期刊文献+
共找到4,112篇文章
< 1 2 206 >
每页显示 20 50 100
Research on Track Fastener Service Status Detection Based on Improved Yolov4 Model
1
作者 Jing He Weiqi Wang Nengpu Yang 《Journal of Transportation Technologies》 2024年第2期212-223,共12页
As an important part of railway lines, the healthy service status of track fasteners was very important to ensure the safety of trains. The application of deep learning algorithms was becoming an important method to r... As an important part of railway lines, the healthy service status of track fasteners was very important to ensure the safety of trains. The application of deep learning algorithms was becoming an important method to realize its state detection. However, there was often a deficiency that the detection accuracy and calculation speed of model were difficult to balance, when the traditional deep learning model is used to detect the service state of track fasteners. Targeting this issue, an improved Yolov4 model for detecting the service status of track fasteners was proposed. Firstly, the Mixup data augmentation technology was introduced into Yolov4 model to enhance the generalization ability of model. Secondly, the MobileNet-V2 lightweight network was employed in lieu of the CSPDarknet53 network as the backbone, thereby reducing the number of algorithm parameters and improving the model’s computational efficiency. Finally, the SE attention mechanism was incorporated to boost the importance of rail fastener identification by emphasizing relevant image features, ensuring that the network’s focus was primarily on the fasteners being inspected. The algorithm achieved both high precision and high speed operation of the rail fastener service state detection, while realizing the lightweight of model. The experimental results revealed that, the MAP value of the rail fastener service state detection algorithm based on the improved Yolov4 model reaches 83.2%, which is 2.83% higher than that of the traditional Yolov4 model, and the calculation speed was improved by 67.39%. Compared with the traditional Yolov4 model, the proposed method achieved the collaborative optimization of detection accuracy and calculation speed. 展开更多
关键词 Yolov4 Model Service Status of track Fasteners detection and Recognition Data Augmentation Lightweight Network Attention Mechanism
下载PDF
Robust Space-Time Adaptive Track-Before-Detect Algorithm Based on Persymmetry and Symmetric Spectrum
2
作者 Xiaojing Su Da Xu +1 位作者 Dongsheng Zhu Zhixun Ma 《Journal of Beijing Institute of Technology》 EI CAS 2024年第1期65-74,共10页
Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,ca... Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,can effectively detect low-speed weak targets.However,due to the complexity and variability of the underwater environment,it is difficult to obtain sufficient secondary data,resulting in a serious decline in the detection and tracking performance,and leading to poor robustness of the algorithm.In this paper,based on the adaptive matched filter(AMF)test and the RAO test,underwater monopulse AMF-DP-TBD algorithm and RAO-DP-TBD algorithm which incorporate persymmetry and symmetric spectrum,denoted as PSAMF-DP-TBD and PS-RAO-DP-TBD,are proposed and compared with the AMF-DP-TBD algorithm and RAO-DP-TBD algorithm based on persymmetry array,denoted as P-AMF-DP-TBD and P-RAO-DP-TBD.The simulation results show that the four methods can work normally with sufficient secondary data and slightly insufficient secondary data,but when the secondary data is severely insufficient,the P-AMF-DP-TBD and P-RAO-DP-TBD algorithms has failed while the PSAMF-DP-TBD and PS-RAO-DP-TBD algorithms still have good detection and tracking capabilities. 展开更多
关键词 space-time adaptive detection track before detect ROBUSTNESS persymmetric property symmetric spectrum AMF test RAO test
下载PDF
Vehicle Detection and Tracking in UAV Imagery via YOLOv3 and Kalman Filter 被引量:2
3
作者 Shuja Ali Ahmad Jalal +2 位作者 Mohammed Hamad Alatiyyah Khaled Alnowaiser Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2023年第7期1249-1265,共17页
