis. Results: Temperature and humidity automatic monitoring system can automatically real-time acquisition, transmission, storage and alarm according to the required time interval;meanwhile, historical data can be quickly exported and traced, data and charts can be analyzed, and the alarm is real-time and effective. Conclusion: The system can effectively monitor the process of blood cold chain in blood stations and play a key role in ensuring blood quality. It can be popularized and used in blood stations.展开更多
Aiming at the actual demand for monitoring environmental information,a wireless sensing system for temperature and relative humidity(RH)monitoring based on radio frequency(RF)technology and mobile network was designed...Aiming at the actual demand for monitoring environmental information,a wireless sensing system for temperature and relative humidity(RH)monitoring based on radio frequency(RF)technology and mobile network was designed.This paper introduces the architecture of the system.The system uses AVR micro controller unit(MCU),KYL-1020U RF module and SHT71 to complete real-time temperature and humidity monitoring,and uses SIM900A module to realize remote alarming and monitoring with short message system(SMS)through global system for mobile communication(GSM).Experimental results show that the designed system has good stability of measurement and real-time performance,and it can be used in some small temperature and humidity monitoring occasions.展开更多
基金supported by the Science and Technology Project of the Headquarters of the State Grid Corporation of China(52199922001U).
文摘The power module of the Insulated Gate Bipolar Transistor(IGBT)is the core component of the traction transmission system of high-speed trains.The module's junction temperature is a critical factor in determining device reliability.Existing temperature monitoring methods based on the electro-thermal coupling model have limitations,such as ignoring device interactions and high computational complexity.To address these issues,an analysis of the parameters influencing IGBT failure is conducted,and a temperature monitoring method based on the Macro-Micro Attention Long Short-Term Memory(MMALSTM)recursive neural network is proposed,which takes the forward voltage drop and collector current as features.Compared with the traditional electricalthermal coupling model method,it requires fewer monitoring parameters and eliminates the complex loss calculation and equivalent thermal resistance network establishment process.The simulation model of a highspeed train traction system has been established to explore the accuracy and efficiency of MMALSTM-based prediction methods for IGBT power module junction temperature.The simulation outcomes,which deviate only 3.2% from the theoretical calculation results of the electric-thermal coupling model,confirm the reliability of this approach for predicting the temperature of IGBT power modules.
文摘In an era where digital technology is paramount, higher education institutions like the University of Zambia (UNZA) are employing advanced computer networks to enhance their operational capacity and offer cutting-edge services to their academic fraternity. Spanning across the Great East Road campus, UNZA has established one of the most extensive computer networks in Zambia, serving a burgeoning community of over 20,000 active users through a Metropolitan Area Network (MAN). However, as the digital landscape continues to evolve, it is besieged with burgeoning challenges that threaten the very fabric of network integrity—cyber security threats and the imperatives of maintaining high Quality of Service (QoS). In an effort to mitigate these threats and ensure network efficiency, the development of a mobile application to monitor temperatures in the server room was imperative. According to L. Wei, X. Zeng, and T. Shen, the use of wireless sensory networks to monitor the temperature of train switchgear contact points represents a cost-effective solution. The system is based on wireless communication technology and is detailed in their paper, “A wireless solution for train switchgear contact temperature monitoring and alarming system based on wireless communication technology”, published in the International Journal of Communications, Network and System Sciences, vol. 8, no. 4, pp. 79-87, 2015 [1]. Therefore, in this study, a mobile application technology was explored for monitoring of temperatures in the server room in order to aid Cisco device performance. Additionally, this paper also explores the hardening of Cisco device security and QoS which are the cornerstones of this study.
基金This work was supported by the National Natural Science Foundation of China(Nos.62172242,51901152)Industry University Cooperation Education Program of the Ministry of Education(No.2020021680113)Shanxi Scholarship Council of China.
