While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present...While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.展开更多
Background:With the continuous development of information technology,most universities use mobile teaching platforms for classroom teaching.With the help of the national virtual simulation experimental teaching projec...Background:With the continuous development of information technology,most universities use mobile teaching platforms for classroom teaching.With the help of the national virtual simulation experimental teaching project sharing platform,students can enhance self-directed learning through the virtual simulation operations of the project.Purpose:To explore the application of virtual simulation experiment in teaching the fundamentals of nursing practice based on the Platform of the National Virtual Simulation Experiment Teaching Project during the COVID-19 pandemic analyze the impact of this teaching method on the autonomous learning ability of undergraduate nursing students.Methods:Convenience sampling was used to select 121 nursing undergraduates from Y University’s School of Nursing;the online teaching of fundamentals of nursing practice was conducted to the students.After taking the course,questionnaires were distributed to the undergraduate nursing students to collect their perceptions regarding the use of the virtual simulation experiment platform and autonomous learning competencies.Results:Most students expressed their preference for the virtual simulation teaching platform,and their satisfaction with the project evaluation was high 83.05%.They hoped to promote the application in future experimental teaching.Undergraduate nursing students believed that the virtual simulation teaching platform was conducive to cultivating clinical thinking ability,could stimulate learning interest,enhanced autonomous learning competencies.Conclusion:During the pandemic,the virtual simulation teaching platform for a lecture on in nursing education has achieved good results in both the aspects of teaching and student learning.Teachers efficiently used their training time and reduced their teaching burden.Moreover,the laboratory cost was also reduced.For undergraduate nursing students,the system was conducive to cultivating clinical thinking ability,stimulating their interest in learning,enhancing their learning and comprehension abilities and learning initiative.展开更多
Model predictive control is widely used in the design of autonomous driving algorithms.However,its parameters are sensitive to dynamically varying driving conditions,making it difficult to be implemented into practice...Model predictive control is widely used in the design of autonomous driving algorithms.However,its parameters are sensitive to dynamically varying driving conditions,making it difficult to be implemented into practice.As a result,this study presents a self-learning algorithm based on reinforcement learning to tune a model predictive controller.Specifically,the proposed algorithm is used to extract features of dynamic traffic scenes and adjust the weight coefficients of the model predictive controller.In this method,a risk threshold model is proposed to classify the risk level of the scenes based on the scene features,and aid in the design of the reinforcement learning reward function and ultimately improve the adaptability of the model predictive controller to real-world scenarios.The proposed algorithm is compared to a pure model predictive controller in car-following case.According to the results,the proposed method enables autonomous vehicles to adjust the priority of performance indices reasonably in different scenarios according to risk variations,showing a good scenario adaptability with safety guaranteed.展开更多
The high costs incurred due to attacks and the increasing number of different devices in the Internet of Things(IoT)highlight the necessity of the early detection of botnets(i.e.,a network of infected devices)to gain ...The high costs incurred due to attacks and the increasing number of different devices in the Internet of Things(IoT)highlight the necessity of the early detection of botnets(i.e.,a network of infected devices)to gain an advantage against attacks.However,early botnet detection is challenging because of continuous malware mutations,the adoption of sophisticated obfuscation techniques,and the massive volume of data.The literature addresses botnet detection by modeling the behavior of malware spread,the classification of malicious traffic,and the analysis of traffic anomalies.This article details ANTE,a system for ANTicipating botnEt signals based on machine learning algorithms.The system adapts itself to different scenarios and detects different types of botnets.It autonomously selects the most appropriate Machine Learning(ML)pipeline for each botnet and improves the classification before an attack effectively begins.The system evaluation follows trace-driven experiments and compares ANTE results to other relevant results from the literature over four representative datasets:ISOT HTTP Botnet,CTU-13,CICDDoS2019,and BoT-IoT.Results show an average detection accuracy of 99.06%and an average bot detection precision of 100%.展开更多
