In recent times, lithium-ion batteries have been widely used owing to their high energy density, extended cycle lifespan, and minimal self-discharge rate. The design of high-speed rechargeable lithium-ion batteries fa...In recent times, lithium-ion batteries have been widely used owing to their high energy density, extended cycle lifespan, and minimal self-discharge rate. The design of high-speed rechargeable lithium-ion batteries faces a significant challenge owing to the need to increase average electric power during charging. This challenge results from the direct influence of the power level on the rate of chemical reactions occurring in the battery electrodes. In this study, the Taguchi optimization method was used to enhance the average electric power during the charging process of lithium-ion batteries. The Taguchi technique is a statistical strategy that facilitates the systematic and efficient evaluation of numerous experimental variables. The proposed method involved varying seven input factors, including positive electrode thickness, positive electrode material, positive electrode active material volume fraction, negative electrode active material volume fraction, separator thickness, positive current collector thickness, and negative current collector thickness. Three levels were assigned to each control factor to identify the optimal conditions and maximize the average electric power during charging. Moreover, a variance assessment analysis was conducted to validate the results obtained from the Taguchi analysis. The results revealed that the Taguchi method was an eff ective approach for optimizing the average electric power during the charging of lithium-ion batteries. This indicates that the positive electrode material, followed by the separator thickness and the negative electrode active material volume fraction, was key factors significantly infl uencing the average electric power during the charging of lithium-ion batteries response. The identification of optimal conditions resulted in the improved performance of lithium-ion batteries, extending their potential in various applications. Particularly, lithium-ion batteries with average electric power of 16 W and 17 W during charging were designed and simulated in the range of 0-12000 s using COMSOL Multiphysics software. This study efficiently employs the Taguchi optimization technique to develop lithium-ion batteries capable of storing a predetermined average electric power during the charging phase. Therefore, this method enables the battery to achieve complete charging within a specific timeframe tailored to a specificapplication. The implementation of this method can save costs, time, and materials compared with other alternative methods, such as the trial-and-error approach.展开更多
The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pac...The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pack within the optimal temperature operating range as the target.The initial analysis of the battery pack at a 5C discharge rate,the influence of the single cell to cooling tube distance,the number of cooling tubes,inlet coolant temperature,the coolant flow rate,and other factors on the heat dissipation performance of the battery pack,initially determined a reasonable value for each design parameter.A control strategy is used to regulate the inlet flow rate and coolant temperature of the liquid cooling system in order to make full use of the latent heat of the composite PCM and reduce the pump’s energy consumption.The simulation results show that the maximum battery pack temperature of 309.8 K and the temperature difference of 4.6 K between individual cells with the control strategy are in the optimal temperature operating range of the power battery,and the utilization rate of the composite PCM is up to 90%.展开更多
This paper addresses the challenge of identifying abnormal states in Lithium-ion Battery(LiB)time series data.As the energy sector increasingly focuses on integrating distributed energy resources,Virtual Power Plants(...This paper addresses the challenge of identifying abnormal states in Lithium-ion Battery(LiB)time series data.As the energy sector increasingly focuses on integrating distributed energy resources,Virtual Power Plants(VPP)have become a vital new framework for energy management.LiBs are key in this context,owing to their high-efficiency energy storage capabilities essential for VPP operations.However,LiBs are prone to various abnormal states like overcharging,over-discharging,and internal short circuits,which impede power transmission efficiency.Traditional methods for detecting such abnormalities in LiB are too broad and lack precision for the dynamic and irregular nature of LiB data.In response,we introduce an innovative method:a Long Short-Term Memory(LSTM)autoencoder based on Dynamic Frequency Memory and Correlation Attention(DFMCA-LSTM-AE).This unsupervised,end-to-end approach is specifically designed for dynamically monitoring abnormal states in LiB data.The method starts with a Dynamic Frequency Fourier Transform module,which dynamically captures the frequency characteristics of time series data across three scales,incorporating a memory mechanism to reduce overgeneralization of abnormal frequencies.This is followed by integrating LSTM into both the encoder and decoder,enabling the model to effectively encode and decode the temporal relationships in the time series.Empirical tests on a real-world LiB dataset demonstrate that DFMCA-LSTM-AE outperforms existing models,achieving an average Area Under the Curve(AUC)of 90.73%and an F1 score of 83.83%.These results mark significant improvements over existing models,ranging from 2.4%–45.3%for AUC and 1.6%–28.9%for F1 score,showcasing the model’s enhanced accuracy and reliability in detecting abnormal states in LiB data.展开更多
Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different e...Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different energy storage batteries on various power quality indicators by adding different energy storage devices to the simulated wind power system,and to explore the correlation between systementropy generation and various indicators,so as to provide a theoretical basis for directly improving power quality by reducing loss.A steady-state experiment was performed by replacing the wind wheel with an electric motor,and the output power qualities of the wind power systemwith andwithout energy storagewere compared and analyzed.Moreover,the improvement effect of different energy storage devices on various indicatorswas obtained.Then,based on the entropy theory,the loss of the internal components of the wind power system generator is simulated and explored by Ansys software.Through the analysis of power quality evaluation indicators,such as current harmonic distortion rate,frequency deviation rate,and voltage fluctuation,the correlation between entropy production and each evaluation indicator was explored to investigate effective methods to improve power quality by reducing entropy production.The results showed that the current harmonic distortion rate,voltage fluctuation,voltage deviation,and system entropy production are positively correlated in the tests and that the power factor is negatively correlated with system entropy production.In the frequency range,the frequency deviationwas not significantly correlated with the systementropy production.展开更多
The aim of this paper is to analyze the potential reasons for the safety failure of batteries for new-energy vehicles.Firstly,the importance and popularization of new energy batteries are introduced,and the importance...The aim of this paper is to analyze the potential reasons for the safety failure of batteries for new-energy vehicles.Firstly,the importance and popularization of new energy batteries are introduced,and the importance of safety failure issues is drawn out.Then,the composition and working principle of the battery is explained in detail,which provides the basis for the subsequent analysis.Then,the potential impacts of factors such as overcharge and over-discharge,high and low temperature environments,internal faults,and external shocks and vibrations on the safety of the batteries are analyzed.Finally,some common safety measures and solutions are proposed to improve the safety of new energy batteries,in hopes of improving the safety of batteries for new-energy vehicle.展开更多
In order to improve the estimation accuracy of the battery's state of charge(SOC) for the hybrid electric vehicle(HEV),the SOC estimation algorithm based on advanced wavelet neural network(WNN) is presented.Bas...In order to improve the estimation accuracy of the battery's state of charge(SOC) for the hybrid electric vehicle(HEV),the SOC estimation algorithm based on advanced wavelet neural network(WNN) is presented.Based on advanced WNN,the SOC estimation model of a lithium-ion power battery for the HEV is first established.Then,the convergence of the advanced WNN algorithm is proved by mathematical deduction.Finally,using an adequate data sample of various charging and discharging of HEV batteries,the neural network is trained.The simulation results indicate that the proposed algorithm can effectively decrease the estimation errors of the lithium-ion power battery SOC from the range of ±8% to ±1.5%,compared with the traditional SOC estimation methods.展开更多
Lithium ion power batteries have undoubtedly become one of the most promising rechargeable batteries at present;nonetheless,they still suffer from the challenges such as requirement of even higher energy density and c...Lithium ion power batteries have undoubtedly become one of the most promising rechargeable batteries at present;nonetheless,they still suffer from the challenges such as requirement of even higher energy density and capacity retention.Nickel-rich layer oxides(Ni≥0.8)become ideal cathode materials to achieve the high specific capacity.Integration of optimization of synthesis process and modification of crystal structure to suppress the capacity fading can obviously improve the performance of the lithium ion batteries.This review presents the recent modification strategies of the nickel-rich layered oxide materials.Unlike in previous reviews and related papers,the specific mechanism about each type of the modification strategies is specially discussed in detail,which is mainly about inhibiting the anisotropic lattice strain and adjusting the cation mixing degree to maintain crystal structure.Based on the recent progress,the prospects and challenges of the modified nickel-rich layer cathodes to upgrade the property of lithium ion batteries are also comprehensively analyzed,and the potential applications in the field of plug-in hybrid vehicles and electric vehicles are further discussed.展开更多
State of charge(SOC)estimation has always been a hot topic in the field of both power battery and new energy vehicle(electric vehicle(EV),plug-in electric vehicle(PHEV)and so on).In this work,aiming at the contradicti...State of charge(SOC)estimation has always been a hot topic in the field of both power battery and new energy vehicle(electric vehicle(EV),plug-in electric vehicle(PHEV)and so on).In this work,aiming at the contradiction problem between the exact requirements of EKF(extended Kalman filter)algorithm for the battery model and the dynamic requirements of battery mode in life cycle or a charge and discharge period,a completely data-driven SOC estimation algorithm based on EKF algorithm is proposed.The innovation of this algorithm lies in that the EKF algorithm is used to get the SOC accurate estimate of the power battery online with using the observable voltage and current data information of the power battery and without knowing the internal parameter variation of the power battery.Through the combination of data-based and model-based SOC estimation method,the new method can avoid high accumulated error of traditional data-driven SOC algorithms and high dependence on battery model of most of the existing model-based SOC estimation methods,and is more suitable for the life cycle SOC estimation of the power battery operating in a complex and ever-changing environment(such as in an EV or PHEV).A series of simulation experiments illustrate better robustness and practicability of the proposed algorithm.展开更多
Lightweight and flexible self-charging power systems with synchronous energy harvesting and energy storage abilities are highly desired in the era of the internet of things and artificial intelligences,which can provi...Lightweight and flexible self-charging power systems with synchronous energy harvesting and energy storage abilities are highly desired in the era of the internet of things and artificial intelligences,which can provide stable,sustainable,and autonomous power sources for ubiquitous,distributed,and low-power wearable electronics.However,there is a lack of comprehensive review and challenging discussion on the state-of-the-art of the triboelectric nanogenetor(TENG)-based self-charging power textiles,which have a great possibility to become the future energy autonomy power sources.Herein,the recent progress of the self-charging power textiles hybridizing fiber/fabric based TENGs and fiber/fabric shaped batteries/supercapacitors is comprehensively summarized from the aspect of textile structural designs.Based on the current research status,the key bottlenecks and brighter prospects of self-charging power textiles are also discussed in the end.It is hoped that the summary and prospect of the latest research of self-charging power textiles can help relevant researchers accurately grasp the research progress,focus on the key scientific and technological issues,and promote further research and practical application process.展开更多
