Parts with high-quality freeform surfaces have been widely used in industries,which require strict quality control during the manufacturing process.Among all the industrial inspection methods,contact measurement with ...Parts with high-quality freeform surfaces have been widely used in industries,which require strict quality control during the manufacturing process.Among all the industrial inspection methods,contact measurement with coordinate measuring machines or computer numerical control machine tool is a fundamental technique due to its high accuracy,robustness,and universality.In this paper,the existing research in the contact measurement field is systematically reviewed.First,different configurations of the measuring machines are introduced in detail,which may have influence on the corresponding sampling and inspection path generation criteria.Then,the entire inspection pipeline is divided into two stages,namely the pre-inspection and post-inspection stages.The typical methods of each sub-stage are systematically overviewed and classified,including sampling,accessibility analysis,inspection path generation,probe tip radius compensation,surface reconstruction,and uncertainty analysis.Apart from those classical research,the applications of the emerging deep learning technique in some specific tasks of measurement are introduced.Furthermore,some potential and promising trends are provided for future investigation.展开更多
Although near infrared (NIR) spectroscopy has been evaluated for numerous applications, the number of actual on-line or even on-site industrial applications seems to be very limited. In the present paper, the attempts...Although near infrared (NIR) spectroscopy has been evaluated for numerous applications, the number of actual on-line or even on-site industrial applications seems to be very limited. In the present paper, the attempts to produce online predictions of the chemical oxygen demand (COD) in wastewater from a pulp and paper mill using NIR spectroscopy are described. The task was perceived as very challenging, but with a root mean square error of prediction of 149 mg/l, roughly corresponding to 1/10 of the studied concentration interval, this attempt was deemed as successful. This result was obtained by using partial least squares model regression, interpolated reference values for calibration purposes, and by evenly distributing the calibration data in the concentration space. This work may also represent the first industrial application of online COD measurements in wastewater using NIR spectroscopy.展开更多
On-line measurement of manufaturing quality of rolled steel needs the performances of noncontact, high-responds, high-resolution and high aceuracy. The reccntly developed hardware makes it possible. This paper gives a...On-line measurement of manufaturing quality of rolled steel needs the performances of noncontact, high-responds, high-resolution and high aceuracy. The reccntly developed hardware makes it possible. This paper gives a review of the development of this techniques and introduces four kinds of developed measurement systems. And the future development trends in this field was also discussed.展开更多
In this paper,a method of multipoint pseudorandom combined excita-tion with the orthogonal reciprocal repeated sequences(ORRS)is presented on thebackground of the on-line identification of multivariate system.The capa...In this paper,a method of multipoint pseudorandom combined excita-tion with the orthogonal reciprocal repeated sequences(ORRS)is presented on thebackground of the on-line identification of multivariate system.The capacity of therestraint to the identification error caused by the non-random D.C.drift of the mul-ti-input excitation with the ORRS in the multivariate system is also discussed.Thevalidity of the method described in this paper is proved by the modelling tests of themulti-plate rotor system.展开更多
A new approach to the on-line temperature rise measurement of submersible pump's motors is presented. A new method of power supply and signed transmission for the measurement device in the pump well is also put fo...A new approach to the on-line temperature rise measurement of submersible pump's motors is presented. A new method of power supply and signed transmission for the measurement device in the pump well is also put forward here. The design and some experimental results are given.展开更多
A portable microcomputer-controlled inspection system has been developed for detection of magnetic properties of soft magnetic materials. It incorporates custom designed software for control of the magnetic field duri...A portable microcomputer-controlled inspection system has been developed for detection of magnetic properties of soft magnetic materials. It incorporates custom designed software for control of the magnetic field during operation such as demagnetization, field sweeping, and for data logging and analysis. Results are recorded using a 12-bit analog to digital converter and are then stored on disk. The magnetic hysteresis loop and Barkhausen noise data can be converted into important magnetic parameters: coecivity, remanence, and hysteresis loss, Barkhausen amplitude, and Barkhausen noise energy. This system incorporated with the magnetostriction, and magnetoacoustic emission, is then related with the nondestructive detection of material degradation.展开更多