Unmanned aerial vehicles(UAVs)can be used to monitor traffic in a variety of settings,including security,traffic surveillance,and traffic control.Numerous academics have been drawn to this topic because of the challen... Unmanned aerial vehicles(UAVs)can be used to monitor traffic in a variety of settings,including security,traffic surveillance,and traffic control.Numerous academics have been drawn to this topic because of the challenges and the large variety of applications.This paper proposes a new and efficient vehicle detection and tracking system that is based on road extraction and identifying objects on it.It is inspired by existing detection systems that comprise stationary data collectors such as induction loops and stationary cameras that have a limited field of view and are not mobile.The goal of this study is to develop a method that first extracts the region of interest(ROI),then finds and tracks the items of interest.The suggested system is divided into six stages.The photos from the obtained dataset are appropriately georeferenced to their actual locations in the first phase,after which they are all co-registered.The ROI,or road and its objects,are retrieved using the GrabCut method in the second phase.The third phase entails data preparation.The segmented images’noise is eliminated using Gaussian blur,after which the images are changed to grayscale and forwarded to the following stage for additional morphological procedures.The YOLOv3 algorithm is used in the fourth step to find any automobiles in the photos.Following that,the Kalman filter and centroid tracking are used to perform the tracking of the detected cars.The Lucas-Kanade method is then used to perform the trajectory analysis on the vehicles.The suggested model is put to the test and assessed using the Vehicle Aerial Imaging from Drone(VAID)dataset.For detection and tracking,the model was able to attain accuracy levels of 96.7%and 91.6%,respectively. 展开更多
关键词 Kalman filter GEOREFERENCING object detection object tracking YOLO
下载PDF
Embedded System Development for Detection of Railway Track Surface Deformation Using Contour Feature Algorithm 被引量:1
4
作者 Tarique Rafique Memon Tayab Din Memon +1 位作者 Imtiaz Hussain Kalwar Bhawani Shankar Chowdhry 《Computers, Materials & Continua》 SCIE EI 2023年第5期2461-2477,共17页
Derailment of trains is not unusual all around the world,especially in developing countries,due to unidentified track or rolling stock faults that cause massive casualties each year.For this purpose,a proper condition... Derailment of trains is not unusual all around the world,especially in developing countries,due to unidentified track or rolling stock faults that cause massive casualties each year.For this purpose,a proper condition monitoring system is essential to avoid accidents and heavy losses.Generally,the detection and classification of railway track surface faults in real-time requires massive computational processing and memory resources and is prone to a noisy environment.Therefore,in this paper,we present the development of a novel embedded system prototype for condition monitoring of railway track.The proposed prototype system works in real-time by acquiring railway track surface images and performing two tasks a)detect deformation(i.e.,faults)like squats,shelling,and spalling using the contour feature algorithm and b)the vibration signature on that faulty spot by synchronizing acceleration and image data.A new illumination scheme is also proposed to avoid the sunlight reflection that badly affects the image acquisition process.The contour detection algorithm is applied here to detect the uneven shapes and discontinuities in the geometrical structure of the railway track surface,which ultimately detects unhealthy regions.It works by converting Red,Green,and Blue(RGB)images into binary images,which distinguishes the unhealthy regions by making them white color while the healthy regions in black color.We have used the multiprocessing technique to overcome the massive processing and memory issues.This embedded system is developed on Raspberry Pi by interfacing a vision camera,an accelerometer,a proximity sensor,and a Global Positioning System(GPS)sensors(i.e.,multi-sensors).The developed embedded system prototype is tested in real-time onsite by installing it on a Railway Inspection Trolley(RIT),which runs at an average speed of 15 km/h.The functional verification of the proposed system is done successfully by detecting and recording the various railway track surface faults.An unhealthy frame’s onsite detection processing time was recorded at approximately 25.6ms.The proposed system can synchronize the acceleration data on specific railway track deformation.The proposed novel embedded system may be beneficial for detecting faults to overcome the conventional manual railway track condition monitoring,which is still being practiced in various developing or underdeveloped countries. 展开更多