This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emerg...This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emergency conditions. When the system is grid-connected, BES regulates the fluctuated power output which ensures smooth net injected power from the PV/BES system. In islanded operation, BES system is transferred to single master operation during which the frequency and voltage of the islanded microgrid are regulated at the desired level. PSCAD/EMTDC simulation validates the proposed method and obtained favorable results on power set-point tracking strategies with very small deviations of net output power compared to the power set-point. The state-of-charge regulation scheme also very effective with SOC has been regulated between 32% and 79% range.展开更多
Battery powered vertical takeoff and landing(VTOL) aircraft attracts more and more interests from public, while limited hover endurance hinders many prospective applications. Based on the weight models of battery, mot...Battery powered vertical takeoff and landing(VTOL) aircraft attracts more and more interests from public, while limited hover endurance hinders many prospective applications. Based on the weight models of battery, motor and electronic speed controller, the power consumption model of propeller and the constant power discharge model of battery, an efficient method to estimate the hover endurance of battery powered VTOL aircraft was presented. In order to understand the mechanism of performance improvement, the impacts of propulsion system parameters on hover endurance were analyzed by simulations, including the motor power density, the battery capacity, specific energy and Peukert coefficient. Ground experiment platform was established and validation experiments were carried out, the results of which showed a well agreement with the simulations. The estimation method and the analysis results could be used for optimization design and hover performance evaluation of battery powered VTOL aircraft.展开更多
For the battery only power system is hard to meet the energy and power requirements reasonably, a hybrid power system with uhracapacitor and battery is studied. A Topology structure is analyzed that the uhracapacitor ...For the battery only power system is hard to meet the energy and power requirements reasonably, a hybrid power system with uhracapacitor and battery is studied. A Topology structure is analyzed that the uhracapacitor system is connected with battery pack parallel after a bidirectional DC/DC converter. The ultracapacitor, battery and the hybrid power system are modeled. For the plug-in hybrid electric vehicle (PHEV) application, the control target and control strategy of the hybrid power system are put forward. From the simulation results based on the Chinese urban driving cycle, the hybrid power system could meet the peak power requirements reasonably while the battery pack' s current is controlled in a reasonable limit which will be helpful to optimize the battery pack' s working conditions to get long cycling life and high efficiency.展开更多
Exploring high ion/electron conductive olivine-type transition metal phosphates is of vital significance to broaden their applicability in rapid-charging devices.Herein,we report an interface engineered Li Fe0.5Mn0.5P...Exploring high ion/electron conductive olivine-type transition metal phosphates is of vital significance to broaden their applicability in rapid-charging devices.Herein,we report an interface engineered Li Fe0.5Mn0.5PO4/rGO@C cathode material by the synergistic effects of r GO and polydopamine-derived N-doped carbon.The well-distributed Li Fe0.5Mn0.5PO4nanoparticles are tightly anchored on r GO nanosheet benefited by the coating of N-doped carbon layer.The design of such an architecture can effectively suppress the agglomeration of nanoparticles with a shortened Li+transfer path.Meantime,the high-speed conducting network has been constructed by r GO and N-doped carbon,which exhibits the face-to-face contact with Li Fe0.5Mn0.5PO4nanoparticles,guaranteeing the rapid electron transfer.These profits endow the Li Fe0.5Mn0.5PO4/rGO@C hybrids with a fast charge-discharge ability,e.g.a high reversible capacity of 105 m Ah·g^-1at 10 C,much higher than that of the Li Fe0.5Mn0.5PO4@C nanoparticles(46 mA·h·g^-1).Furthermore,a 90.8%capacity retention can be obtained even after cycling 500 times at 2 C.This work gives a new avenue to fabricate transition metal phosphate with superior electrochemical performance for high-power Li-ion batteries.展开更多
The test process of electric vehicles (EVs) traction battery peak power is analyzed in detail. Aimed at a special “traction” design of versatile battery—HORIZON~ C~2M Battery, the features are introduced. According...The test process of electric vehicles (EVs) traction battery peak power is analyzed in detail. Aimed at a special “traction” design of versatile battery—HORIZON~ C~2M Battery, the features are introduced. According to the peak power test schedule, the test parameters of HORIZON~ C~2M Battery are calculated and the charging and discharging experiments are carried out. The sustained (30 s) discharge power capability of battery at 2/3 of its open circuit voltage at each of various depths of discharge is determined. The dynamic internal resistance under peak power test is established. Considering the temperature impact during discharging, the peak power capability at each of various depths of discharge is corrected. The correctness of peak power test is validated by combining theory analysis with test results.展开更多