Complex surface shape measurement has been a focus topic in the CAD/CAM field. A popular method for measuring dimensional information is using a 3D coordinate measuring machine (CMM)with a touch trigger probe. The mea...Complex surface shape measurement has been a focus topic in the CAD/CAM field. A popular method for measuring dimensional information is using a 3D coordinate measuring machine (CMM)with a touch trigger probe. The measurement set up with CMM, however, is a time consuming task and the accuracy of the measurement deteriorates as the speed of measurement increase. Non-contact measurement is favored since high speed measurement can be achieved and problems with vibration and friction can be eliminated. Although much research has been conducted in non-contact measurement using image capturing and processing schemes, accuracy is poor and measurement is limited. Some optical technologies developed provide a good accuracy but the dynamic range and versatility is very limited. A novel fiber-optic sensor used for the inspection of complex internal contours is presented in this paper, which is able to measure a surface shape in a non-contact manner with high accuracy and high speed, and is compact and flexible to be incorporated into a CMM. Modulation functions for tilted surface shape measurement, based on the Gaussian distribution of the emitting beam from single-mode fiber (SMF), were derived for specular reflection. The feasibility of the proposed measurement principle was verified by simulations.展开更多
Based on the theory of multi-body system (MBS), bine’s and huston’s methods are applied to an on-line measuring system of machining center in this paper. Through the study on modeling technique, the comprehensive mo...Based on the theory of multi-body system (MBS), bine’s and huston’s methods are applied to an on-line measuring system of machining center in this paper. Through the study on modeling technique, the comprehensive model for errors calculation in an on-line measuring System of machining center have been built for the first time. Using this model, the errors can be compensated by soft.ware and the measuring accuracy can be enhanced without any more inveSt. This model can be used in all kinds of machining center.展开更多
On-line chemical characterization of atmospheric particulate matter(PM)with soft ionization technique and ultrahigh-resolution Mass Spectrometry(UHRMS)provides molecular information of organic constituents in real tim...On-line chemical characterization of atmospheric particulate matter(PM)with soft ionization technique and ultrahigh-resolution Mass Spectrometry(UHRMS)provides molecular information of organic constituents in real time.Here we describe the development and application of an automatic measurement system that incorporates PM_(2.5)sampling,thermal desorption,atmospheric pressure photoionization,and UHRMS analysis.Molecular formulas of detected organic compounds were deducted from the accurate(±10 ppm)molecular weights obtained at a mass resolution of 100,000,allowing the identification of small organic compounds in PM_(2.5).Detection efficiencies of 28 standard compounds were determined and we found a high sensitivity and selectivity towards organic amines with limits of detection below 10 pg.As a proof of principle,PM_(2.5)samples collected off-line in winter in the urban area of Beijing were analyzed using the Ionization Module and HRMS of the system.The automatic system was then applied to conduct on-line measurements during the summer time at a time resolution of 2 hr.The detected organic compounds comprised mainly CHON and CHN compounds below 350 m/z.Pronounced seasonal variations in elemental composition were observed with shorter carbon backbones and higher O/C ratios in summer than that in winter.This result is consistent with stronger photochemical reactions and thus a higher oxidation state of organics in summer.Diurnal variation in signal intensity of each formula provides crucial information to reveal its source and formation pathway.In summary,the automatic measurement system serves as an important tool for the on-line characterization and identification of organic species in PM_(2.5).展开更多
On-line measurement for dielectric loss angle can effectively monitor the insulation condition of capacitive equipment in power systems. Synthetic relative measuring methods not only markedly overcome the shortcomings...On-line measurement for dielectric loss angle can effectively monitor the insulation condition of capacitive equipment in power systems. Synthetic relative measuring methods not only markedly overcome the shortcomings of traditional absolute measuring methods but also greatly improve the accuracy of dielectric loss angle measurement. However, synthetic relative measuring methods based on two or three pieces of capacitive equipment do not have the characteristic of generality. In this paper, a principle of synthetic relative measuring method is presented. The example of application for synthetic relative methods based on three and four pieces of capacitive equipment running in the same phase is taken to present the failure judgment matrices for N pieces of equipment. According to these matrices, the fault condition of N pieces of capacitive equipment can be watched, which is more general. Then some problems needing to be concerned along with two diagnostic methods used in diagnostic system are introduced. Finally, two programmable flow charts for the two methods are given and corresponding examples demonstrate their feasibility in practice.展开更多