关键词 Railway track surface faults condition monitoring system fault detection contour detection deep learning image processing rail wheel impact
下载PDF
End-to-End Joint Multi-Object Detection and Tracking for Intelligent Transportation Systems
5
作者 Qing Xu Xuewu Lin +6 位作者 Mengchi Cai Yu‑ang Guo Chuang Zhang Kai Li Keqiang Li Jianqiang Wang Dongpu Cao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期280-290,共11页
Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).How... Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).However,most existing MOT algorithms follow the tracking-by-detection framework,which separates detection and tracking into two independent segments and limit the global efciency.Recently,a few algorithms have combined feature extraction into one network;however,the tracking portion continues to rely on data association,and requires com‑plex post-processing for life cycle management.Those methods do not combine detection and tracking efciently.This paper presents a novel network to realize joint multi-object detection and tracking in an end-to-end manner for ITS,named as global correlation network(GCNet).Unlike most object detection methods,GCNet introduces a global correlation layer for regression of absolute size and coordinates of bounding boxes,instead of ofsetting predictions.The pipeline of detection and tracking in GCNet is conceptually simple,and does not require compli‑cated tracking strategies such as non-maximum suppression and data association.GCNet was evaluated on a multivehicle tracking dataset,UA-DETRAC,demonstrating promising performance compared to state-of-the-art detectors and trackers. 展开更多
关键词 Intelligent transportation systems Joint detection and tracking Global correlation network End-to-end tracking
下载PDF
Multiple Pedestrian Detection and Tracking in Night Vision Surveillance Systems
6
作者 Ali Raza Samia Allaoua Chelloug +2 位作者 Mohammed Hamad Alatiyyah Ahmad Jalal Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2023年第5期3275-3289,共15页
Pedestrian detection and tracking are vital elements of today’s surveillance systems,which make daily life safe for humans.Thus,human detection and visualization have become essential inventions in the field of compu... Pedestrian detection and tracking are vital elements of today’s surveillance systems,which make daily life safe for humans.Thus,human detection and visualization have become essential inventions in the field of computer vision.Hence,developing a surveillance system with multiple object recognition and tracking,especially in low light and night-time,is still challenging.Therefore,we propose a novel system based on machine learning and image processing to provide an efficient surveillance system for pedestrian detection and tracking at night.In particular,we propose a system that tackles a two-fold problem by detecting multiple pedestrians in infrared(IR)images using machine learning and tracking them using particle filters.Moreover,a random forest classifier is adopted for image segmentation to identify pedestrians in an image.The result of detection is investigated by particle filter to solve pedestrian tracking.Through the extensive experiment,our system shows 93%segmentation accuracy using a random forest algorithm that demonstrates high accuracy for background and roof classes.Moreover,the system achieved a detection accuracy of 90%usingmultiple templatematching techniques and 81%accuracy for pedestrian tracking.Furthermore,our system can identify that the detected object is a human.Hence,our system provided the best results compared to the state-ofart systems,which proves the effectiveness of the techniques used for image segmentation,classification,and tracking.The presented method is applicable for human detection/tracking,crowd analysis,and monitoring pedestrians in IR video surveillance. 展开更多
关键词 Pedestrian detection machine learning SEGMENTATION trackING VERIFICATION
下载PDF
Segmentation Based Real Time Anomaly Detection and Tracking Model for Pedestrian Walkways
7
作者 B.Sophia D.Chitra 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期2491-2504,共14页
