期刊文献+
共找到208篇文章
< 1 2 11 >
每页显示 20 50 100
Comparative Analysis of ARIMA and LSTM Model-Based Anomaly Detection for Unannotated Structural Health Monitoring Data in an Immersed Tunnel
1
作者 Qing Ai Hao Tian +4 位作者 Hui Wang Qing Lang Xingchun Huang Xinghong Jiang Qiang Jing 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1797-1827,共31页
Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficient... Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance. 展开更多
关键词 Anomaly detection dynamic predictive model structural health monitoring immersed tunnel LSTM ARIMA
下载PDF
Cycle life prediction and match detection in retired electric vehicle batteries 被引量:4
2
作者 周向阳 邹幽兰 +1 位作者 赵光金 杨娟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期3040-3045,共6页
The lifespan models of commercial 18650-type lithium ion batteries (nominal capacity of 1150 mA-h) were presented. The lifespan was extrapolated based on this model. The results indicate that the relationship of cap... The lifespan models of commercial 18650-type lithium ion batteries (nominal capacity of 1150 mA-h) were presented. The lifespan was extrapolated based on this model. The results indicate that the relationship of capacity retention and cycle number can be expressed by Gaussian function. The selecting function and optimal precision were verified through actual match detection and a range of alternating current impedance testing. The cycle life model with high precision (〉99%) is beneficial to shortening the orediction time and cutting the prediction cost. 展开更多
关键词 retired electric vehicle battery life prediction model match detection electrochemical impedance spectroscopy equivalent circuit
下载PDF
Customized Convolutional Neural Network for Accurate Detection of Deep Fake Images in Video Collections 被引量:1
3
作者 Dmitry Gura Bo Dong +1 位作者 Duaa Mehiar Nidal Al Said 《Computers, Materials & Continua》 SCIE EI 2024年第5期1995-2014,共20页
The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method in... The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos. 展开更多
关键词 Deep fake detection video analysis convolutional neural network machine learning video dataset collection facial landmark prediction accuracy models
下载PDF
Advancing critical care recovery:The pivotal role of machine learning in early detection of intensive care unit-acquired weakness
4
作者 Georges Khattar Elie Bou Sanayeh 《World Journal of Clinical Cases》 SCIE 2024年第21期4455-4459,共5页
This editorial explores the significant challenge of intensive care unit-acquiredweakness(ICU-AW),a prevalent condition affecting critically ill patients,characterizedby profound muscle weakness and complicating patie... This editorial explores the significant challenge of intensive care unit-acquiredweakness(ICU-AW),a prevalent condition affecting critically ill patients,characterizedby profound muscle weakness and complicating patient recovery.Highlightingthe paradox of modern medical advances,it emphasizes the urgent needfor early identification and intervention to mitigate ICU-AW's impact.Innovatively,the study by Wang et al is showcased for employing a multilayer perceptronneural network model,achieving high accuracy in predicting ICU-AWrisk.This advancement underscores the potential of neural network models inenhancing patient care but also calls for continued research to address limitationsand improve model applicability.The editorial advocates for the developmentand validation of sophisticated predictive tools,aiming for personalized carestrategies to reduce ICU-AW incidence and severity,ultimately improving patientoutcomes in critical care settings. 展开更多