In the current society, based on the growing development of network information technology, the teaching in many colleges and universities has also introduced it to adapt to the situation. This trend can provide more ...In the current society, based on the growing development of network information technology, the teaching in many colleges and universities has also introduced it to adapt to the situation. This trend can provide more useful conditions for students to learn, which requires students to master enough self-learning abilities to adapt to this model. The study in the paper shows that students are usually interested in autonomous learning in a multimodal environment, but the degree of strategy choice is relatively low, and the learning process is blind and passive with the lack of self-confidence. Facing the future, schools should actively integrate into network thinking, and teachers should change their roles and train and guide students’ learning strategies and learning motivations, so as to achieve better teaching results.展开更多
By analyzing the English learning logs of 12 students in a provincial university in south-west China after they had been exempted from taking college English courses,this study investigated college students’autonomou...By analyzing the English learning logs of 12 students in a provincial university in south-west China after they had been exempted from taking college English courses,this study investigated college students’autonomous EFL(English as a foreign language)learning after course exemption,including the use of mediational means in EFL learning,EFL learning hours,and other factors affecting EFL learning,in the hope of giving new perspectives on college ELF curriculum design,teaching,and education management.展开更多
The Internet is an important means of communication for contemporary college students,especially those majoring in English,to acquire knowledge about information and improve their oral proficiency.However,research on ...The Internet is an important means of communication for contemporary college students,especially those majoring in English,to acquire knowledge about information and improve their oral proficiency.However,research on the relevant oral English autonomous learning ability of English majors shows that the overall learning situation is not satisfying.Based on the development of the concept of autonomous learning,this article explores the current situation and existing problems in oral English autonomous learning of English majors under the context of the Internet,and proposes corresponding autonomous learning strategies for improving their oral English skill.展开更多
Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning frame...Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.展开更多
This paper intends to promote a college English autonomous teaching and learning approach by introducing the whole process of its implementation and feedback from the learners. The theoretical and practical framework ...This paper intends to promote a college English autonomous teaching and learning approach by introducing the whole process of its implementation and feedback from the learners. The theoretical and practical framework of this approach is: with multiple autonomous learning research and practice models as its core, with process syllabus as its guidance, with task-based teaching as its essential principle, with group cooperation and reciprocal learning as its means, with extracurricular activities, online learning and self-access center as its learning environment, with formative assessment system as its guarantee and with cultivation of learners' comprehensive English practical skills and autonomy as its goal. Through this approach, we provide the learners with a favorable learning environment where they can learn by themselves and learn by reflection and practice so that they can learn how to learn and how to behave and how to survive.展开更多
Based on the literature review about autonomous learning,the study put forward four steps for using TED to enhance student autonomous learning,which are preparation,activity design,presentation and evaluation. By doin...Based on the literature review about autonomous learning,the study put forward four steps for using TED to enhance student autonomous learning,which are preparation,activity design,presentation and evaluation. By doing so,both teachers and students can achieve their teaching and learning objectives.展开更多
Nowadays, English as a world language becomes more and more important. Consequently, English learning becomes more and more popular. As we know, an important object for English learners is to improve their communicati...Nowadays, English as a world language becomes more and more important. Consequently, English learning becomes more and more popular. As we know, an important object for English learners is to improve their communicative competence. So autonomous learning is a good way to improve communicative competence. In this paper, two terms, autonomous learning and communicative competence, and their relationship will be introduced from the perspective of English learning. Autonomous learning is self-managed learning, which is contrary to passive learning and mechanical learning, according to intrinsic property of language learning. Communicative competence is a concept introduced by Dell Hymes and is discussed and refined by many other linguists. According to Hymes, communicative competence is the ability not only to apply the grammatical rules of language in order to form grammatically correct sentences but also to know when and where to use these sentences and to whom. Communicative competence includes 4 aspects: Possibility, feasibility, appropriateness and performance. Improving communicative competence is the result of autonomous learning, autonomous learning is the motivation of improving communicative competence. English, of course, is a bridge connecting China to the world, and fostering students'communicative competence through autonomous learning is the vital element of improving English learning in China.展开更多