The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem....The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.This weak interconnection of wind generating source in the electrical network affects the power quality and reliability.The localized energy storages shall compensate the fluctuating power and support to strengthen the wind generator in the power system.In this paper,it is proposed to control the voltage source inverter (VSI) in current control mode with energy storage,that is,batteries across the dc bus.The generated wind power can be extracted under varying wind speed and stored in the batteries.This energy storage maintains the stiff voltage across the dc bus of the voltage source inverter.The proposed scheme enhances the stability and reliability of the power system and maintains unity power factor.It can also be operated in stand-alone mode in the power system.The power exchange across the wind generation and the load under dynamic situation is feasible while maintaining the power quality norms at the common point of coupling.It strengthens the weak grid in the power system.This control strategy is evaluated on the test system under dynamic condition by using simulation.The results are verified by comparing the performance of controllers.展开更多
Lithium-ion batteries(LIBs)have shown considerable promise as an energy storage system due to their high conversion efficiency,size options(from coin cell to grid storage),and free of gaseous exhaust.For LIBs,power de...Lithium-ion batteries(LIBs)have shown considerable promise as an energy storage system due to their high conversion efficiency,size options(from coin cell to grid storage),and free of gaseous exhaust.For LIBs,power density and energy density are two of the most important parameters for their practical use,and the power density is the key factor for applications such as fast-charging electric vehicles,high-power portable tools,and power grid stabilization.A high rate of performance is also required for devices that store electrical energy from seasonal or irregular energy sources,such as wind energy and wave energy.Significant efforts have been made over the last several years to improve the power density of LIBs through anodes,cathodes,and electrolytes,and much progress has been made.To provide a comprehensive picture of these recent achievements,this review discusses the progress made in high-power LIBs from 2013 to the present,including general and fundamental principles of high-power LIBs,challenges facing LIB development today,and an outlook for future LIB development.展开更多
Towards the end to solve the problem of temperature rise in the power battery of electric vehicles,a method based on the coupling of electrochemical,thermal and hydrodynamic aspects is implemented.The method relies on...Towards the end to solve the problem of temperature rise in the power battery of electric vehicles,a method based on the coupling of electrochemical,thermal and hydrodynamic aspects is implemented.The method relies on the COMSOL Multiphysics software,which is used here to simulate the thermal behaviour,the related fluid-dynamics and the life attenuation of the power battery.A 3D battery model is built assuming a cylindrical geometry.The diameter of the battery is 18 mm,and its length is 65 mm.The battery charges and discharges at 3C,and the initial temperature is 25°C.Intake flow is set to 0.5 m/s after the air of the battery is cooled.The results show that:(1)The highest temperature of the battery unit increases significantly from 1.14°C of the original nylon heat pipe to 0.17°C of the hot pipe core shaft;(2)When the short circuit of the battery is simulated,the temperature rise of the single battery is close to 20°C,the minimum rise is about 12°C,and their difference reaches 8°C.展开更多
As an important high-energy chemical power source, lithium-ion power batteries come up to application problems of thermal performance, such as extended temperature range and high power charge & discharge. LiFeP04 bat...As an important high-energy chemical power source, lithium-ion power batteries come up to application problems of thermal performance, such as extended temperature range and high power charge & discharge. LiFeP04 battery is applied and developed well recently, its charge and discharge experiment at different temperatures and hybrid pulse power characterization (HPPC) test are analyzed, and the optimal temperature range of LiFeP04 battery is put forward. In order to provide experimental suggestion of power battery application and its thermal management, internal resistance, influencing factor of electromotive force and entropy change state of charge (SOC), battery thermal characteristic of different charge & discharge rates are summarized.展开更多
Laser-structuring is an effective method to promote ion diffusion and improve the performance of lithium-ion battery(LIB)electrodes.In this work,the effects of laser structuring parameters(groove pitch and depth)on th...Laser-structuring is an effective method to promote ion diffusion and improve the performance of lithium-ion battery(LIB)electrodes.In this work,the effects of laser structuring parameters(groove pitch and depth)on the fundamental characteristics of LIB electrode,such as interfacial area,internal resistances,material loss and electrochemical performance,are investigated,LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2) cathodes were structured by a femtosecond laser by varying groove depth and pitch,which resulted in a material loss of 5%-14%and an increase of 140%-260%in the in terfacial area between electrode surface and electrolyte.It is shown that the importance of groove depth and pitch on the electrochemical performance(specific capacity and areal discharge capacity)of laser-structured electrode varies with current rates.Groove pitch is more im porta nt at low current rate but groove depth is at high curre nt rate.From the mapping of lithium concentration within the electrodes of varying groove depth and pitch by laser-induced breakdown spectroscopy,it is verified that the groove functions as a diffusion path for lithium ions.The ionic,electronic,and charge transfer resistances measured with symmetric and half cells showed that these internal resistances are differently affected by laser structuring parameters and the changes in porosity,ionic diffusion and electronic pathways.It is demonstrated that the laser structuring parameters for maximum electrode performance and minimum capacity loss should be determined in consideration of the main operating conditions of LIBs.展开更多