关键词 Critical illness myopathy Critical illness polyneuropathy Early detection Intensive care unit-acquired weakness Neural network models Patient outcomes Personalized intervention strategies predictive modeling
下载PDF
Vehicle Density Prediction in Low Quality Videos with Transformer Timeseries Prediction Model(TTPM)
5
作者 D.Suvitha M.Vijayalakshmi 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期873-894,共22页
Recent advancement in low-cost cameras has facilitated surveillance in various developing towns in India.The video obtained from such surveillance are of low quality.Still counting vehicles from such videos are necess... Recent advancement in low-cost cameras has facilitated surveillance in various developing towns in India.The video obtained from such surveillance are of low quality.Still counting vehicles from such videos are necessity to avoid traf-fic congestion and allows drivers to plan their routes more precisely.On the other hand,detecting vehicles from such low quality videos are highly challenging with vision based methodologies.In this research a meticulous attempt is made to access low-quality videos to describe traffic in Salem town in India,which is mostly an un-attempted entity by most available sources.In this work profound Detection Transformer(DETR)model is used for object(vehicle)detection.Here vehicles are anticipated in a rush-hour traffic video using a set of loss functions that carry out bipartite coordinating among estimated and information acquired on real attributes.Every frame in the traffic footage has its date and time which is detected and retrieved using Tesseract Optical Character Recognition.The date and time extricated and perceived from the input image are incorporated with the length of the recognized objects acquired from the DETR model.This furnishes the vehicles report with timestamp.Transformer Timeseries Prediction Model(TTPM)is proposed to predict the density of the vehicle for future prediction,here the regular NLP layers have been removed and the encoding temporal layer has been modified.The proposed TTPM error rate outperforms the existing models with RMSE of 4.313 and MAE of 3.812. 展开更多
关键词 detection transformer self-attention tesseract optical character recognition transformer timeseries prediction model time encoding vector
下载PDF
A SON solution for cell outage detection using a cooperative prediction approach
6
作者 Wang Yuting Liu Nan +1 位作者 Pan Zhiwen You Xiaohu 《Journal of Southeast University(English Edition)》 EI CAS 2019年第2期168-173,共6页