Presently,video surveillance is commonly employed to ensure security in public places such as traffic signals,malls,railway stations,etc.A major chal-lenge in video surveillance is the identification of anomalies that... Presently,video surveillance is commonly employed to ensure security in public places such as traffic signals,malls,railway stations,etc.A major chal-lenge in video surveillance is the identification of anomalies that exist in it such as crimes,thefts,and so on.Besides,the anomaly detection in pedestrian walkways has gained significant attention among the computer vision communities to enhance pedestrian safety.The recent advances of Deep Learning(DL)models have received considerable attention in different processes such as object detec-tion,image classification,etc.In this aspect,this article designs a new Panoptic Feature Pyramid Network based Anomaly Detection and Tracking(PFPN-ADT)model for pedestrian walkways.The proposed model majorly aims to the recognition and classification of different anomalies present in the pedestrian walkway like vehicles,skaters,etc.The proposed model involves panoptic seg-mentation model,called Panoptic Feature Pyramid Network(PFPN)is employed for the object recognition process.For object classification,Compact Bat Algo-rithm(CBA)with Stacked Auto Encoder(SAE)is applied for the classification of recognized objects.For ensuring the enhanced results better anomaly detection performance of the PFPN-ADT technique,a comparison study is made using Uni-versity of California San Diego(UCSD)Anomaly data and other benchmark data-sets(such as Cityscapes,ADE20K,COCO),and the outcomes are compared with the Mask Recurrent Convolutional Neural Network(RCNN)and Faster Convolu-tional Neural Network(CNN)models.The simulation outcome demonstrated the enhanced performance of the PFPN-ADT technique over the other methods. 展开更多
关键词 Panoptic segmentation object detection deep learning tracking model anomaly detection pedestrian walkway
下载PDF
Robust Deep Transfer Learning Based Object Detection and Tracking Approach
8
作者 C.Narmadha T.Kavitha +4 位作者 R.Poonguzhali V.Hamsadhwani Ranjan walia Monia B.Jegajothi 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3613-3626,共14页
At present days,object detection and tracking concepts have gained more importance among researchers and business people.Presently,deep learning(DL)approaches have been used for object tracking as it increases the per... At present days,object detection and tracking concepts have gained more importance among researchers and business people.Presently,deep learning(DL)approaches have been used for object tracking as it increases the perfor-mance and speed of the tracking process.This paper presents a novel robust DL based object detection and tracking algorithm using Automated Image Anno-tation with ResNet based Faster regional convolutional neural network(R-CNN)named(AIA-FRCNN)model.The AIA-RFRCNN method performs image anno-tation using a Discriminative Correlation Filter(DCF)with Channel and Spatial Reliability tracker(CSR)called DCF-CSRT model.The AIA-RFRCNN model makes use of Faster RCNN as an object detector and tracker,which involves region proposal network(RPN)and Fast R-CNN.The RPN is a full convolution network that concurrently predicts the bounding box and score of different objects.The RPN is a trained model used for the generation of the high-quality region proposals,which are utilized by Fast R-CNN for detection process.Besides,Residual Network(ResNet 101)model is used as a shared convolutional neural network(CNN)for the generation of feature maps.The performance of the ResNet 101 model is further improved by the use of Adam optimizer,which tunes the hyperparameters namely learning rate,batch size,momentum,and weight decay.Finally,softmax layer is applied to classify the images.The performance of the AIA-RFRCNN method has been assessed using a benchmark dataset and a detailed comparative analysis of the results takes place.The outcome of the experiments indicated the superior characteristics of the AIA-RFRCNN model under diverse aspects. 展开更多
关键词 Object detection trackING deep learning deep transfer learning image annotation
下载PDF
Moving Multi-Object Detection and Tracking Using MRNN and PS-KM Models
9
作者 V.Premanand Dhananjay Kumar 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1807-1821,共15页