文摘The transmission line tower will be affected by bad weather and artificial subsidence caused by the foundation and other factors in the power transmission.The tower’s tilt and severe deformation will cause the building to collapse.Many small changes caused the tower’s collapse,but the early staff often could not intuitively notice the changes in the tower’s state.In the current tower online monitoring system,terminal equipment often needs to replace batteries frequently due to premature exhaustion of power.According to the need for real-time measurement of power line tower,this research designed a real-time monitoring device monitoring the transmission tower attitude tilting and foundation state based on the inertial sensor,the acceleration of 3 axis inertial sensor and angular velocity raw data to pole average filtering pre-processing,and then through the complementary filtering algorithm for comprehensive calculation of tilt angle,the system meets the demand for inclined online monitoring of power line poles and towers regarding measurement accuracy,with low cost and power consumption.The optimization multi-sensor cooperative detection and correction measured tilt angle result relative accuracy can reach 1.03%,which has specific promotion and application value since the system has the advantages of unattended and efficient calculation.
基金supported by the UK–China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund
文摘HadISDH.extremes is an annually updated global gridded monthly monitoring product of wet and dry bulb temperature–based extremes indices,from January 1973 to December 2022.Data quality,including spatial and temporal stability,is a key focus.The hourly data are quality controlled.Homogeneity is assessed on monthly means and used to score each gridbox according to its homogeneity rather than to apply adjustments.This enables user-specific screening for temporal stability and avoids errors from inferring adjustments from monthly means for the daily maximum values.For general use,a score(HQ Flag)of 0 to 6 is recommended.A range of indices are presented,aligning with existing standardised indices.Uniquely,provision of both wet and dry bulb indices allows exploration of heat event character—whether it is a“humid and hot”,“dry and hot”or“humid and warm”event.It is designed for analysis of long-term trends in regional features.HadISDH.extremes can be used to study local events,but given the greater vulnerability to errors of maximum compared to mean values,cross-validation with independent information is advised.
文摘Electrical sensing systems, such as those involving eutectic salt, are mostly used in connection to leakage from existing airborne high-temperature air-conducting pipelines. Such complex structured systems are susceptible to external interferences and, thus, cannot meet the increasingly strict monitoring needs of a complex air-conducting pipeline system of an aircraft. In view of this point, this paper studies an alternative sensor system based on a dense array fiber grating. To obtain a compact and light-weight airborne signal processing system, a field programmable gate array is used as the main control core that controls the output of the light source. The functions of pulse modulation, analog-to-digital conversion,data buffering and transmission are integrated into a single system, while the linear sensing monitoring is obtained by detecting the time-division and wavelength-division wavelength drift signals of the fiber Bragg grating array. Our experiments show that the spatial resolution of the linear sensing system approaches 5 cm, the temperature measurement accuracy reaches 2 ℃, the temperature measurement range is between 0–250 ℃, and the response time is within 4 s. Compared with the existing electrical monitoring systems, various monitoring indicators have been greatly improved and have broad application prospects.
基金Supported by The New Technology Popularization Item of China Meteorological Administration(CMATG005M44)~~
文摘The low temperature cold damage of paddy rice is the major agricultural meteorological disaster in Ningxia.The real-time monitoring and early warning of low temperature cold damage are very important to develop the advantages,avoid the disadvantages and reduce the disaster losses.Based on the prior researches on the low temperature cold damage indexes of paddy rice,we improved the small grid reckoning method of temperature and the reckoning precision with the support of GIS.By using the multitemporal remote sensing data,the paddy rice planting zone was picked.The calculation results of low temperature cold damage monitoring indexes were combined with the paddy rice planting zone,which judged the grade distribution and zone of low temperature cold damage in real time.Meanwhile,the low temperature cold damage of paddy rice was done the early warning,and the automatic monitoring early warning system was developed by using the weather forecast data.This method and system were applied to the business works,and the monitoring and early warning products of paddy rice low temperature cold damage business were made.The monitoring results basically corresponded with the actual situation,and the better monitoring service effect was gained.