The thesis introduces a comparative study of students'autonomous listening practice in a web-based autonomous learning center and the traditional teacher-dominated listening practice in a traditional language lab....The thesis introduces a comparative study of students'autonomous listening practice in a web-based autonomous learning center and the traditional teacher-dominated listening practice in a traditional language lab.The purpose of the study is to find how students'listening strategies differ in these two approaches and thereby to find which one better facilitates students'listening proficiency.展开更多
The paper, with the backdrop of web-based autonomous learning put forward by the recent college English teaching reform, aims to explore teachers' roles in this learning process in students' perception through the m...The paper, with the backdrop of web-based autonomous learning put forward by the recent college English teaching reform, aims to explore teachers' roles in this learning process in students' perception through the means of questionnaires and interviews. It further analyzes the possible reasons why students perceive their teachers' roles in such a way, in the hope of providing some implications for web-based college English autonomous learning.展开更多
Autonomous umanned aerial vehicle(UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devo...Autonomous umanned aerial vehicle(UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devoted to improving the autonomous decision-making ability of UAV in an interactive environment, where finding the optimal maneuvering decisionmaking policy became one of the key issues for enabling the intelligence of UAV. In this paper, we propose a maneuvering decision-making algorithm for autonomous air-delivery based on deep reinforcement learning under the guidance of expert experience. Specifically, we refine the guidance towards area and guidance towards specific point tasks for the air-delivery process based on the traditional air-to-surface fire control methods.Moreover, we construct the UAV maneuvering decision-making model based on Markov decision processes(MDPs). Specifically, we present a reward shaping method for the guidance towards area and guidance towards specific point tasks using potential-based function and expert-guided advice. The proposed algorithm could accelerate the convergence of the maneuvering decision-making policy and increase the stability of the policy in terms of the output during the later stage of training process. The effectiveness of the proposed maneuvering decision-making policy is illustrated by the curves of training parameters and extensive experimental results for testing the trained policy.展开更多
Autonomous learning is one of the objectives of multi-media college English teaching. On basis of the test of students' autonomous learning ability and the analysis of the results, this paper attempts to explore the ...Autonomous learning is one of the objectives of multi-media college English teaching. On basis of the test of students' autonomous learning ability and the analysis of the results, this paper attempts to explore the feasibility of fostering the autonomous learning ability in college English teaching.展开更多
Autonomous study emphasizes the learner's initiative,enthusiasm and creativity.In all fields of education,there is growing emphasis on "learner-centered" teaching methods and the ability of learner auton...Autonomous study emphasizes the learner's initiative,enthusiasm and creativity.In all fields of education,there is growing emphasis on "learner-centered" teaching methods and the ability of learner autonomy.Many experts and scholars have found that learning strategies plays an important role in English language learning,but the importance of affective strategy use in English learning is often ignored by people.Therefore,this paper focuses on the frequencies of affective strategies use in English learning and their relationships so as to enable college students to use positive affective strategies effectively to improve their autonomous learning ability.展开更多
Through the research into college students' English autonomous learning ability of the non-English major students. That the cause why university students' English autonomous learning ability is weak is proved to be ...Through the research into college students' English autonomous learning ability of the non-English major students. That the cause why university students' English autonomous learning ability is weak is proved to be that they do not value the use of learning strategies. The use of learning strategies can promote the formation and enhancement of autonomous learning ability of the learners. Metacognitive strategy is a high-level management skill which can enable the learners to plan, regulate, monitor and evaluate actively their own learning process. Massive researches have proved whether metacognitive strategy is used successfully or not can directly affect the student learning result. So, it is necessary for teachers to cultivate and train the students to use metacogitive strategy in the university English teaching.展开更多