In this paper,the case of a battery charger for electric vehicles based on a wireless power transmission is addressed.The specificity of every stage of the overall system is presented.Based on calculated and measured ...In this paper,the case of a battery charger for electric vehicles based on a wireless power transmission is addressed.The specificity of every stage of the overall system is presented.Based on calculated and measured results,relevant capacitive compensations of the transformer and models are suggested and discussed in order to best match the operating mode and aiming at simplifying as much as possible the control and the electronics of the charger.展开更多
文摘In recent times, lithium-ion batteries have been widely used owing to their high energy density, extended cycle lifespan, and minimal self-discharge rate. The design of high-speed rechargeable lithium-ion batteries faces a significant challenge owing to the need to increase average electric power during charging. This challenge results from the direct influence of the power level on the rate of chemical reactions occurring in the battery electrodes. In this study, the Taguchi optimization method was used to enhance the average electric power during the charging process of lithium-ion batteries. The Taguchi technique is a statistical strategy that facilitates the systematic and efficient evaluation of numerous experimental variables. The proposed method involved varying seven input factors, including positive electrode thickness, positive electrode material, positive electrode active material volume fraction, negative electrode active material volume fraction, separator thickness, positive current collector thickness, and negative current collector thickness. Three levels were assigned to each control factor to identify the optimal conditions and maximize the average electric power during charging. Moreover, a variance assessment analysis was conducted to validate the results obtained from the Taguchi analysis. The results revealed that the Taguchi method was an eff ective approach for optimizing the average electric power during the charging of lithium-ion batteries. This indicates that the positive electrode material, followed by the separator thickness and the negative electrode active material volume fraction, was key factors significantly infl uencing the average electric power during the charging of lithium-ion batteries response. The identification of optimal conditions resulted in the improved performance of lithium-ion batteries, extending their potential in various applications. Particularly, lithium-ion batteries with average electric power of 16 W and 17 W during charging were designed and simulated in the range of 0-12000 s using COMSOL Multiphysics software. This study efficiently employs the Taguchi optimization technique to develop lithium-ion batteries capable of storing a predetermined average electric power during the charging phase. Therefore, this method enables the battery to achieve complete charging within a specific timeframe tailored to a specificapplication. The implementation of this method can save costs, time, and materials compared with other alternative methods, such as the trial-and-error approach.
基金support provided National Natural Science Foundation of China with Grant No.51976016Natural Science Foundation of Hunan Province,China with Grant No.2020JJ4616Research Foundation of Education Bureau of Hunan Province(18B149).
文摘The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pack within the optimal temperature operating range as the target.The initial analysis of the battery pack at a 5C discharge rate,the influence of the single cell to cooling tube distance,the number of cooling tubes,inlet coolant temperature,the coolant flow rate,and other factors on the heat dissipation performance of the battery pack,initially determined a reasonable value for each design parameter.A control strategy is used to regulate the inlet flow rate and coolant temperature of the liquid cooling system in order to make full use of the latent heat of the composite PCM and reduce the pump’s energy consumption.The simulation results show that the maximum battery pack temperature of 309.8 K and the temperature difference of 4.6 K between individual cells with the control strategy are in the optimal temperature operating range of the power battery,and the utilization rate of the composite PCM is up to 90%.
基金supported by“Regional Innovation Strategy(RIS)”through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-002)the Technology Development Program(RS-2023-00278623)funded by the Ministry of SMEs and Startups(MSS,Korea).
文摘This paper addresses the challenge of identifying abnormal states in Lithium-ion Battery(LiB)time series data.As the energy sector increasingly focuses on integrating distributed energy resources,Virtual Power Plants(VPP)have become a vital new framework for energy management.LiBs are key in this context,owing to their high-efficiency energy storage capabilities essential for VPP operations.However,LiBs are prone to various abnormal states like overcharging,over-discharging,and internal short circuits,which impede power transmission efficiency.Traditional methods for detecting such abnormalities in LiB are too broad and lack precision for the dynamic and irregular nature of LiB data.In response,we introduce an innovative method:a Long Short-Term Memory(LSTM)autoencoder based on Dynamic Frequency Memory and Correlation Attention(DFMCA-LSTM-AE).This unsupervised,end-to-end approach is specifically designed for dynamically monitoring abnormal states in LiB data.The method starts with a Dynamic Frequency Fourier Transform module,which dynamically captures the frequency characteristics of time series data across three scales,incorporating a memory mechanism to reduce overgeneralization of abnormal frequencies.This is followed by integrating LSTM into both the encoder and decoder,enabling the model to effectively encode and decode the temporal relationships in the time series.Empirical tests on a real-world LiB dataset demonstrate that DFMCA-LSTM-AE outperforms existing models,achieving an average Area Under the Curve(AUC)of 90.73%and an F1 score of 83.83%.These results mark significant improvements over existing models,ranging from 2.4%–45.3%for AUC and 1.6%–28.9%for F1 score,showcasing the model’s enhanced accuracy and reliability in detecting abnormal states in LiB data.
基金Supported by the National Natural Science Foundation of China(No.51966013)Inner Mongolia Natural Science Foundation Jieqing Project(No.2023JQ04)+1 种基金the National Natural Science Foundation of China(No.51966018)the Natural Science Foundation of Inner Mongolia Autonomous Region(No.STZC202230).