In order to improve the efficiency of automatic management and self-healing of the self-organizing network(SON),a cell outage problem is investigated and a cooperative prediction-based automatic cell outage detection ... In order to improve the efficiency of automatic management and self-healing of the self-organizing network(SON),a cell outage problem is investigated and a cooperative prediction-based automatic cell outage detection algorithm is proposed.By the improved collaborative filtering prediction algorithm,the location correlation of users in the wireless network is considered.By incorporating the cooperative grey model prediction algorithm,the time correlation of users motion trajectory is also introduced.Data of users in a normal scenario is simulated and collected for model training and threshold calculating and the outage cell can be effectively detected using the proposed approach.The simulation results demonstrate that the proposed scheme has a higher detection rate for different extents of outage while ensuring the lower communication overhead and false alarm rate than traditional outage detection methods.The detection rate of the proposed approach outperforms the traditional method by around 14%,especially when there are sparse users in the network,and it is able to detect the outage cell with no active users with the help of neighbor cells. 展开更多
关键词 cell outage detection cooperative prediction collaborative filtering grey model
下载PDF
Modeling of Microstructure Evolution and Mechanical Properties of Steel Plates Produced by Thermo-Mechanical Control Process and Its On-line Application 被引量:1
7
作者 Yunbo XU, Yongmei YU, Xianghua LIU and Guodong WANGState Key Laboratory of Rolling Technology and Automation, Northeastern University, P.O. Box 105, Shenyang 110004, ChinaPh.D., 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第1期13-16,共4页
An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanic... An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanical properties were predicted for different process parameters. In the later passes full recrystallization becomes difficult to occur and higher residual strain remains in austenite after rolling. For the reasonable temperature and cooling schedule, yield strength of 30 mm plain carbon steel plate can reach 310 MPa. The first on-line application of prediction and control of microstructure and properties (PCMP) in the medium plate production was achieved. The predictions of the system are in good agreement with measurements. 展开更多
关键词 Thermo-mechanical control process Metallurgical model Low-carbon steel prediction and control of microstructure and properties on-line application
下载PDF
Asphalt pavement water film thickness detection and prediction model:A review 被引量:1
8
作者 Ke Xiao Bing Hui +3 位作者 Xin Qu Hainian Wang Aboelkasim Diab Min Cao 《Journal of Traffic and Transportation Engineering(English Edition)》 EI CSCD 2023年第3期349-367,共19页
Over the course of storm or rainfall event,water thickness builds up on road surface resulting in a loss of contact between vehicle tires and road surface and puts drivers into immediate danger especially at high spee... Over the course of storm or rainfall event,water thickness builds up on road surface resulting in a loss of contact between vehicle tires and road surface and puts drivers into immediate danger especially at high speeds.Therefore this is a considerably dangerous condition of the road and the realistic measurements and prediction model of water film