On grounds of the advent of real-time applications,like autonomous driving,visual surveillance,and sports analysis,there is an augmenting focus of attention towards Multiple-Object Tracking(MOT).The tracking-by-detect... On grounds of the advent of real-time applications,like autonomous driving,visual surveillance,and sports analysis,there is an augmenting focus of attention towards Multiple-Object Tracking(MOT).The tracking-by-detection paradigm,a commonly utilized approach,connects the existing recognition hypotheses to the formerly assessed object trajectories by comparing the simila-rities of the appearance or the motion between them.For an efficient detection and tracking of the numerous objects in a complex environment,a Pearson Simi-larity-centred Kuhn-Munkres(PS-KM)algorithm was proposed in the present study.In this light,the input videos were,initially,gathered from the MOT dataset and converted into frames.The background subtraction occurred whichfiltered the inappropriate data concerning the frames after the frame conversion stage.Then,the extraction of features from the frames was executed.Afterwards,the higher dimensional features were transformed into lower-dimensional features,and feature reduction process was performed with the aid of Information Gain-centred Singular Value Decomposition(IG-SVD).Next,using the Modified Recurrent Neural Network(MRNN)method,classification was executed which identified the categories of the objects additionally.The PS-KM algorithm identi-fied that the recognized objects were tracked.Finally,the experimental outcomes exhibited that numerous targets were precisely tracked by the proposed system with 97%accuracy with a low false positive rate(FPR)of 2.3%.It was also proved that the present techniques viz.RNN,CNN,and KNN,were effective with regard to the existing models. 展开更多
关键词 Multi-object detection object tracking feature extraction morlet wavelet mutation(MWM) ant lion optimization(ALO) background subtraction
下载PDF
Automated Video-Based Face Detection Using Harris Hawks Optimization with Deep Learning 被引量:1
10
作者 Latifah Almuqren Manar Ahmed Hamza +1 位作者 Abdullah Mohamed Amgad Atta Abdelmageed 《Computers, Materials & Continua》 SCIE EI 2023年第6期4917-4933,共17页
Face recognition technology automatically identifies an individual from image or video sources.The detection process can be done by attaining facial characteristics from the image of a subject face.Recent developments... Face recognition technology automatically identifies an individual from image or video sources.The detection process can be done by attaining facial characteristics from the image of a subject face.Recent developments in deep learning(DL)and computer vision(CV)techniques enable the design of automated face recognition and tracking methods.This study presents a novel Harris Hawks Optimization with deep learning-empowered automated face detection and tracking(HHODL-AFDT)method.The proposed HHODL-AFDT model involves a Faster region based convolution neural network(RCNN)-based face detection model and HHO-based hyperparameter opti-mization process.The presented optimal Faster RCNN model precisely rec-ognizes the face and is passed into the face-tracking model using a regression network(REGN).The face tracking using the REGN model uses the fea-tures from neighboring frames and foresees the location of the target face in succeeding frames.The application of the HHO algorithm for optimal hyperparameter selection shows the novelty of the work.The experimental validation of the presented HHODL-AFDT algorithm is conducted using two datasets and the experiment outcomes highlighted the superior performance of the HHODL-AFDT model over current methodologies with maximum accuracy of 90.60%and 88.08%under PICS and VTB datasets,respectively. 展开更多
关键词 Face detection face tracking deep learning computer vision video surveillance parameter tuning
下载PDF
基于改进YOLOv7-ByteTrack的干制哈密大枣缺陷检测与计数系统 被引量:1
11
作者 刘鑫 马本学 +2 位作者 李玉洁 陈金成 喻国威 《农业工程学报》 EI CAS CSCD 北大核心 2024年第3期303-312,共10页
针对目前无法同时对随机多列排布干制哈密大枣进行快速缺陷检测和统计计数问题,该研究设计了一款干制哈密大枣在线检测与计数系统。以干制哈密大枣为研究对象,利用工业相机拍摄传送带上随机排列的多类别缺陷干制哈密大枣视频为数据源,... 针对目前无法同时对随机多列排布干制哈密大枣进行快速缺陷检测和统计计数问题,该研究设计了一款干制哈密大枣在线检测与计数系统。以干制哈密大枣为研究对象,利用工业相机拍摄传送带上随机排列的多类别缺陷干制哈密大枣视频为数据源,采用改进的YOLOv7模型进行干制哈密大枣多类别缺陷检测并将检测结果作为后续多目标跟踪算法的输入;考虑到传送带上干制哈密大枣的外观相似性高以及排列密集等特点,该研究结合ByteTrack多目标跟踪算法的思想,设计了一种多类别干制哈密大枣的画线计数方法,实现了随机排布多类别干制哈密大枣的缺陷检测、准确定位及计数。试验结果表明:1)改进的YOLOv7模型浮点计算量为64.6 G,在干制哈密大枣目标检测数据的测试集上的平均检测精度、召回率、F_(1)平衡分数分别达到了98.03%、93.43%和95.00%,相比YOLOv7模型分别提高了4.40、6.88和7.00个百分点,浮点计算量下降了38.6%;2)基于改进YOLOv7为目标检测器开发的ByteTrack算法计数模型对干制哈密大枣计数的准确率为90.12%。该研究可为干制哈密大枣检测计数和分选分级提供技术支持。 展开更多
关键词 图像处理 目标检测 干制哈密大枣 多目标跟踪 YOLOv7
下载PDF
改进YOLOv7+Bytetrack的小目标检测与追踪 被引量:2
12
作者 聂源 赖惠成 高古学 《计算机工程与应用》 CSCD 北大核心 2024年第12期189-202,共14页
近年来,目标检测技术已经相当成熟,但小目标检测一直是目标检测领域的一大挑战。为了解决这一问题,设计一种名为MFF-YOLOv7的小目标检测算法,该算法旨在提高小目标检测的准确率。设计级联双向特征金字塔KBiFPN,以及联合提出的多级感受... 近年来,目标检测技术已经相当成熟,但小目标检测一直是目标检测领域的一大挑战。为了解决这一问题,设计一种名为MFF-YOLOv7的小目标检测算法,该算法旨在提高小目标检测的准确率。设计级联双向特征金字塔KBiFPN,以及联合提出的多级感受野特征聚合模块MFA,来聚合浅层特征并增强特征的信息表达能力。为了解决小目标漏检问题,设计了新的解耦头和新的注意力机制。新的解耦头对小目标的检测能力更强,新的注意力机制可以重点关注感兴趣的小目标区域。引入了一种新的损失函数ECIOU,旨在加快模型的收敛速度。为了验证模型的性能,分别在三个小目标数据集上进行了实验。实验结果表明,MFF-YOLOv7算法提高了检测精度。同时,使用多目标追踪Bytetrack算法在MOT17和VisDrone2019-MOT两个多目标追踪数据集上对新模型进行了验证,进一步证明了其有效性。此外,MFF-YOLOv7算法在动态视频追踪中表现出了良好的性能。 展开更多