The paper is a literature review, aiming to examine the effectiveness of web-based college English learning which mainly focuses on learners' autonomous learning. Previous studies indicate that the web-based learn...The paper is a literature review, aiming to examine the effectiveness of web-based college English learning which mainly focuses on learners' autonomous learning. Previous studies indicate that the web-based learning can improve learners' autonomous learning, as well as some problems found in their findings. Therefore, this paper first gives a summary and critique of research studies on the web-based autonomous learning and some factors influencing learners' autonomous learning ability;then, areas that deserve further study are also indicated.展开更多
Learner Autonomy has been a hot topic in foreign language learning and teaching since 1960s,especially in relation to life-long skills.As the globalization develops,intercultural communication becomes more and more si...Learner Autonomy has been a hot topic in foreign language learning and teaching since 1960s,especially in relation to life-long skills.As the globalization develops,intercultural communication becomes more and more significant for college students.This essay attempts to explore main approaches to cultivate and improve students' autonomous learning ability and intercultural communication competence in foreign language teaching.展开更多
Obstacle avoidance becomes a very challenging task for an autonomous underwater vehicle(AUV)in an unknown underwater environment during exploration process.Successful control in such case may be achieved using the mod...Obstacle avoidance becomes a very challenging task for an autonomous underwater vehicle(AUV)in an unknown underwater environment during exploration process.Successful control in such case may be achieved using the model-based classical control techniques like PID and MPC but it required an accurate mathematical model of AUV and may fail due to parametric uncertainties,disturbance,or plant model mismatch.On the other hand,model-free reinforcement learning(RL)algorithm can be designed using actual behavior of AUV plant in an unknown environment and the learned control may not get affected by model uncertainties like a classical control approach.Unlike model-based control model-free RL based controller does not require to manually tune controller with the changing environment.A standard RL based one-step Q-learning based control can be utilized for obstacle avoidance but it has tendency to explore all possible actions at given state which may increase number of collision.Hence a modified Q-learning based control approach is proposed to deal with these problems in unknown environment.Furthermore,function approximation is utilized using neural network(NN)to overcome the continuous states and large statespace problems which arise in RL-based controller design.The proposed modified Q-learning algorithm is validated using MATLAB simulations by comparing it with standard Q-learning algorithm for single obstacle avoidance.Also,the same algorithm is utilized to deal with multiple obstacle avoidance problems.展开更多
基金supported in part by the Start-Up Grant-Nanyang Assistant Professorship Grant of Nanyang Technological Universitythe Agency for Science,Technology and Research(A*STAR)under Advanced Manufacturing and Engineering(AME)Young Individual Research under Grant(A2084c0156)+2 种基金the MTC Individual Research Grant(M22K2c0079)the ANR-NRF Joint Grant(NRF2021-NRF-ANR003 HM Science)the Ministry of Education(MOE)under the Tier 2 Grant(MOE-T2EP50222-0002)。
文摘While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.
基金The research was carried out at the project of Jilin Province Higher Education Society(JGJX2022D61).
文摘Background:With the continuous development of information technology,most universities use mobile teaching platforms for classroom teaching.With the help of the national virtual simulation experimental teaching project sharing platform,students can enhance self-directed learning through the virtual simulation operations of the project.Purpose:To explore the application of virtual simulation experiment in teaching the fundamentals of nursing practice based on the Platform of the National Virtual Simulation Experiment Teaching Project during the COVID-19 pandemic analyze the impact of this teaching method on the autonomous learning ability of undergraduate nursing students.Methods:Convenience sampling was used to select 121 nursing undergraduates from Y University’s School of Nursing;the online teaching of fundamentals of nursing practice was conducted to the students.After taking the course,questionnaires were distributed to the undergraduate nursing students to collect their perceptions regarding the use of the virtual simulation experiment platform and autonomous learning competencies.Results:Most students expressed their preference for the virtual simulation teaching platform,and their satisfaction with the project evaluation was high 83.05%.They hoped to promote the application in future experimental teaching.Undergraduate nursing students believed that the virtual simulation teaching platform was conducive to cultivating clinical thinking ability,could stimulate learning interest,enhanced autonomous learning competencies.Conclusion:During the pandemic,the virtual simulation teaching platform for a lecture on in nursing education has achieved good results in both the aspects of teaching and student learning.Teachers efficiently used their training time and reduced their teaching burden.Moreover,the laboratory cost was also reduced.For undergraduate nursing students,the system was conducive to cultivating clinical thinking ability,stimulating their interest in learning,enhancing their learning and comprehension abilities and learning initiative.