文摘High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and economic operation of boiler. An on-line life monitoring model of high-temperature heating surface was set up according to the well-known L-M formula of the creep damages. The tube wall metal temperature and working stress was measured by on-line monitoring, and with this model, the real-time calculation of the life expenditure of the heating surface tube bundles were realized. Based on the technique the on-line life monitoring and management system of high-temperature heating surface was developed for a 300 MW utility boiler. An effective device was thus suggested for the implementation of the safe operation and the condition-based maintenance of utility boilers.
文摘53 rice germplasm resources warehoused during 1981-1984 were regarded as materials to monitor the viability at warehouse time and different years after warehoused. The results showed that seed germination rates of different rice germplasm resources assumed descending trend in storage, with annual decreasing rate between 0.12%-3.05% ; the seed germination rates of most cultivars were above 75% after stored for 26 years; forecasting analysis based on the germination rate of 75% as reference showed a huge difference of safe storage life for different rice germplasm resources, ranging from 12 to 50 years, even longer time. The results suggest that track monitoring on viability and regeneration of rice cultivars is of great importance for germplasm resources conservation.
文摘High purity SiC crystal was used as a passive monitor to measure neutron irradiation temperature in the 49-2 research reactor.The SiC monitors were irradiated with fast neutrons at elevated temperatures to 3.2×10^(20)n/cm^(2).The isochronal and isothermal annealing behaviors of the irradiated SiC were investigated by x-ray diffraction and four-point probe techniques.Invisible point defects and defect clusters are found to be the dominating defect types in the neutron-irradiated SiC.The amount of defect recovery in SiC reaches a maximum value after isothermal annealing for 30 min.Based on the annealing temperature dependences of both lattice swelling and material resistivity,the irradiation temperature of the SiC monitors is determined to be~410℃,which is much higher than the thermocouple temperature of 275℃ recorded during neutron irradiation.The possible reasons for the difference are carefully discussed.
基金supported by the National Natural Science Foundation of China(Grant No.52005495).
文摘The temperature field in laser line scanning thermography is investigated comprehensively in this work,including analytical calculation and experiment.Firstly,the principle of laser line scanning thermography is analyzed.On this basis,a physical laser line scanning model is proposed.Afterwards,based on Fourier transform(FT)and segregation variablemethod(SVM),the heat conduction differential equation in laser line scanning thermography is derived in detail.The temperature field of the composite-based coatings model with defects is simulated numerically.The results show that the laser line scanning thermography can effectively detect the defects in the model.The correctness of the analytical calculation is verified by comparing the surface temperature distribution obtained by analytical calculation and numerical simulation.Additionally,an experiment is carried out and the changeable surface temperature obtained by analytical calculation is compared with the experimental results.It shows that the error of maximum temperature obtained by analytical calculation and by experiment is 8%with high accuracy,which proves the correctness of analytical calculation and enriches the theoretical foundation of laser line scanning thermography.
基金supported by the National Key Research and Development Program of China (2016YFA0601601)National Natural Science Foundation of China (Grants Nos. U1502233,41405001)+1 种基金the Jiangsu Collaborative Innovation Center for Climate ChangePh.D. Programs Foundation of Ministry of Education of China (20135301120010)
文摘Using Moderate Resolution Imaging Spectroradiometer(MODIS) data from the dry season during 2010–2012 over the whole Yunnan Province, an improved temperature vegetation dryness index(iTVDI), in which a parabolic dry-edge equation replaces the traditional linear dry-edge equation, was developed, to reveal the regional drought regime in the dry season. After calculating the correlation coefficient, root-mean-square error, and standard deviation between the iTVDI and observed topsoil moisture at 10 and 20 cm for seven sites, the effectiveness of the new index in depicting topsoil moisture conditions was verified. The drought area indicated by iTVDI mapping was then compared with the drought-affected area reported by the local government. The results indicated that the iTVDI can monitor drought more accurately than the traditional TVDI during the dry season in Yunnan Province. Using iTVDI facilitates drought warning and irrigation scheduling, and the expectation is that this new index can be broadly applied in other areas.