关键词 MFF-YOLOv7 小目标检测 多级感受野 多目标追踪 Bytetrack
下载PDF
Object Detection and Tracking Method of AUV Based on Acoustic Vision 被引量:4
13
作者 张铁栋 万磊 +1 位作者 曾文静 徐玉如 《China Ocean Engineering》 SCIE EI 2012年第4期623-636,共14页
This paper describes a new framework for object detection and tracking of AUV including underwater acoustic data interpolation, underwater acoustic images segmentation and underwater objects tracking. This framework i... This paper describes a new framework for object detection and tracking of AUV including underwater acoustic data interpolation, underwater acoustic images segmentation and underwater objects tracking. This framework is applied to the design of vision-based method for AUV based on the forward looking sonar sensor. First, the real-time data flow (underwater acoustic images) is pre-processed to form the whole underwater acoustic image, and the relevant position information of objects is extracted and determined. An improved method of double threshold segmentation is proposed to resolve the problem that the threshold cannot be adjusted adaptively in the traditional method. Second, a representation of region information is created in light of the Gaussian particle filter. The weighted integration strategy combining the area and invariant moment is proposed to perfect the weight of particles and to enhance the tracking robustness. Results obtained on the real acoustic vision platform of AUV during sea trials are displayed and discussed. They show that the proposed method can detect and track the moving objects underwater online, and it is effective and robust. 展开更多
关键词 AUV acoustic image object detection Gaussian particle filter object tracking
下载PDF
Simultaneous Multi-vehicle Detection and Tracking Framework with Pavement Constraints Based on Machine Learning and Particle Filter Algorithm 被引量:3
14
作者 WANG Ke HUANG Zhi ZHONG Zhihua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第6期1169-1177,共9页
Due to the large variations of environment with ever-changing background and vehicles with different shapes, colors and appearances, to implement a real-time on-board vehicle recognition system with high adaptability,... Due to the large variations of environment with ever-changing background and vehicles with different shapes, colors and appearances, to implement a real-time on-board vehicle recognition system with high adaptability, efficiency and robustness in complicated environments, remains challenging. This paper introduces a simultaneous detection and tracking framework for robust on-board vehicle recognition based on monocular vision technology. The framework utilizes a novel layered machine learning and particle filter to build a multi-vehicle detection and tracking system. In the vehicle detection stage, a layered machine learning method is presented, which combines coarse-search and fine-search to obtain the target using the AdaBoost-based training algorithm. The pavement segmentation method based on characteristic similarity is proposed to estimate the most likely pavement area. Efficiency and accuracy are enhanced by restricting vehicle detection within the downsized area of pavement. In vehicle tracking stage, a multi-objective tracking algorithm based on target state management and particle filter is proposed. The proposed system is evaluated by roadway video captured in a variety of traffics, illumination, and weather conditions. The evaluating results show that, under conditions of proper illumination and clear vehicle appearance, the proposed system achieves 91.2% detection rate and 2.6% false detection rate. Experiments compared to typical algorithms show that, the presented algorithm reduces the false detection rate nearly by half at the cost of decreasing 2.7%–8.6% detection rate. This paper proposes a multi-vehicle detection and tracking system, which is promising for implementation in an on-board vehicle recognition system with high precision, strong robustness and low computational cost. 展开更多
关键词 simultaneous detection and tracking pavement segmentation layered machine learning particle filter
下载PDF
Towards Collaborative Robotics in Top View Surveillance:A Framework for Multiple Object Tracking by Detection Using Deep Learning 被引量:8
15
作者 Imran Ahmed Sadia Din +2 位作者 Gwanggil Jeon Francesco Piccialli Giancarlo Fortino 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第7期1253-1270,共18页