A CAD-based inspection planning strategy for video measuring instrument is proposed to improve manufacturing effec- tiveness. The system consists of a video probe that enables itself to inspect a work piece based on a...A CAD-based inspection planning strategy for video measuring instrument is proposed to improve manufacturing effec- tiveness. The system consists of a video probe that enables itself to inspect a work piece based on a CAD model. The measurement software includes CAIP module and MDP module. The CAIP module is developed based on a CAD development platform whose kernel is the Open CASCADE. The entire system was tested, and relevant examples show that the system can accomplish automatic inspection planning task for common parts efficiently.展开更多
A new type of estimator is developed for the satellite formation to track and inspect on-orbit targets. The follower satellite in the formation works without relative sensors, and its target pointing commands are deri...A new type of estimator is developed for the satellite formation to track and inspect on-orbit targets. The follower satellite in the formation works without relative sensors, and its target pointing commands are derived based on relative orbital dynamics. The centralized estimator based on truth measurement is designed, however, this estimator is proved unstable because of the lack of necessary measurement information. After that, an alternative estimator based on pseudo measurement is designed, and its observability and controllability are analyzed to qualitatively evaluate the convergence performance. Finally, an on-orbit target inspection scenario is numerically simulated to verify the performance of the estimator based on pseudo measurement.展开更多
The laser powder bed fusion(L-PBF)method of additive manufacturing(AM)is increasingly used in various industrial manufacturing fields due to its high material utilization and design freedom of parts.However,the parts ...The laser powder bed fusion(L-PBF)method of additive manufacturing(AM)is increasingly used in various industrial manufacturing fields due to its high material utilization and design freedom of parts.However,the parts produced by L-PBF usually contain such defects as crack and porosity because of the technological characteristics of L-PBF,which affect the quality of the product.Laser ultrasonic testing(LUT)is a potential technology for on-line testing of the L-PBF process.It is a non-contact and non-destructive approach based on signals from abundant waveforms with a wide frequency-band.In this study,a method of LUT for on-line inspection of L-PBF process was proposed,and a system of LUT was established approaching the actual environment of on-line detection to evaluate the method applicability for defects detection of L-PBF parts.The detection results of near-surface defects in L-PBF 316L stainless steel parts show that the crack-type defects with a sub-millimeter level within 0.5 mm depth can be identified,and accordingly,the positions and dimensions information can be acquired.The results were verified by X-ray computed tomography,which indicates that the present method exhibits great potential for on-line inspection of AM processes.展开更多
Galloping of power transmission lines might bring about huge damage such as massive power outage and collapse of the transmission towers. To realize forecast of the galloping and provide data for study on the gallopin...Galloping of power transmission lines might bring about huge damage such as massive power outage and collapse of the transmission towers. To realize forecast of the galloping and provide data for study on the galloping mechanism, this paper proposes an online monitoring system for tracking galloping profile of power transmission lines based on wireless inertial measurement units (WIMUs). The system is composed of three modules: wireless inertial measurement nodes, monitoring base station, and remote monitoring station. After detailing the hardware system, the corresponding software which positions and displays galloping profile of the transmission line in real-time is outlined. The feasibility of the proposed on-line monitoring system is demonstrated through a series of experiments at the State Grid Key Laboratory of Power Overhead Transmission Line Galloping (Zhengzhou, China) by taking into account different vibration patterns.展开更多
Based on laser-scanned measuring technology, a met ho d of on-line dynamic non-contact measurement and feedback control of processin g dimension, i.e. the double edges laser-scanned large diameter on-line dynami c mea...Based on laser-scanned measuring technology, a met ho d of on-line dynamic non-contact measurement and feedback control of processin g dimension, i.e. the double edges laser-scanned large diameter on-line dynami c measurement and control system is presented, which can be used to measure diam eter in large-scale machine part processing. In this paper, the working princip le, overall structure and microcomputer real-time control and data processing s ystem of the system are discussed in detail, the method of double edges scanned large diameter dimension measurement and control is theoretically analyzed, its possibility has been verified by experiments of lathing large diameters machine parts by a vertical lathe. The system adopts the measuring scheme of double edge s laser-scanned combined with grating displacement measurement. The two edges c haracteristic information of the measured diameter is given by the double edges laser-scanned measuring system, the non-contact measurement of large diameter dimension is realized to combine with the grating displacement measuring systems . The main controller gives out feedback control signal by means of measured res ults, and controls advance and retreat of lathe tool by the servo-control syste m of a vertical lathe to realize on-line dynamic non-contact measurement and c ontrol in processing.展开更多