thickness(WFT)on pavement surface is crucial for determining the road friction coefficient and evaluating the impact of rainfall on traffic safety.A review of the principle as well as critical evaluation of current detection methods of pavement WFT were compared for consistency and accuracy in this paper.The method selection guidelines are given for different road surface water film thickness detection requirements.This paper also introduces the latest development of WFT detection and prediction models for asphalt pavement,and gives the calculation elements and conditions of different WFT prediction models from different modeling ideas,which provides a basis for the selection and optimization of WFT models for future researchers.This article also suggests a few insights as further research directions on this topic.(1)The research can consider the influencing factors of WFT to conduct research on the delineation standard of pavement WFT.(2)In order to meet the future traffic safety dynamic early warning needs,road factors of different material types,disease conditions and linear conditions should be studied,as well as a comprehensive and accurate real-time water film thickness detection and evaluation method considering meteorological factors of rainfall timing,scale and intensity.(3)The prediction model of WFT should be further studied by the analytical method to clarify the influence of the pavement WFT on the driving safety. 展开更多
关键词 Asphalt pavement Water film thickness detection method prediction model
原文传递
Anomaly detection of earthquake precursor data using long short-term memory networks 被引量:7
9
作者 Cai Yin Mei-Ling Shyu +2 位作者 Tu Yue-Xuan Teng Yun-Tian Hu Xing-Xing 《Applied Geophysics》 SCIE CSCD 2019年第3期257-266,394,共11页
Earthquake precursor data have been used as an important basis for earthquake prediction.In this study,a recurrent neural network(RNN)architecture with long short-term memory(LSTM)units is utilized to develop a predic... Earthquake precursor data have been used as an important basis for earthquake prediction.In this study,a recurrent neural network(RNN)architecture with long short-term memory(LSTM)units is utilized to develop a predictive model for normal data.Furthermore,the prediction errors from the predictive models are used to indicate normal or abnormal behavior.An additional advantage of using the LSTM networks is that the earthquake precursor data can be directly fed into the network without any elaborate preprocessing as required by other approaches.Furthermore,no prior information on abnormal data is needed by these networks as they are trained only using normal data.Experiments using three groups of real data were conducted to compare the anomaly detection results of the proposed method with those of manual recognition.The comparison results indicated that the proposed LSTM network achieves promising results and is viable for detecting anomalies in earthquake precursor data. 展开更多
关键词 Earthquake precursor data deep learning LSTM-RNN prediction model anomaly detect io n
下载PDF
Automatic System for Failure Detection in Hydro-Power Generators
10