Collaborative Robotics is one of the high-interest research topics in the area of academia and industry.It has been progressively utilized in numerous applications,particularly in intelligent surveillance systems.It a... Collaborative Robotics is one of the high-interest research topics in the area of academia and industry.It has been progressively utilized in numerous applications,particularly in intelligent surveillance systems.It allows the deployment of smart cameras or optical sensors with computer vision techniques,which may serve in several object detection and tracking tasks.These tasks have been considered challenging and high-level perceptual problems,frequently dominated by relative information about the environment,where main concerns such as occlusion,illumination,background,object deformation,and object class variations are commonplace.In order to show the importance of top view surveillance,a collaborative robotics framework has been presented.It can assist in the detection and tracking of multiple objects in top view surveillance.The framework consists of a smart robotic camera embedded with the visual processing unit.The existing pre-trained deep learning models named SSD and YOLO has been adopted for object detection and localization.The detection models are further combined with different tracking algorithms,including GOTURN,MEDIANFLOW,TLD,KCF,MIL,and BOOSTING.These algorithms,along with detection models,help to track and predict the trajectories of detected objects.The pre-trained models are employed;therefore,the generalization performance is also investigated through testing the models on various sequences of top view data set.The detection models achieved maximum True Detection Rate 93%to 90%with a maximum 0.6%False Detection Rate.The tracking results of different algorithms are nearly identical,with tracking accuracy ranging from 90%to 94%.Furthermore,a discussion has been carried out on output results along with future guidelines. 展开更多
关键词 Collaborative robotics deep learning object detection and tracking top view video surveillance
下载PDF
Hierarchical clustering based on single-pass for breaking topic detection and tracking 被引量:3
16
作者 Li Fenghuan Zhao Zongfei Wang Zhenyu 《High Technology Letters》 EI CAS 2018年第4期369-377,共9页
Single-pass is commonly used in topic detection and tracking( TDT) due to its simplicity,high efficiency and low cost. When dealing with large-scale data,time cost will increase sharply and clustering performance will... Single-pass is commonly used in topic detection and tracking( TDT) due to its simplicity,high efficiency and low cost. When dealing with large-scale data,time cost will increase sharply and clustering performance will be affected greatly. Aiming at this problem,hierarchical clustering algorithm based on single-pass is proposed,which is inspired by hierarchical and concurrent ideas to divide clustering process into three stages. News reports are classified into different categories firstly.Then there are twice single-pass clustering processes in the same category,and one agglomerative clustering among different categories. In addition,for semantic similarity in news reports,topic model is improved based on named entities. Experimental results show that the proposed method can effectively accelerate the process as well as improve the performance. 展开更多
关键词 TOPIC detection and tracking(TDT) single-pass HIERARCHICAL CLUSTERING TEXT CLUSTERING TOPIC modeling
下载PDF
An Automated Player Detection and Tracking in Basketball Game 被引量:3
17
作者 P.K.Santhosh B.Kaarthick 《Computers, Materials & Continua》 SCIE EI 2019年第3期625-639,共15页
Vision-based player recognition is critical in sports applications.Accuracy,efficiency,and Low memory utilization is alluring for ongoing errands,for example,astute communicates and occasion classification.We develope... Vision-based player recognition is critical in sports applications.Accuracy,efficiency,and Low memory utilization is alluring for ongoing errands,for example,astute communicates and occasion classification.We developed an algorithm that tracks the movements of different players from a video of a basketball game.With their position tracked,we then proceed to map the position of these players onto an image of a basketball court.The purpose of tracking player is to provide the maximum amount of information to basketball coaches and organizations,so that they can better design mechanisms of defence and attack.Overall,our model has a high degree of identification and tracking of the players in the court.We directed investigations on soccer,basketball,ice hockey and pedestrian datasets.The trial comes about an exhibit that our technique can precisely recognize players under testing conditions.Contrasted and CNNs that are adjusted from general question identification systems,for example,Faster-RCNN,our approach accomplishes cutting edge exactness on three sorts of recreations(basketball,soccer and ice hockey)with 1000×fewer parameters.The all-inclusive statement of our technique is additionally shown on a standard passer-by recognition dataset in which our strategy accomplishes aggressive execution contrasted and cutting-edge methods. 展开更多