A methodology for CAD-directed measurement of freeform surface using a coordinate measuring machine equipped with a touch-trigger probe is presented, mainly including adaptive sampling of measurement points and regist...A methodology for CAD-directed measurement of freeform surface using a coordinate measuring machine equipped with a touch-trigger probe is presented, mainly including adaptive sampling of measurement points and registration of freeform surface. The proposed sampling method follows four steps: Freeform surface is fitted by bi-cubic B-spline; Curvedness measure of the surface is computed; Given a number of sampling points, an iterative algorithm is constructed for selecting a set of measurement points by employing the curvedness information; The measurement points is regularized for tradeoff between maximizing the measurement accuracy and minimizing the sampling time and cost. The aforesaid algorithm is demonstrated in term of a marine propeller blade. An offset surface registration method is presented to improve alignment accuracy of freeform objects, and Monte Carlo simulation is conducted to verify the effectiveness of the method.展开更多
The question of wastewater treatment and control is reflected from a very specific viewpoint: the low priority given to accurate and useful measurements within wastewater treatment. The matter is discussed from four v...The question of wastewater treatment and control is reflected from a very specific viewpoint: the low priority given to accurate and useful measurements within wastewater treatment. The matter is discussed from four various perspectives, that may be labelled “Legal understanding”;“Needs for accurate measurement results already in the planning and design stage”;“The measurement problem and human behaviour”;“The understanding of the short term and long term dynamics and changes in pollution and flow loads on a wastewater treatment plant (WWTP)”. All these aspects bring about much improved needs for an accurate and frequent measurement scheme both for pollutants and flows entering a WWTP. The conclusion is stated as follows: A far more and well elaborated on-line measurement system at the plants would become a needed tool for improved water environment protection at lower costs.展开更多
With the increase in the number and scale of tunnel projects in China in recent years,the comprehensive management for quality inspection and monitoring measurement in the tunnel construction process is receiving more...With the increase in the number and scale of tunnel projects in China in recent years,the comprehensive management for quality inspection and monitoring measurement in the tunnel construction process is receiving more and more attention.Based on this,this paper analyzes the comprehensive management of quality inspection and monitoring during tunnel construction to ensure the quality of tunnel construction.展开更多
High precision manufacturing, e.g. milling and grinding, which have manufacturing tolerances in the range of <10 μm require microscopic measurement techniques for the inspection of the manufactured components. The...High precision manufacturing, e.g. milling and grinding, which have manufacturing tolerances in the range of <10 μm require microscopic measurement techniques for the inspection of the manufactured components. These measurement techniques are very sensitive to cooling liquids and lubricants which are essential for many manufacturing processes. Therefore, the measurement of the components is usually conducted in separate and clean laboratories and not directly in the manufacturing machine. This approach has some major drawbacks, e.g. high time consumption and no possibility for online process monitoring. In this article, a novel concept for the integration of high precision optical topography measurement systems into the manufacturing machine is introduced and compared to other concepts. The introduced concept uses a reservoir with cooling liquid in which the measurement object is immersed during the measurement. Thereby, measurement disturbance by splashing cooling liquids and lubricants can effectively be avoided.展开更多
基金partially supported by the Natural Science Foundation of Shanghai(Grant No.22ZR1435200)the National Natural Science Foundation of China(Grant No.52075337)the Open Research Fund of State Key Laboratory of Digital Manufacturing and Equipment Technology,HUST(Grant No.DMETKF2022010)。
文摘Parts with high-quality freeform surfaces have been widely used in industries,which require strict quality control during the manufacturing process.Among all the industrial inspection methods,contact measurement with coordinate measuring machines or computer numerical control machine tool is a fundamental technique due to its high accuracy,robustness,and universality.In this paper,the existing research in the contact measurement field is systematically reviewed.First,different configurations of the measuring machines are introduced in detail,which may have influence on the corresponding sampling and inspection path generation criteria.Then,the entire inspection pipeline is divided into two stages,namely the pre-inspection and post-inspection stages.The typical methods of each sub-stage are systematically overviewed and classified,including sampling,accessibility analysis,inspection path generation,probe tip radius compensation,surface reconstruction,and uncertainty analysis.Apart from those classical research,the applications of the emerging deep learning technique in some specific tasks of measurement are introduced.Furthermore,some potential and promising trends are provided for future investigation.