基金Supported by National Key R&D Program of China(Grant No.2022YFB2502900)Fundamental Research Funds for the Central Universities of China,Science and Technology Commission of Shanghai Municipality of China(Grant No.21ZR1465900)Shanghai Gaofeng&Gaoyuan Project for University Academic Program Development of China.
文摘Model predictive control is widely used in the design of autonomous driving algorithms.However,its parameters are sensitive to dynamically varying driving conditions,making it difficult to be implemented into practice.As a result,this study presents a self-learning algorithm based on reinforcement learning to tune a model predictive controller.Specifically,the proposed algorithm is used to extract features of dynamic traffic scenes and adjust the weight coefficients of the model predictive controller.In this method,a risk threshold model is proposed to classify the risk level of the scenes based on the scene features,and aid in the design of the reinforcement learning reward function and ultimately improve the adaptability of the model predictive controller to real-world scenarios.The proposed algorithm is compared to a pure model predictive controller in car-following case.According to the results,the proposed method enables autonomous vehicles to adjust the priority of performance indices reasonably in different scenarios according to risk variations,showing a good scenario adaptability with safety guaranteed.
基金This work was supported by National Council for Scientific and Technological Development(CNPq/Brazil)grants#309129/2017-6 and#432204/2018-0,by Sao Paulo Research Foundation(FAPESP)+2 种基金grant#2018/23098-0,by the Coordination for the Improvement of Higher Education Personnel CAPES/Brazilgrants#88887.501287/2020-00 and#88887.509309/2020–00by the National Teaching and Research Network(RNP)by the GT-Periscope project.
文摘The high costs incurred due to attacks and the increasing number of different devices in the Internet of Things(IoT)highlight the necessity of the early detection of botnets(i.e.,a network of infected devices)to gain an advantage against attacks.However,early botnet detection is challenging because of continuous malware mutations,the adoption of sophisticated obfuscation techniques,and the massive volume of data.The literature addresses botnet detection by modeling the behavior of malware spread,the classification of malicious traffic,and the analysis of traffic anomalies.This article details ANTE,a system for ANTicipating botnEt signals based on machine learning algorithms.The system adapts itself to different scenarios and detects different types of botnets.It autonomously selects the most appropriate Machine Learning(ML)pipeline for each botnet and improves the classification before an attack effectively begins.The system evaluation follows trace-driven experiments and compares ANTE results to other relevant results from the literature over four representative datasets:ISOT HTTP Botnet,CTU-13,CICDDoS2019,and BoT-IoT.Results show an average detection accuracy of 99.06%and an average bot detection precision of 100%.
文摘In the current society, based on the growing development of network information technology, the teaching in many colleges and universities has also introduced it to adapt to the situation. This trend can provide more useful conditions for students to learn, which requires students to master enough self-learning abilities to adapt to this model. The study in the paper shows that students are usually interested in autonomous learning in a multimodal environment, but the degree of strategy choice is relatively low, and the learning process is blind and passive with the lack of self-confidence. Facing the future, schools should actively integrate into network thinking, and teachers should change their roles and train and guide students’ learning strategies and learning motivations, so as to achieve better teaching results.