作者 Luis Carlos Ribeiro Levy Ely de Lacerda de Oliveira +4 位作者 Erik Leandro Bonaldi Luiz Eduardo Borges da Silva Camila Paes Salomon Jonas G. Borges da Silva Germano Lambert-Torres 《Journal of Power and Energy Engineering》 2014年第4期36-46,共11页
This paper presents an automatic system for failure detection in hydro-power generators. The main idea of this system is to detect failure using current and voltage signals acquired without any type of internal interf... This paper presents an automatic system for failure detection in hydro-power generators. The main idea of this system is to detect failure using current and voltage signals acquired without any type of internal interference in the generator operation. The detected failures could be mechanical or electrical origins, such as: problems in bearings, unwanted vibrations, partial discharges, misalignment, unbalancing, among others. It is possible because the generator acts as a transducer for mechanical problems, and they appear in current and voltage signals. This automatic system based on electric signature analysis has been installed in Itapebi Power Plant generators since 2012. Some results are presented in this paper. 展开更多
关键词 Automatic System on-line Measurements Digital Signal Processing predictIVE Maintenance FAILURE detection
下载PDF
电气化铁路弓网系统摩擦磨损性能研究进展
11
作者 周宁 支兴帅 +3 位作者 张静 郑伟 罗朝基 张卫华 《西南交通大学学报》 EI CSCD 北大核心 2024年第5期990-1005,1022,共17页
针对电气化铁路弓网正常和异常状态的接触副,分析受电弓滑板磨耗周期内的摩擦磨损性能差异性,特别是受电弓滑板的磨耗率和磨耗型面的差异性,包括:发生异常磨损时受电弓滑板磨损率数倍甚至数十倍的增长差异,以及局部偏磨、波浪型磨耗和... 针对电气化铁路弓网正常和异常状态的接触副,分析受电弓滑板磨耗周期内的摩擦磨损性能差异性,特别是受电弓滑板的磨耗率和磨耗型面的差异性,包括:发生异常磨损时受电弓滑板磨损率数倍甚至数十倍的增长差异,以及局部偏磨、波浪型磨耗和贯穿性凹坑等磨耗型面差异;着重归纳不同弓网系统载流摩擦磨损试验台的特点及异同,总结磨耗检测接触式测量方法与非接触式测量方法的优劣;分析弓网系统结构及参数、列车运行参数、弓网系统载流参数及外界环境等因素的影响,归纳总结弓网载流摩擦磨损特性的演变规律.在此基础上,综合分析弓网系统磨耗机理分析模型和数据拟合模型的研究现状和进展,并给出弓网系统载流摩擦磨损性能在后续研究中所需重点关注的研究方向和发展趋势,包括:弓网摩擦副的真实服役工况在实验室条件下的等效模拟;弓网磨耗性能的在线高精度检测;复杂气候条件及多物理场耦合作用下弓网磨耗性能的仿真和优化;结合大数据和智能算法的弓网磨耗预测,以及智能运维策略和全生命周期的能力保持技术等. 展开更多
关键词 弓网系统 摩擦磨损特性 检测方法 预测模型
下载PDF
Road model prediction based unstructured road detection 被引量:1
12
作者 Wen-hui ZUO Tuo-zhong YAO 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2013年第11期822-834,共13页
Vision-based road detection is an important research topic in different areas of computer vision such as the autonomous navigation of mobile robots.In outdoor unstructured environments such as villages and deserts,the... Vision-based road detection is an important research topic in different areas of computer vision such as the autonomous navigation of mobile robots.In outdoor unstructured environments such as villages and deserts,the roads are usually not well-paved and have variant colors or texture distributions.Traditional region- or edge-based approaches,however,are effective only in specific environments,and most of them have weak adaptability to varying road types and appearances.In this paper we describe a novel top-down based hybrid algorithm which properly combines both region and edge cues from the images.The main difference between our proposed algorithm and previous ones is that,before road detection,an off-line scene classifier is efficiently learned by both low- and high-level image cues to predict the unstructured road model.This scene classification can be considered a decision process which guides the selection of the optimal solution from region- or edge-based approaches to detect the road.Moreover,a temporal smoothing mechanism is incorporated,which further makes both model prediction and region classification more stable.Experimental results demonstrate that compared with traditional region- and edge-based algorithms,our algorithm is more robust in detecting the road areas with diverse road types and varying appearances in unstructured conditions. 展开更多