文摘Although near infrared (NIR) spectroscopy has been evaluated for numerous applications, the number of actual on-line or even on-site industrial applications seems to be very limited. In the present paper, the attempts to produce online predictions of the chemical oxygen demand (COD) in wastewater from a pulp and paper mill using NIR spectroscopy are described. The task was perceived as very challenging, but with a root mean square error of prediction of 149 mg/l, roughly corresponding to 1/10 of the studied concentration interval, this attempt was deemed as successful. This result was obtained by using partial least squares model regression, interpolated reference values for calibration purposes, and by evenly distributing the calibration data in the concentration space. This work may also represent the first industrial application of online COD measurements in wastewater using NIR spectroscopy.
文摘On-line measurement of manufaturing quality of rolled steel needs the performances of noncontact, high-responds, high-resolution and high aceuracy. The reccntly developed hardware makes it possible. This paper gives a review of the development of this techniques and introduces four kinds of developed measurement systems. And the future development trends in this field was also discussed.
文摘In this paper,a method of multipoint pseudorandom combined excita-tion with the orthogonal reciprocal repeated sequences(ORRS)is presented on thebackground of the on-line identification of multivariate system.The capacity of therestraint to the identification error caused by the non-random D.C.drift of the mul-ti-input excitation with the ORRS in the multivariate system is also discussed.Thevalidity of the method described in this paper is proved by the modelling tests of themulti-plate rotor system.
文摘A new approach to the on-line temperature rise measurement of submersible pump's motors is presented. A new method of power supply and signed transmission for the measurement device in the pump well is also put forward here. The design and some experimental results are given.
基金Reactor Pressure Boundary Materials Project !under the Nuclear R & D Program by MOST in Korea.
文摘A portable microcomputer-controlled inspection system has been developed for detection of magnetic properties of soft magnetic materials. It incorporates custom designed software for control of the magnetic field during operation such as demagnetization, field sweeping, and for data logging and analysis. Results are recorded using a 12-bit analog to digital converter and are then stored on disk. The magnetic hysteresis loop and Barkhausen noise data can be converted into important magnetic parameters: coecivity, remanence, and hysteresis loss, Barkhausen amplitude, and Barkhausen noise energy. This system incorporated with the magnetostriction, and magnetoacoustic emission, is then related with the nondestructive detection of material degradation.
文摘Complex surface shape measurement has been a focus topic in the CAD/CAM field. A popular method for measuring dimensional information is using a 3D coordinate measuring machine (CMM)with a touch trigger probe. The measurement set up with CMM, however, is a time consuming task and the accuracy of the measurement deteriorates as the speed of measurement increase. Non-contact measurement is favored since high speed measurement can be achieved and problems with vibration and friction can be eliminated. Although much research has been conducted in non-contact measurement using image capturing and processing schemes, accuracy is poor and measurement is limited. Some optical technologies developed provide a good accuracy but the dynamic range and versatility is very limited. A novel fiber-optic sensor used for the inspection of complex internal contours is presented in this paper, which is able to measure a surface shape in a non-contact manner with high accuracy and high speed, and is compact and flexible to be incorporated into a CMM. Modulation functions for tilted surface shape measurement, based on the Gaussian distribution of the emitting beam from single-mode fiber (SMF), were derived for specular reflection. The feasibility of the proposed measurement principle was verified by simulations.
文摘Based on the theory of multi-body system (MBS), bine’s and huston’s methods are applied to an on-line measuring system of machining center in this paper. Through the study on modeling technique, the comprehensive model for errors calculation in an on-line measuring System of machining center have been built for the first time. Using this model, the errors can be compensated by soft.ware and the measuring accuracy can be enhanced without any more inveSt. This model can be used in all kinds of machining center.