文摘Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different energy storage batteries on various power quality indicators by adding different energy storage devices to the simulated wind power system,and to explore the correlation between systementropy generation and various indicators,so as to provide a theoretical basis for directly improving power quality by reducing loss.A steady-state experiment was performed by replacing the wind wheel with an electric motor,and the output power qualities of the wind power systemwith andwithout energy storagewere compared and analyzed.Moreover,the improvement effect of different energy storage devices on various indicatorswas obtained.Then,based on the entropy theory,the loss of the internal components of the wind power system generator is simulated and explored by Ansys software.Through the analysis of power quality evaluation indicators,such as current harmonic distortion rate,frequency deviation rate,and voltage fluctuation,the correlation between entropy production and each evaluation indicator was explored to investigate effective methods to improve power quality by reducing entropy production.The results showed that the current harmonic distortion rate,voltage fluctuation,voltage deviation,and system entropy production are positively correlated in the tests and that the power factor is negatively correlated with system entropy production.In the frequency range,the frequency deviationwas not significantly correlated with the systementropy production.
文摘The aim of this paper is to analyze the potential reasons for the safety failure of batteries for new-energy vehicles.Firstly,the importance and popularization of new energy batteries are introduced,and the importance of safety failure issues is drawn out.Then,the composition and working principle of the battery is explained in detail,which provides the basis for the subsequent analysis.Then,the potential impacts of factors such as overcharge and over-discharge,high and low temperature environments,internal faults,and external shocks and vibrations on the safety of the batteries are analyzed.Finally,some common safety measures and solutions are proposed to improve the safety of new energy batteries,in hopes of improving the safety of batteries for new-energy vehicle.
基金The National Natural Science Foundation of China (No.60904023)
文摘In order to improve the estimation accuracy of the battery's state of charge(SOC) for the hybrid electric vehicle(HEV),the SOC estimation algorithm based on advanced wavelet neural network(WNN) is presented.Based on advanced WNN,the SOC estimation model of a lithium-ion power battery for the HEV is first established.Then,the convergence of the advanced WNN algorithm is proved by mathematical deduction.Finally,using an adequate data sample of various charging and discharging of HEV batteries,the neural network is trained.The simulation results indicate that the proposed algorithm can effectively decrease the estimation errors of the lithium-ion power battery SOC from the range of ±8% to ±1.5%,compared with the traditional SOC estimation methods.
基金financially supported by the Beijing Natural Science Foundation(Grant No.L182022)the NSAF(Grant No.U1930113)+1 种基金the National Natural Science Foundation of China(52072036)the Guangdong Key Laboratory of Battery Safety(2019B121203008),China。
文摘Lithium ion power batteries have undoubtedly become one of the most promising rechargeable batteries at present;nonetheless,they still suffer from the challenges such as requirement of even higher energy density and capacity retention.Nickel-rich layer oxides(Ni≥0.8)become ideal cathode materials to achieve the high specific capacity.Integration of optimization of synthesis process and modification of crystal structure to suppress the capacity fading can obviously improve the performance of the lithium ion batteries.This review presents the recent modification strategies of the nickel-rich layered oxide materials.Unlike in previous reviews and related papers,the specific mechanism about each type of the modification strategies is specially discussed in detail,which is mainly about inhibiting the anisotropic lattice strain and adjusting the cation mixing degree to maintain crystal structure.Based on the recent progress,the prospects and challenges of the modified nickel-rich layer cathodes to upgrade the property of lithium ion batteries are also comprehensively analyzed,and the potential applications in the field of plug-in hybrid vehicles and electric vehicles are further discussed.
基金Projects(51607122,51378350)supported by the National Natural Science Foundation of ChinaProject(BGRIMM-KZSKL-2018-02)supported by the State Key Laboratory of Process Automation in Mining&Metallurgy/Beijing Key Laboratory of Process Automation in Mining&Metallurgy Research,China+4 种基金Project(18JCTPJC63000)supported by Tianjin Enterprise Science and Technology Commissioner Project,ChinaProject(2017KJ094,2017KJ093)supported by Tianjin Education Commission Scientific Research Plan Project,ChinaProject(17ZLZXZF00280)supported by Tianjin Science and Technology Project,ChinaProject(18JCQNJC77200)supported by Tianjin Province Science and Technology projects,ChinaProject(2017YFB1103003,2016YFB1100501)supported by National Key Research and Development Plan,China
文摘State of charge(SOC)estimation has always been a hot topic in the field of both power battery and new energy vehicle(electric vehicle(EV),plug-in electric vehicle(PHEV)and so on).In this work,aiming at the contradiction problem between the exact requirements of EKF(extended Kalman filter)algorithm for the battery model and the dynamic requirements of battery mode in life cycle or a charge and discharge period,a completely data-driven SOC estimation algorithm based on EKF algorithm is proposed.The innovation of this algorithm lies in that the EKF algorithm is used to get the SOC accurate estimate of the power battery online with using the observable voltage and current data information of the power battery and without knowing the internal parameter variation of the power battery.Through the combination of data-based and model-based SOC estimation method,the new method can avoid high accumulated error of traditional data-driven SOC algorithms and high dependence on battery model of most of the existing model-based SOC estimation methods,and is more suitable for the life cycle SOC estimation of the power battery operating in a complex and ever-changing environment(such as in an EV or PHEV).A series of simulation experiments illustrate better robustness and practicability of the proposed algorithm.