文摘By analyzing the English learning logs of 12 students in a provincial university in south-west China after they had been exempted from taking college English courses,this study investigated college students’autonomous EFL(English as a foreign language)learning after course exemption,including the use of mediational means in EFL learning,EFL learning hours,and other factors affecting EFL learning,in the hope of giving new perspectives on college ELF curriculum design,teaching,and education management.
文摘The Internet is an important means of communication for contemporary college students,especially those majoring in English,to acquire knowledge about information and improve their oral proficiency.However,research on the relevant oral English autonomous learning ability of English majors shows that the overall learning situation is not satisfying.Based on the development of the concept of autonomous learning,this article explores the current situation and existing problems in oral English autonomous learning of English majors under the context of the Internet,and proposes corresponding autonomous learning strategies for improving their oral English skill.
基金the financial support of the National Key Research and Development Program of China(2020AAA0108100)the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Shanghai Gaofeng and Gaoyuan Project for University Academic Program Development for funding。
文摘Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.
文摘This paper intends to promote a college English autonomous teaching and learning approach by introducing the whole process of its implementation and feedback from the learners. The theoretical and practical framework of this approach is: with multiple autonomous learning research and practice models as its core, with process syllabus as its guidance, with task-based teaching as its essential principle, with group cooperation and reciprocal learning as its means, with extracurricular activities, online learning and self-access center as its learning environment, with formative assessment system as its guarantee and with cultivation of learners' comprehensive English practical skills and autonomy as its goal. Through this approach, we provide the learners with a favorable learning environment where they can learn by themselves and learn by reflection and practice so that they can learn how to learn and how to behave and how to survive.
文摘Based on the literature review about autonomous learning,the study put forward four steps for using TED to enhance student autonomous learning,which are preparation,activity design,presentation and evaluation. By doing so,both teachers and students can achieve their teaching and learning objectives.
文摘Nowadays, English as a world language becomes more and more important. Consequently, English learning becomes more and more popular. As we know, an important object for English learners is to improve their communicative competence. So autonomous learning is a good way to improve communicative competence. In this paper, two terms, autonomous learning and communicative competence, and their relationship will be introduced from the perspective of English learning. Autonomous learning is self-managed learning, which is contrary to passive learning and mechanical learning, according to intrinsic property of language learning. Communicative competence is a concept introduced by Dell Hymes and is discussed and refined by many other linguists. According to Hymes, communicative competence is the ability not only to apply the grammatical rules of language in order to form grammatically correct sentences but also to know when and where to use these sentences and to whom. Communicative competence includes 4 aspects: Possibility, feasibility, appropriateness and performance. Improving communicative competence is the result of autonomous learning, autonomous learning is the motivation of improving communicative competence. English, of course, is a bridge connecting China to the world, and fostering students'communicative competence through autonomous learning is the vital element of improving English learning in China.
文摘The thesis introduces a comparative study of students'autonomous listening practice in a web-based autonomous learning center and the traditional teacher-dominated listening practice in a traditional language lab.The purpose of the study is to find how students'listening strategies differ in these two approaches and thereby to find which one better facilitates students'listening proficiency.
文摘The paper, with the backdrop of web-based autonomous learning put forward by the recent college English teaching reform, aims to explore teachers' roles in this learning process in students' perception through the means of questionnaires and interviews. It further analyzes the possible reasons why students perceive their teachers' roles in such a way, in the hope of providing some implications for web-based college English autonomous learning.