基金supported by the National Natural Science Foundation of China(No.41805105)。
文摘On-line chemical characterization of atmospheric particulate matter(PM)with soft ionization technique and ultrahigh-resolution Mass Spectrometry(UHRMS)provides molecular information of organic constituents in real time.Here we describe the development and application of an automatic measurement system that incorporates PM_(2.5)sampling,thermal desorption,atmospheric pressure photoionization,and UHRMS analysis.Molecular formulas of detected organic compounds were deducted from the accurate(±10 ppm)molecular weights obtained at a mass resolution of 100,000,allowing the identification of small organic compounds in PM_(2.5).Detection efficiencies of 28 standard compounds were determined and we found a high sensitivity and selectivity towards organic amines with limits of detection below 10 pg.As a proof of principle,PM_(2.5)samples collected off-line in winter in the urban area of Beijing were analyzed using the Ionization Module and HRMS of the system.The automatic system was then applied to conduct on-line measurements during the summer time at a time resolution of 2 hr.The detected organic compounds comprised mainly CHON and CHN compounds below 350 m/z.Pronounced seasonal variations in elemental composition were observed with shorter carbon backbones and higher O/C ratios in summer than that in winter.This result is consistent with stronger photochemical reactions and thus a higher oxidation state of organics in summer.Diurnal variation in signal intensity of each formula provides crucial information to reveal its source and formation pathway.In summary,the automatic measurement system serves as an important tool for the on-line characterization and identification of organic species in PM_(2.5).
文摘On-line measurement for dielectric loss angle can effectively monitor the insulation condition of capacitive equipment in power systems. Synthetic relative measuring methods not only markedly overcome the shortcomings of traditional absolute measuring methods but also greatly improve the accuracy of dielectric loss angle measurement. However, synthetic relative measuring methods based on two or three pieces of capacitive equipment do not have the characteristic of generality. In this paper, a principle of synthetic relative measuring method is presented. The example of application for synthetic relative methods based on three and four pieces of capacitive equipment running in the same phase is taken to present the failure judgment matrices for N pieces of equipment. According to these matrices, the fault condition of N pieces of capacitive equipment can be watched, which is more general. Then some problems needing to be concerned along with two diagnostic methods used in diagnostic system are introduced. Finally, two programmable flow charts for the two methods are given and corresponding examples demonstrate their feasibility in practice.
基金Supported by the National Science & Technology Support Program of China (Grant No.2011BAK15B07)the National High Technology Research and Development Program of China (863 program) (No.2009AA04Z114)
文摘A CAD-based inspection planning strategy for video measuring instrument is proposed to improve manufacturing effec- tiveness. The system consists of a video probe that enables itself to inspect a work piece based on a CAD model. The measurement software includes CAIP module and MDP module. The CAIP module is developed based on a CAD development platform whose kernel is the Open CASCADE. The entire system was tested, and relevant examples show that the system can accomplish automatic inspection planning task for common parts efficiently.
基金supported by the National Natural Science Foundation of China (11102018)
文摘A new type of estimator is developed for the satellite formation to track and inspect on-orbit targets. The follower satellite in the formation works without relative sensors, and its target pointing commands are derived based on relative orbital dynamics. The centralized estimator based on truth measurement is designed, however, this estimator is proved unstable because of the lack of necessary measurement information. After that, an alternative estimator based on pseudo measurement is designed, and its observability and controllability are analyzed to qualitatively evaluate the convergence performance. Finally, an on-orbit target inspection scenario is numerically simulated to verify the performance of the estimator based on pseudo measurement.
基金the National Key R&D Program of China(Grant No.2018YFB1106100)。
文摘The laser powder bed fusion(L-PBF)method of additive manufacturing(AM)is increasingly used in various industrial manufacturing fields due to its high material utilization and design freedom of parts.However,the parts produced by L-PBF usually contain such defects as crack and porosity because of the technological characteristics of L-PBF,which affect the quality of the product.Laser ultrasonic testing(LUT)is a potential technology for on-line testing of the L-PBF process.It is a non-contact and non-destructive approach based on signals from abundant waveforms with a wide frequency-band.In this study,a method of LUT for on-line inspection of L-PBF process was proposed,and a system of LUT was established approaching the actual environment of on-line detection to evaluate the method applicability for defects detection of L-PBF parts.The detection results of near-surface defects in L-PBF 316L stainless steel parts show that the crack-type defects with a sub-millimeter level within 0.5 mm depth can be identified,and accordingly,the positions and dimensions information can be acquired.The results were verified by X-ray computed tomography,which indicates that the present method exhibits great potential for on-line inspection of AM processes.