基金the support received from National Natural Science Foundation of China(Grant No.22109012)the Beijing Municipal Natural Science Foundation(Grant No.2212052)the Fundamental Research Funds for the Central Universities(Grant No.E1E46805).
文摘Lightweight and flexible self-charging power systems with synchronous energy harvesting and energy storage abilities are highly desired in the era of the internet of things and artificial intelligences,which can provide stable,sustainable,and autonomous power sources for ubiquitous,distributed,and low-power wearable electronics.However,there is a lack of comprehensive review and challenging discussion on the state-of-the-art of the triboelectric nanogenetor(TENG)-based self-charging power textiles,which have a great possibility to become the future energy autonomy power sources.Herein,the recent progress of the self-charging power textiles hybridizing fiber/fabric based TENGs and fiber/fabric shaped batteries/supercapacitors is comprehensively summarized from the aspect of textile structural designs.Based on the current research status,the key bottlenecks and brighter prospects of self-charging power textiles are also discussed in the end.It is hoped that the summary and prospect of the latest research of self-charging power textiles can help relevant researchers accurately grasp the research progress,focus on the key scientific and technological issues,and promote further research and practical application process.
文摘This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emergency conditions. When the system is grid-connected, BES regulates the fluctuated power output which ensures smooth net injected power from the PV/BES system. In islanded operation, BES system is transferred to single master operation during which the frequency and voltage of the islanded microgrid are regulated at the desired level. PSCAD/EMTDC simulation validates the proposed method and obtained favorable results on power set-point tracking strategies with very small deviations of net output power compared to the power set-point. The state-of-charge regulation scheme also very effective with SOC has been regulated between 32% and 79% range.
文摘Battery powered vertical takeoff and landing(VTOL) aircraft attracts more and more interests from public, while limited hover endurance hinders many prospective applications. Based on the weight models of battery, motor and electronic speed controller, the power consumption model of propeller and the constant power discharge model of battery, an efficient method to estimate the hover endurance of battery powered VTOL aircraft was presented. In order to understand the mechanism of performance improvement, the impacts of propulsion system parameters on hover endurance were analyzed by simulations, including the motor power density, the battery capacity, specific energy and Peukert coefficient. Ground experiment platform was established and validation experiments were carried out, the results of which showed a well agreement with the simulations. The estimation method and the analysis results could be used for optimization design and hover performance evaluation of battery powered VTOL aircraft.
文摘For the battery only power system is hard to meet the energy and power requirements reasonably, a hybrid power system with uhracapacitor and battery is studied. A Topology structure is analyzed that the uhracapacitor system is connected with battery pack parallel after a bidirectional DC/DC converter. The ultracapacitor, battery and the hybrid power system are modeled. For the plug-in hybrid electric vehicle (PHEV) application, the control target and control strategy of the hybrid power system are put forward. From the simulation results based on the Chinese urban driving cycle, the hybrid power system could meet the peak power requirements reasonably while the battery pack' s current is controlled in a reasonable limit which will be helpful to optimize the battery pack' s working conditions to get long cycling life and high efficiency.
基金supported by the National Natural Science Foundation of China(21975074,91534202,and 91834301)the Shanghai Scientific and Technological Innovation Project(18JC1410500)the Fundamental Research Funds for the Central Universities(222201718002)。
文摘Exploring high ion/electron conductive olivine-type transition metal phosphates is of vital significance to broaden their applicability in rapid-charging devices.Herein,we report an interface engineered Li Fe0.5Mn0.5PO4/rGO@C cathode material by the synergistic effects of r GO and polydopamine-derived N-doped carbon.The well-distributed Li Fe0.5Mn0.5PO4nanoparticles are tightly anchored on r GO nanosheet benefited by the coating of N-doped carbon layer.The design of such an architecture can effectively suppress the agglomeration of nanoparticles with a shortened Li+transfer path.Meantime,the high-speed conducting network has been constructed by r GO and N-doped carbon,which exhibits the face-to-face contact with Li Fe0.5Mn0.5PO4nanoparticles,guaranteeing the rapid electron transfer.These profits endow the Li Fe0.5Mn0.5PO4/rGO@C hybrids with a fast charge-discharge ability,e.g.a high reversible capacity of 105 m Ah·g^-1at 10 C,much higher than that of the Li Fe0.5Mn0.5PO4@C nanoparticles(46 mA·h·g^-1).Furthermore,a 90.8%capacity retention can be obtained even after cycling 500 times at 2 C.This work gives a new avenue to fabricate transition metal phosphate with superior electrochemical performance for high-power Li-ion batteries.
文摘The test process of electric vehicles (EVs) traction battery peak power is analyzed in detail. Aimed at a special “traction” design of versatile battery—HORIZON~ C~2M Battery, the features are introduced. According to the peak power test schedule, the test parameters of HORIZON~ C~2M Battery are calculated and the charging and discharging experiments are carried out. The sustained (30 s) discharge power capability of battery at 2/3 of its open circuit voltage at each of various depths of discharge is determined. The dynamic internal resistance under peak power test is established. Considering the temperature impact during discharging, the peak power capability at each of various depths of discharge is corrected. The correctness of peak power test is validated by combining theory analysis with test results.