基金supported by the Key Research and Development Program of Shaanxi (2022GXLH-02-09)the Aeronautical Science Foundation of China (20200051053001)the Natural Science Basic Research Program of Shaanxi (2020JM-147)。
文摘Autonomous umanned aerial vehicle(UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devoted to improving the autonomous decision-making ability of UAV in an interactive environment, where finding the optimal maneuvering decisionmaking policy became one of the key issues for enabling the intelligence of UAV. In this paper, we propose a maneuvering decision-making algorithm for autonomous air-delivery based on deep reinforcement learning under the guidance of expert experience. Specifically, we refine the guidance towards area and guidance towards specific point tasks for the air-delivery process based on the traditional air-to-surface fire control methods.Moreover, we construct the UAV maneuvering decision-making model based on Markov decision processes(MDPs). Specifically, we present a reward shaping method for the guidance towards area and guidance towards specific point tasks using potential-based function and expert-guided advice. The proposed algorithm could accelerate the convergence of the maneuvering decision-making policy and increase the stability of the policy in terms of the output during the later stage of training process. The effectiveness of the proposed maneuvering decision-making policy is illustrated by the curves of training parameters and extensive experimental results for testing the trained policy.
文摘Autonomous learning is one of the objectives of multi-media college English teaching. On basis of the test of students' autonomous learning ability and the analysis of the results, this paper attempts to explore the feasibility of fostering the autonomous learning ability in college English teaching.
文摘Autonomous study emphasizes the learner's initiative,enthusiasm and creativity.In all fields of education,there is growing emphasis on "learner-centered" teaching methods and the ability of learner autonomy.Many experts and scholars have found that learning strategies plays an important role in English language learning,but the importance of affective strategy use in English learning is often ignored by people.Therefore,this paper focuses on the frequencies of affective strategies use in English learning and their relationships so as to enable college students to use positive affective strategies effectively to improve their autonomous learning ability.
文摘Through the research into college students' English autonomous learning ability of the non-English major students. That the cause why university students' English autonomous learning ability is weak is proved to be that they do not value the use of learning strategies. The use of learning strategies can promote the formation and enhancement of autonomous learning ability of the learners. Metacognitive strategy is a high-level management skill which can enable the learners to plan, regulate, monitor and evaluate actively their own learning process. Massive researches have proved whether metacognitive strategy is used successfully or not can directly affect the student learning result. So, it is necessary for teachers to cultivate and train the students to use metacogitive strategy in the university English teaching.
文摘The paper is a literature review, aiming to examine the effectiveness of web-based college English learning which mainly focuses on learners' autonomous learning. Previous studies indicate that the web-based learning can improve learners' autonomous learning, as well as some problems found in their findings. Therefore, this paper first gives a summary and critique of research studies on the web-based autonomous learning and some factors influencing learners' autonomous learning ability;then, areas that deserve further study are also indicated.
文摘Learner Autonomy has been a hot topic in foreign language learning and teaching since 1960s,especially in relation to life-long skills.As the globalization develops,intercultural communication becomes more and more significant for college students.This essay attempts to explore main approaches to cultivate and improve students' autonomous learning ability and intercultural communication competence in foreign language teaching.
基金the support of Centre of Excellence (CoE) in Complex and Nonlinear dynamical system (CNDS), through TEQIP-II, VJTI, Mumbai, India
文摘Obstacle avoidance becomes a very challenging task for an autonomous underwater vehicle(AUV)in an unknown underwater environment during exploration process.Successful control in such case may be achieved using the model-based classical control techniques like PID and MPC but it required an accurate mathematical model of AUV and may fail due to parametric uncertainties,disturbance,or plant model mismatch.On the other hand,model-free reinforcement learning(RL)algorithm can be designed using actual behavior of AUV plant in an unknown environment and the learned control may not get affected by model uncertainties like a classical control approach.Unlike model-based control model-free RL based controller does not require to manually tune controller with the changing environment.A standard RL based one-step Q-learning based control can be utilized for obstacle avoidance but it has tendency to explore all possible actions at given state which may increase number of collision.Hence a modified Q-learning based control approach is proposed to deal with these problems in unknown environment.Furthermore,function approximation is utilized using neural network(NN)to overcome the continuous states and large statespace problems which arise in RL-based controller design.The proposed modified Q-learning algorithm is validated using MATLAB simulations by comparing it with standard Q-learning algorithm for single obstacle avoidance.Also,the same algorithm is utilized to deal with multiple obstacle avoidance problems.