基金Supported by Program for the National Natural Science Foundation of China(No.52071053,U1704253)the Fundamental Research Funds for the Central Universities(DUT20GF111)the China Postdoctoral Science Foundation(2020M670748,2020M680946).
文摘High-temperature electromagnetic(EM) protection materials integrated of multiple EM protection mechanisms and functions are regarded as desirable candidates for solving EM interference over a wide temperature range.In this work,a novel microwave modulator is fabricated by introducing carbonyl iron particles(CIP)/resin into channels of carbonized wood(C-wood).Innovatively,the spaced arrangement of two microwave absorbents not only achieves a synergistic enhancement of magnetic and dielectric losses,but also breaks the translational invariance of EM characteristics in the horizontal direction to obtain multiple phase discontinuities in the frequency range of 8.2-18.0 GHz achieving modulation of reflected wave radiation direction.Accordingly,CIP/C-wood microwave modulator demonstrates the maximum effective bandwidth of 5.2 GHz and the maximum EM protection efficiency over 97% with a thickness of only 1.5 mm in the temperature range 298-673 K.Besides,CIP/C-wood microwave modulator shows stable and low thermal conductivities,as well as monotonic electrical conductivity-temperature characteristics,therefore it can also achieve thermal infrared stealth and working temperature monitoring in wide temperature ranges.This work provides an inspiration for the design of high-temperature EM protection materials with multiple EM protection mechanisms and functions.
基金the support provided by the National Natural Science Foundation of China(No. 41271072)the national 973 Project of China (No. 2012CB026104)+1 种基金the Fundamental Research Funds for the Central Universities (No. 2011JBZ009)Open Fund of the Qinghai Research Institute of Transportation (No. 20121208)
文摘In order to study the stability of the Qinghai-Tibet Highway embankment at Chumaerhe in the permafrost region of northwest China, the ground temperature and deformation at different depths were monitored under the left and right shoulders of the embankment where thermosyphons were set up only on the left shoulder. Based on the monitored data, characteristics of ground temperature and deformation of the left and right shoulders are analyzed and discussed. The results show that the start time of freezing or thawing of the seasonal active layer was about one to two months later than that of the embankment body itself. The stability of each shoulder was mainly controlled by the settlement of different soil layers, whereas frost heave of soil had scarcely any effect on the stability of the embankment. For the left shoulder, the settlement was mainly influenced by the seasonal active layer and then by the embankment body itself, due to freeze-thaw cycles which may change the soil properties; however, the permafrost layer remained fairly stable. For the right shoulder, creep of the warm permafrost layer was the main influence factor on its stability, followed by settlement of embankment body itself, and finally settlement of the seasonal active layer. Compared with the deformation of the left shoulder, the permafrost layer under the right shoulder was less stable, which indicates that the thermosyphons had a significantly positive effect on the stability of warm permafrost.
基金supported by the National Natura Science Foundation of China (NSFC), No.51607146China National Major Science and Technology Projects 2010ZX06004-013-04-02 and 2012ZX06002-017-02-01+1 种基金Sichuan Science and Technology Program,No.2018GZ0391Sichuan Hydropower Energy and power equipment technology Engineering Research Center, Xihua university, Chengdu 610039, China,No.SDNY2020-001
文摘In this study,a real-time rotor temperature monitoring system for large turbogenerators using SmartMesh IP wireless network communication technology was designed and tested.The system is capable of providing comprehensive,accurate,continuous,and reliable real-time temperature monitoring for turbogenerators.Additionally,it has demonstrated satisfactory results in a real-time monitoring test of the rotor temperature of various famous large-scale turbogenerators and giant nuclear power half-speed turbogenerators designed and manufactured in China.The development and application of this wireless temperature measurement system would aid in improving the intelligent operation quality,safety,and stability of China’s large turbine generators and even the entire power system.