关键词 Road detection Surface layout Road model prediction Temporal smoothing
原文传递
城市森林结构多样性预测冠下地面温度的潜力研究
13
作者 王蕾 姚明辰 贾佳 《中国城市林业》 2024年第2期1-9,共9页
城市森林冠层具有调控城市森林微气候的能力,但现有研究尚未阐明冠层结构对冠下地面温度的影响及其预测潜力。文章基于无人机机载激光雷达(UAV-LiDAR)提取哈尔滨林业示范基地的城市森林冠层结构多样性特征指标,探究单一结构多样性特征... 城市森林冠层具有调控城市森林微气候的能力,但现有研究尚未阐明冠层结构对冠下地面温度的影响及其预测潜力。文章基于无人机机载激光雷达(UAV-LiDAR)提取哈尔滨林业示范基地的城市森林冠层结构多样性特征指标,探究单一结构多样性特征对冠下地面温度的影响,以及结构多样性多因子组合对温度的预测潜力。结果表明:1)城市森林结构多样性的8个特征因子与冠下地面温度呈显著相关关系(P<0.05),其中深间隙(DG)、深间隙分数(DGF)、覆盖分数(CF)、间隙分数分布(GFP)表征了结构多样性的覆盖/开放度特征;冠层高度标准差(H_(std))、冠层高度最大值(H_(max))、95%分位点高度(ZQ_(95))表征了高度特征;垂直复杂指数(VCI)表征了异质性特征。2)城市森林冠层结构多样性的覆盖/开放度特征对冠下地面温度的响应更强(R^(2)为0.15~0.5),强于高度指标(R^(2)为0.14~0.19)以及异质性指标(R^(2)=0.14)。3)结合高度指标、覆盖/开放度指标以及异质性指标的多因子预测模型2(R^(2)=0.61,RMSE=0.51,MSE=0.26,AIC=62.74),对于冠下地面温度的预测性能更优。研究明晰了城市森林结构多样性的多因子变量及其特征组合预测冠下地面温度的潜力,为城市森林冠层结构调控内部小气候环境研究提供了科学参考。 展开更多
关键词 无人机机载激光雷达(UAV-LiDAR) 城市森林 冠层结构多样性 冠下地面温度 预测模型
下载PDF
水泥生料成分的近红外光谱分析方法研究
14
作者 王译那 郭迎庆 +3 位作者 王一帆 肖航 赵志 张雷 《激光与红外》 CAS CSCD 北大核心 2024年第4期599-606,共8页
水泥是一种重要的基础建筑材料,对社会生产有着重大的影响,实现水泥生料成分的快速检测对建筑行业的发展具有重大意义。本文基于近红外光谱分析方法研究了水泥生料中的Al_(2)O_(3)、Fe_(2)O_(3)成分的含量检测,首先通过联合X-Y距离划分... 水泥是一种重要的基础建筑材料,对社会生产有着重大的影响,实现水泥生料成分的快速检测对建筑行业的发展具有重大意义。本文基于近红外光谱分析方法研究了水泥生料中的Al_(2)O_(3)、Fe_(2)O_(3)成分的含量检测,首先通过联合X-Y距离划分法对样品集进行划分,然后对训练集采用不同光谱预处理方法进行处理,最后采用偏最小二乘回归和支持向量回归分别对近红外光谱数据建立预测模型,并对预测结果进行分析比较。研究结果表明,采用S-G平滑预处理和偏最小二乘回归建模的近红外光谱分析方法检测效果较佳,Al_(2)O_(3)检测模型的决定系数R2为0895,预测均方根误差(RMSEP)为0072;Fe_(2)O_(3)检测模型的决定系数R2为0732,RMSEP为0023。研究结果为水泥生料成分的检测提供了有效的分析方法,促进了水泥行业的进一步发展。 展开更多
关键词 近红外光谱 水泥生料 成分检测 光谱预处理 预测模型
下载PDF
基于强化学习的多模型融合光伏发电功率预测方法
15
作者 王剑斌 傅金波 陈博 《太阳能学报》 EI CAS CSCD 北大核心 2024年第6期382-388,共7页
为进一步提高超短期光伏发电功率预测的精度,提出一种基于强化学习的多模型融合光伏发电功率预测方法。首先,采用局部离群因子算法检测、剔除异常点,并用多层感知机回归算法进行修补,解决数据异常问题;然后,将数据分为训练集、验证集与... 为进一步提高超短期光伏发电功率预测的精度,提出一种基于强化学习的多模型融合光伏发电功率预测方法。首先,采用局部离群因子算法检测、剔除异常点,并用多层感知机回归算法进行修补,解决数据异常问题;然后,将数据分为训练集、验证集与测试集,在训练集中训练支持向量机回归(SVR)、多元线性回归(MLR)、贝叶斯岭回归(BRR)、卷积-长短期记忆(CNN-LSTM)与基于粒子群算法优化的门控循环单元(PSO-GRU)模型,并在验证集对训练得到的模型进行验证,分别选出最佳的模型作为子模型;最后,在测试集中使用5个子模型进行预测,并将各预测结果用强化学习的方法进行融合,将融合值作为最终的预测结果。实验结果表明,该预测方法的平均绝对误差、均方误差、均方根误差与相对误差相比单模型方法以及其他传统的融合方法均有显著降低,验证了该方法的有效性。 展开更多
关键词 异常检测 机器学习 强化学习 多模型融合 光伏发电功率预测
下载PDF
肝脏疾病成分输血与相关检验指标主成分分析和预测研究
16
作者 吴春芳 杨森 +4 位作者 夏益兰 汪月娥 林勇 姚玉荣 楚青 《肝脏》 2024年第7期862-866,共5页
目的研究相关检验指标在肝脏疾病成分输血的主成分分析和预测模型。方法采用回顾性方法,收集2017年1月至2022年12月期间住院接受成分输血的肝脏疾病患者与非肝脏疾病患者作为研究对象,根据接受成分输血的类型分为输注悬浮红细胞组、输... 目的研究相关检验指标在肝脏疾病成分输血的主成分分析和预测模型。方法采用回顾性方法,收集2017年1月至2022年12月期间住院接受成分输血的肝脏疾病患者与非肝脏疾病患者作为研究对象,根据接受成分输血的类型分为输注悬浮红细胞组、输注病毒灭活冰冻血浆组和输注单采血小板组。收集患者的一般资料和输血前相关实验室指标,包括血红蛋白(Hb)、红细胞压积(HCT)、血小板计数(PLT)、凝血功能指标、肝功能指标以及输血情况,通过t检验与方差检验比较肝脏疾病与非肝脏疾病不同成分输血组上述指标的差异。采用KMO检验、Bartlett球形检验和碎石检验(Scree Test)验证多因子分析的适宜性,利用主成分分析(PCA)对各指标的方差贡献进行观察,评估各指标间的相关性。通过受试者工作曲线(ROC)分析评估各检验指标对于不同成分输血的预测价值。结果共纳入96例肝脏疾病患者与216例非肝脏疾病患者,肝脏疾病中57.3%患者输注血浆(55/96例),非肝脏疾病中54.2%患者接受红细胞输血(117/216例)。