文摘The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.This weak interconnection of wind generating source in the electrical network affects the power quality and reliability.The localized energy storages shall compensate the fluctuating power and support to strengthen the wind generator in the power system.In this paper,it is proposed to control the voltage source inverter (VSI) in current control mode with energy storage,that is,batteries across the dc bus.The generated wind power can be extracted under varying wind speed and stored in the batteries.This energy storage maintains the stiff voltage across the dc bus of the voltage source inverter.The proposed scheme enhances the stability and reliability of the power system and maintains unity power factor.It can also be operated in stand-alone mode in the power system.The power exchange across the wind generation and the load under dynamic situation is feasible while maintaining the power quality norms at the common point of coupling.It strengthens the weak grid in the power system.This control strategy is evaluated on the test system under dynamic condition by using simulation.The results are verified by comparing the performance of controllers.
基金financial support from National Natural Science Foundation of China(Grant No.21805079)the Fundamental Research Funds for the Central Universities(531107051077)Hunan high-level talent gathering project(2018RS3054)
文摘Lithium-ion batteries(LIBs)have shown considerable promise as an energy storage system due to their high conversion efficiency,size options(from coin cell to grid storage),and free of gaseous exhaust.For LIBs,power density and energy density are two of the most important parameters for their practical use,and the power density is the key factor for applications such as fast-charging electric vehicles,high-power portable tools,and power grid stabilization.A high rate of performance is also required for devices that store electrical energy from seasonal or irregular energy sources,such as wind energy and wave energy.Significant efforts have been made over the last several years to improve the power density of LIBs through anodes,cathodes,and electrolytes,and much progress has been made.To provide a comprehensive picture of these recent achievements,this review discusses the progress made in high-power LIBs from 2013 to the present,including general and fundamental principles of high-power LIBs,challenges facing LIB development today,and an outlook for future LIB development.
文摘Towards the end to solve the problem of temperature rise in the power battery of electric vehicles,a method based on the coupling of electrochemical,thermal and hydrodynamic aspects is implemented.The method relies on the COMSOL Multiphysics software,which is used here to simulate the thermal behaviour,the related fluid-dynamics and the life attenuation of the power battery.A 3D battery model is built assuming a cylindrical geometry.The diameter of the battery is 18 mm,and its length is 65 mm.The battery charges and discharges at 3C,and the initial temperature is 25°C.Intake flow is set to 0.5 m/s after the air of the battery is cooled.The results show that:(1)The highest temperature of the battery unit increases significantly from 1.14°C of the original nylon heat pipe to 0.17°C of the hot pipe core shaft;(2)When the short circuit of the battery is simulated,the temperature rise of the single battery is close to 20°C,the minimum rise is about 12°C,and their difference reaches 8°C.
基金Supported by the National High Technology Research and Development Programme of China (No. 2006AA11A192)
文摘As an important high-energy chemical power source, lithium-ion power batteries come up to application problems of thermal performance, such as extended temperature range and high power charge & discharge. LiFeP04 battery is applied and developed well recently, its charge and discharge experiment at different temperatures and hybrid pulse power characterization (HPPC) test are analyzed, and the optimal temperature range of LiFeP04 battery is put forward. In order to provide experimental suggestion of power battery application and its thermal management, internal resistance, influencing factor of electromotive force and entropy change state of charge (SOC), battery thermal characteristic of different charge & discharge rates are summarized.
基金supported by a GIST Research Institute(GRI)grant funded by the GIST in 2021supported by the Korea In stitute for Advancement of Tech no logy(KIAT)grant funded by the Korea Government(MOTIE).(P0008763,The Competency Development Program for Industry Specialist.)。
文摘Laser-structuring is an effective method to promote ion diffusion and improve the performance of lithium-ion battery(LIB)electrodes.In this work,the effects of laser structuring parameters(groove pitch and depth)on the fundamental characteristics of LIB electrode,such as interfacial area,internal resistances,material loss and electrochemical performance,are investigated,LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2) cathodes were structured by a femtosecond laser by varying groove depth and pitch,which resulted in a material loss of 5%-14%and an increase of 140%-260%in the in terfacial area between electrode surface and electrolyte.It is shown that the importance of groove depth and pitch on the electrochemical performance(specific capacity and areal discharge capacity)of laser-structured electrode varies with current rates.Groove pitch is more im porta nt at low current rate but groove depth is at high curre nt rate.From the mapping of lithium concentration within the electrodes of varying groove depth and pitch by laser-induced breakdown spectroscopy,it is verified that the groove functions as a diffusion path for lithium ions.The ionic,electronic,and charge transfer resistances measured with symmetric and half cells showed that these internal resistances are differently affected by laser structuring parameters and the changes in porosity,ionic diffusion and electronic pathways.It is demonstrated that the laser structuring parameters for maximum electrode performance and minimum capacity loss should be determined in consideration of the main operating conditions of LIBs.
文摘In this paper,the case of a battery charger for electric vehicles based on a wireless power transmission is addressed.The specificity of every stage of the overall system is presented.Based on calculated and measured results,relevant capacitive compensations of the transformer and models are suggested and discussed in order to best match the operating mode and aiming at simplifying as much as possible the control and the electronics of the charger.