文摘By Using ADAM4000 series data acquisition module, squash hall monitoring system was developed based on the LabVIEW platform. The system consists of master control, signal channel, file operations, digital filtering, spectral analysis, statistic analysis, system monitoring and other modules. The system will alarm at the real time when the result of the average temperature of the squash hall divided by ten is no less than the monitor threshold of 4.3 while athletes are playing squash, by which the temperature and pressure data acquisition, processing and monitoring could be achieved. Application shows that the changes of human exposure temperature between 20°C and 43°C can achieve the comfort level of athletes’ movement, proving that the monitoring system effectively improves the security of squash hall indoor temperature environment.
文摘We present a temperature monitoring and warning system, which is based on wireless communi- cation technology and applied in train switchgear in this paper. The system is consists of three parts, including wireless temperature detection module, inter-vehicle transmission networks module and?remote monitoring server. The switchgear contact temperature data are collected via the wireless temperature detection module and exchanged in inter-vehicle wireless networking by Zigbee modules. Then the temperature of train switchgear cabinets can be monitored remotely through the GPRS wireless communication.
文摘This paper discusses the influence of environmental factors and of normal material aging on the eigenfrequencies of concrete bridges based on monitoring data registered during 4 years of a specific bridge. It is a new composite steel-concrete bridge built in 2006 in Luxembourg. The measurements are analyzed and compared to literature data. The final objective is the use of real monitored eigenfrequencies for structural health monitoring and damage detection based on identification of stiffness losses in practical applications. Therefore, it is very important to identify and compensate for outdoor influences namely temperature, excitation force level and normal aging effects, like creep and shrinkage of concrete and their impact on material properties. The present paper aims at describing these effects in order to separate them from damage effects. It is shown that temperature change rates and temperature gradients within the bridge have an influence on the eigenfrequencies. Hence the key idea for assessment from the full database is to select only measurements with small temperature differences and slow temperature change rates.
文摘In the industrial field, long running of the equipment easily leads local temperature of the equipment to rise. This is a security risk. For this problem, we have designed a set of remote wireless temperature monitoring system. Based on ZigBee technology, we have a remote wireless networking temperature monitoring of a lot of equipment scattered in various locations of factories and enterprises. The system uses infrared temperature sensor TS118-3 gathering temperature information. After a signal conditioning circuit, we use a wireless RF single-chip CC2530 wirelessly transmitting the temperature of the measured target to the receiving node. The receiving node uploads the data to a computer by RS232.PC software displays real-time temperature information.
文摘Objective: To explore the application of intelligent blood temperature and humidity monitoring system in cold chain management of blood station. Methods: Through the monitoring of fifty sets of cold-chain equipment in the central blood station in Hezhou for 6 months, the differences between the management of the automatic temperature and humidity monitoring system and the manual management were compared in terms of real-time recording, equipment alarm, data storage, historical data traceability and data analysis. Results: Temperature and humidity automatic monitoring system can automatically real-time acquisition, transmission, storage and alarm according to the required time interval;meanwhile, historical data can be quickly exported and traced, data and charts can be analyzed, and the alarm is real-time and effective. Conclusion: The system can effectively monitor the process of blood cold chain in blood stations and play a key role in ensuring blood quality. It can be popularized and used in blood stations.
文摘Aiming at the actual demand for monitoring environmental information,a wireless sensing system for temperature and relative humidity(RH)monitoring based on radio frequency(RF)technology and mobile network was designed.This paper introduces the architecture of the system.The system uses AVR micro controller unit(MCU),KYL-1020U RF module and SHT71 to complete real-time temperature and humidity monitoring,and uses SIM900A module to realize remote alarming and monitoring with short message system(SMS)through global system for mobile communication(GSM).Experimental results show that the designed system has good stability of measurement and real-time performance,and it can be used in some small temperature and humidity monitoring occasions.