关键词 Player detection basketball game player tracking court detection color classification mapping pedestrian detection heat map
下载PDF
Finite sensor selection algorithm in distributed MIMO radar for joint target tracking and detection 被引量:6
18
作者 ZHANG Haowei XIE Junwei +2 位作者 GE Jiaang ZHANG Zhaojian LU Wenlong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第2期290-302,共13页
Due to the requirement of anti-interception and the limitation of processing capability of the fusion center, the subarray selection is very important for the distributed multiple-input multiple-output(MIMO) radar sys... Due to the requirement of anti-interception and the limitation of processing capability of the fusion center, the subarray selection is very important for the distributed multiple-input multiple-output(MIMO) radar system, especially in the hostile environment. In such conditions, an efficient subarray selection strategy is proposed for MIMO radar performing tasks of target tracking and detection. The goal of the proposed strategy is to minimize the worst-case predicted posterior Cramer-Rao lower bound(PCRLB) while maximizing the detection probability for a certain region. It is shown that the subarray selection problem is NP-hard, and a modified particle swarm optimization(MPSO) algorithm is developed as the solution strategy. A large number of simulations verify that the MPSO can provide close performance to the exhaustive search(ES) algorithm. Furthermore, the MPSO has the advantages of simpler structure and lower computational complexity than the multi-start local search algorithm. 展开更多
关键词 distributed MULTIPLE-INPUT multiple-output(MIMO)radar SUBARRAY selection TARGET tracking TARGET detection particle SWARM optimization(PSO)
下载PDF
基于状态向量增强ByteTrack的新生羔羊活动量自动计算方法
19
作者 林庆霞 顾兴健 +5 位作者 陈新文 熊迎军 张国敏 王锋 张生福 陆明洲 《农业工程学报》 EI CAS CSCD 北大核心 2024年第13期146-155,共10页
为评价母羊繁殖性能并及时发现分娩栏中的弱活力羔羊,该研究提出一种基于状态向量增强ByteTrack的新生羔羊活动量自动计算方法。针对传统ByteTrack算法在跟踪目标被遮挡时易发生身份切换的问题,引入置信度信息增强的状态向量,提高跟踪... 为评价母羊繁殖性能并及时发现分娩栏中的弱活力羔羊,该研究提出一种基于状态向量增强ByteTrack的新生羔羊活动量自动计算方法。针对传统ByteTrack算法在跟踪目标被遮挡时易发生身份切换的问题,引入置信度信息增强的状态向量,提高跟踪算法区分遮挡与被遮挡羔羊的能力。针对跟踪目标丢失导致轨迹预测不准确的问题,构建目标丢失期间的虚拟轨迹并重更新轨迹状态向量,以纠正轨迹误差。在获取各羔羊活动轨迹后,计算各羔羊帧间移动距离统计羔羊活动量。在江苏海门山羊研发中心采集的新生羔羊活动视频数据集上,测试状态向量增强的ByteTrack多目标跟踪算法性能。测试结果表明,研究提出的多目标跟踪方法在高阶跟踪精度、多目标跟踪精度、多目标跟踪准确度、IDF1得分上分别达到80.8%、86.1%、84.5%和92.2%,相较于现有算法的最高精度,分别提高2.7、0.2、2.3和3.9个百分点。该研究所提方法能够实现同窝多只新生羔羊的稳定跟踪,为新生羔羊活动量的自动计算、母羊繁殖性能的自动评估提供技术支撑。 展开更多
关键词 动物 目标检测 多目标跟踪 数据关联 遮挡 羔羊活动量
下载PDF
Moving Target Detection and Tracking for Smartphone Automatic Focusing 被引量:1
20
作者 HU Rongchun WANG Xiaoyang +1 位作者 ZHENG Yunchang PENG Zhenming 《ZTE Communications》 2017年第1期55-60,共6页
In this paper,a non-contact auto-focusing method is proposed for the essential function of auto-focusing in mobile devices.Firstly,we introduce an effective target detection method combining the 3-frame difference alg... In this paper,a non-contact auto-focusing method is proposed for the essential function of auto-focusing in mobile devices.Firstly,we introduce an effective target detection method combining the 3-frame difference algorithm and Gauss mixture model,which is robust for complex and changing background.Secondly,a stable tracking method is proposed using the local binary patter feature and camshift tracker.Auto-focusing is achieved by using the coordinate obtained during the detection and tracking procedure.Experiments show that the proposed method can deal with complex and changing background.When there exist multiple moving objects,the proposed method also has good detection and tracking performance.The proposed method implements high efficiency,which means it can be easily used in real mobile device systems. 展开更多
关键词 moving target detection frame.difference METHOD background modeling METHOD CAMSHIFT trackING MEANSHIFT trackING autofocusing
下载PDF
上一页 1 2 206 下一页 到第
使用帮助 返回顶部