输注红细胞组肝病与非肝病患者Hb平均值分别为70.61 g/L和82.82 g/L;HCT平均值分别为20.80%和24.47%;丙氨酸氨基转移酶(ALT)平均值分别为45.94 U/L和25.43 U/L;总胆红素平均值为44.38μmol/L和19.31μmol/L,这四项指标两组患者中存在显著差异(P<0.05)。在输注血浆组肝病与非肝病患者Hb平均值分别为73.45 g/L和111.43 g/L;HCT平均值分别为21.70%和31.06%;ALT平均值分别为59.33 U/L和28.33 U/L;天冬氨酸氨基转移酶(AST)分别为44.35 U/L和22.52 U/L;INR平均值分别为1.43和1.07;以上指标存在显著差异(P<0.05)。输血血小板组肝病与非肝病患者PLT平均值分别为36.70×10^(9)/L和50.76×10^(9)/L;AST平均值分别为54.20 U/L和31.19 U/L;PT平均值分别为15.95 s和12.98 s;APTT平均值分别为54.42 s和29.90 s;INR平均值分别为1.36和1.11;以上五项指标存在显著差异(P<0.05)。PCA分析肝病患者不同成分输血前检验指标显示,血液指标和肝功能指标分布为第一和第二主要成分,非肝病患者输血前检验指标中肝功能和凝血指标为第一和第二主要成分。通过ROC曲线分析肝病患者接受红细胞输血组,HCT曲线下面积为0.912;血浆输血组中,INR和PT曲线下面积为0.964和0.953;在输注单采血小板组中,INR曲线下面积分别为0.938。结论本研究对于不同成分输血前各项指标相关性分析和模型预测,尤其对于肝病患者选择不同成分输血可以提供研究依据。 展开更多
关键词 肝脏疾病 成分输血 检测指标 主成分分析 预测模型
下载PDF
木薯块根灰分和水分近红外光谱预测模型的构建与优化
17
作者 张逸杰 王思琦 +6 位作者 陆小静 宋记明 王睿 曹敏 张瑞 王红刚 吴金山 《热带生物学报》 2024年第3期259-267,共9页
为快速检测木薯的灰分和水分含量,以同地块同一时期木薯种质资源为材料进行建模,采用GB 5009.3-2016和GB/T5009.4-2016法对木薯灰分和水分含量进行测定,同时使用近红外光谱分析仪对137份样品进行光谱采集,利用TQ Analyst 9.0分析软件,... 为快速检测木薯的灰分和水分含量,以同地块同一时期木薯种质资源为材料进行建模,采用GB 5009.3-2016和GB/T5009.4-2016法对木薯灰分和水分含量进行测定,同时使用近红外光谱分析仪对137份样品进行光谱采集,利用TQ Analyst 9.0分析软件,采用偏最小二乘法(PLS)构建木薯灰分和水分近红外定标模型。实验结果显示,木薯灰分、水分模型相关系数(R)分别为0.94、0.93,校正均方根误差(RMSEC)分别为0.22、0.48,预测均方根误差(RMSEP)分别为0.21、1.46,交叉验证均方差(RMSECV)分别为0.40、1.54;选用未参与建模的20份木薯种质资源对该模型进行外部验证,预测值与真实值进行差异性分析(P>0.05),P值分别为0.464、0.459说明差异无显著性,表明该模型可适用于木薯灰分和水分检测。 展开更多
关键词 木薯 灰分 水分 近红外光谱 预测模型 快速检测
下载PDF
近红外光谱技术在调味品检测中的应用研究进展
18
作者 余欣蕾 张佳汇 +2 位作者 刘太昂 尹明雨 王锡昌 《食品与机械》 CSCD 北大核心 2024年第9期200-208,218,共10页
传统检测调味品品质的方法存在耗时长、成本高及有损检测等弊端,而近红外光谱技术(NIRS)因具有快速、准确、无损、方便等特点,逐渐被应用于调味品领域中,并随着化学计量学、电子信息技术和仪器硬件等方面的发展日趋完善。文章阐述了调... 传统检测调味品品质的方法存在耗时长、成本高及有损检测等弊端,而近红外光谱技术(NIRS)因具有快速、准确、无损、方便等特点,逐渐被应用于调味品领域中,并随着化学计量学、电子信息技术和仪器硬件等方面的发展日趋完善。文章阐述了调味品的分类及常用检测方法,概述了NIRS的原理、特点及近红外快速检测模型,综述了近年来近红外光谱技术在调味品中的研究进展,包括调味品成分检测、掺伪鉴别、品牌溯源和品质检测等,并对NIRS在调味品行业的应用发展趋势进行了展望。 展开更多
关键词 近红外 调味品 预测模型 品质检测 掺伪
下载PDF
远程模板检测算法及其在蛋白质结构预测中的应用
19
作者 梁方 徐旭瑶 +2 位作者 赵凯龙 赵炫锋 张贵军 《计算机科学》 CSCD 北大核心 2024年第S01期167-173,共7页
在从传统力场驱动的蛋白质结构预测到当前数据驱动的AI结构建模的发展历程中,蛋白质结构模板检测是蛋白质结构预测中的关键环节,如何检测高精度蛋白质结构远程模板对提升结构的预测精度具有重要的研究意义。该研究提出了一种基于自适应... 在从传统力场驱动的蛋白质结构预测到当前数据驱动的AI结构建模的发展历程中,蛋白质结构模板检测是蛋白质结构预测中的关键环节,如何检测高精度蛋白质结构远程模板对提升结构的预测精度具有重要的研究意义。该研究提出了一种基于自适应特征向量提取的远程同源模板检测算法ASEalign。首先,采用多特征信息融合的深度学习技术预测蛋白质接触图;然后,设计了融合接触图、二级结构、序列谱谱比对和溶剂可及性等多维度特征打分函数,并通过自适应地提取接触图矩阵中的特征值和特征向量进行模板比对;最后,将检测出的高质量模板输入AlphaFold2中进行结构建模。在135个蛋白质的测试集上的结果表明,ASEalign相于主流的模板检测算法HHsearch精度提升了11.5%;同时,结构建模的精度优于AlphaFold2。 展开更多
关键词 模板检测 模板建模 接触图预测 深度学习 二级结构
下载PDF
2024年台湾花莲7.4级地震诱发地质灾害应急评价
20
作者 方成勇 范宣梅 +2 位作者 王欣 戴岚欣 漆基孝 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第4期654-663,672,共11页
2024年4月3日,中国台湾地区花莲县发生了7.4级地震,导致山区发生了大规模地质灾害,造成了严重的人员伤亡和经济损失。迅速准确地评估地震诱发地质灾害的空间分布概率,对震后紧急响应和安置决策具有重要意义。基于台湾同震滑坡数据库与... 2024年4月3日,中国台湾地区花莲县发生了7.4级地震,导致山区发生了大规模地质灾害,造成了严重的人员伤亡和经济损失。迅速准确地评估地震诱发地质灾害的空间分布概率,对震后紧急响应和安置决策具有重要意义。基于台湾同震滑坡数据库与人工智能神经网络算法,建立了一个近实时的地震诱发滑坡空间分布概率预测模型;在地震发生后1小时内成功实现了花莲地震诱发的滑坡空间分布概率预测。在震后5天内利用Sentinel-1A合成孔径雷达(SAR)和PlanetScope光学卫星影像,对地震核心影响区域进行了滑坡智能检测与目视解译。在无云影像覆盖区共解译876处同震滑坡,总面积为12.6 km^(2),主要分布于台湾中央山脉东侧高山峡谷区。通过已解译滑坡的验证,预测结果的曲线下面积(AUC)精度达到了90%,证明了在此次事件中预测模型的准确性和可靠性,为抗震救灾提供了及时有效的数据支持。 展开更多
关键词 花莲地震 同震滑坡 预测模型 人工智能 遥感识别
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部