文摘Galloping of power transmission lines might bring about huge damage such as massive power outage and collapse of the transmission towers. To realize forecast of the galloping and provide data for study on the galloping mechanism, this paper proposes an online monitoring system for tracking galloping profile of power transmission lines based on wireless inertial measurement units (WIMUs). The system is composed of three modules: wireless inertial measurement nodes, monitoring base station, and remote monitoring station. After detailing the hardware system, the corresponding software which positions and displays galloping profile of the transmission line in real-time is outlined. The feasibility of the proposed on-line monitoring system is demonstrated through a series of experiments at the State Grid Key Laboratory of Power Overhead Transmission Line Galloping (Zhengzhou, China) by taking into account different vibration patterns.
文摘Based on laser-scanned measuring technology, a met ho d of on-line dynamic non-contact measurement and feedback control of processin g dimension, i.e. the double edges laser-scanned large diameter on-line dynami c measurement and control system is presented, which can be used to measure diam eter in large-scale machine part processing. In this paper, the working princip le, overall structure and microcomputer real-time control and data processing s ystem of the system are discussed in detail, the method of double edges scanned large diameter dimension measurement and control is theoretically analyzed, its possibility has been verified by experiments of lathing large diameters machine parts by a vertical lathe. The system adopts the measuring scheme of double edge s laser-scanned combined with grating displacement measurement. The two edges c haracteristic information of the measured diameter is given by the double edges laser-scanned measuring system, the non-contact measurement of large diameter dimension is realized to combine with the grating displacement measuring systems . The main controller gives out feedback control signal by means of measured res ults, and controls advance and retreat of lathe tool by the servo-control syste m of a vertical lathe to realize on-line dynamic non-contact measurement and c ontrol in processing.
基金This project is supported by National Hi-tech Research and Development Program of China(863 Program, No.2002AA424012).
文摘A methodology for CAD-directed measurement of freeform surface using a coordinate measuring machine equipped with a touch-trigger probe is presented, mainly including adaptive sampling of measurement points and registration of freeform surface. The proposed sampling method follows four steps: Freeform surface is fitted by bi-cubic B-spline; Curvedness measure of the surface is computed; Given a number of sampling points, an iterative algorithm is constructed for selecting a set of measurement points by employing the curvedness information; The measurement points is regularized for tradeoff between maximizing the measurement accuracy and minimizing the sampling time and cost. The aforesaid algorithm is demonstrated in term of a marine propeller blade. An offset surface registration method is presented to improve alignment accuracy of freeform objects, and Monte Carlo simulation is conducted to verify the effectiveness of the method.
文摘The question of wastewater treatment and control is reflected from a very specific viewpoint: the low priority given to accurate and useful measurements within wastewater treatment. The matter is discussed from four various perspectives, that may be labelled “Legal understanding”;“Needs for accurate measurement results already in the planning and design stage”;“The measurement problem and human behaviour”;“The understanding of the short term and long term dynamics and changes in pollution and flow loads on a wastewater treatment plant (WWTP)”. All these aspects bring about much improved needs for an accurate and frequent measurement scheme both for pollutants and flows entering a WWTP. The conclusion is stated as follows: A far more and well elaborated on-line measurement system at the plants would become a needed tool for improved water environment protection at lower costs.
文摘With the increase in the number and scale of tunnel projects in China in recent years,the comprehensive management for quality inspection and monitoring measurement in the tunnel construction process is receiving more and more attention.Based on this,this paper analyzes the comprehensive management of quality inspection and monitoring during tunnel construction to ensure the quality of tunnel construction.
文摘High precision manufacturing, e.g. milling and grinding, which have manufacturing tolerances in the range of <10 μm require microscopic measurement techniques for the inspection of the manufactured components. These measurement techniques are very sensitive to cooling liquids and lubricants which are essential for many manufacturing processes. Therefore, the measurement of the components is usually conducted in separate and clean laboratories and not directly in the manufacturing machine. This approach has some major drawbacks, e.g. high time consumption and no possibility for online process monitoring. In this article, a novel concept for the integration of high precision optical topography measurement systems into the manufacturing machine is introduced and compared to other concepts. The introduced concept uses a reservoir with cooling liquid in which the measurement object is immersed during the measurement. Thereby, measurement disturbance by splashing cooling liquids and lubricants can effectively be avoided.