Defect inspection of specular curved surface is a challenging job. Taking steel balls for example, a new method based on reflected pattern integrity recognition is put forward. The specular steel ball surfac...Defect inspection of specular curved surface is a challenging job. Taking steel balls for example, a new method based on reflected pattern integrity recognition is put forward. The specular steel ball surface will totally reflect the patterns when it is placed inside a dome-shaped light source, whose inner wall is modified by patterns with certain regular. Distortion or intermittence of reflected pattern will occur at the defective part, which indicates the pattern has lost its integrity. Based on the integrity analysis of reflected pattern images? surface defects can be revealed. In this paper, a set of concentric circles are used as the pattern and an image processing algorithm is customized to extract the surface defects. Results show that the proposed method is effective for the specular curved surface defect inspection展开更多
In manufacture of precise optical products, it is important to inspect and classify the potential defects existing on the products’ surfaces after precise machining in order to obtain high quality in both functionali...In manufacture of precise optical products, it is important to inspect and classify the potential defects existing on the products’ surfaces after precise machining in order to obtain high quality in both functionality and aesthetics. The existing methods for detecting and classifying defects all are low accuracy or efficiency or high cost in inspection process. In this paper, a new inspection system based on machine vision has been introduced, which uses automatic focusing and image mosaic technologies to rapidly acquire distinct surface image, and employs Case-Based Reasoning(CBR)method in defects classification. A modificatory fuzzy similarity algorithm in CBR has been adopted for more quick and robust need of pattern recognition in practice inspection. Experiments show that the system can inspect surface diameter of 500mm in half an hour with resolving power of 0.8μm diameter according to digs or 0.5μm transverse width according to scratches. The proposed inspection principles and methods not only have meet manufacturing requirements of precise optical products, but also have great potential applications in other fields of precise surface inspection.展开更多
The traditional inspection methods are mostly based on manual inspection which is very likely to make erroneous judgments due to personal subjectivity or eye fatigue, and can't satisfy the accuracy. To overcome these...The traditional inspection methods are mostly based on manual inspection which is very likely to make erroneous judgments due to personal subjectivity or eye fatigue, and can't satisfy the accuracy. To overcome these difficulties, we develop a machine vision inspection system. We first compare several kinds of methods for feature extraction and classification, and then present a real-time automated visual inspection system for copper strips surface (CSS) defects based on compound moment invariants and support vector machine (SVM). The proposed method first processes images collected by hardware system, and then extracts feature characteristics based on grayscale characteristics and morphologic characteristics (Hu and Zernike compound moment invariants). Finally, we use SVM to classify the CSS defects. Furthermore, performance comparisons among SVM, back propagation (BP) and radial basis function (RBF) neural networks have been involved. Experimental results show that the proposed approach achieves an accuracy of 95.8% in detecting CSS defects.展开更多
An intelligent camera for surface defect inspection is presented which can pre-process the surface image of a rolled strip and pick defective areas out at a spead of 1 600 meters per minute. The camera is made up of a...An intelligent camera for surface defect inspection is presented which can pre-process the surface image of a rolled strip and pick defective areas out at a spead of 1 600 meters per minute. The camera is made up of a high speed line CCD, a 60 Mb/s CCD digitizer with correlated double sampling function, and a field programmable gate array(FPGA), which can quickly distinguish defective areas using a perceptron embedded in FPGA thus the data to be further processed would dramatically be reduced. Some experiments show that the camera can meet high producing speed, and reduce cost and complexity of automation surface inspection systems.展开更多
The detection and classification of real-time surface defects play an important role in automotive sheet inspection and production. In this paper, an automatic surface inspection system (ASIS) based on signal proces...The detection and classification of real-time surface defects play an important role in automotive sheet inspection and production. In this paper, an automatic surface inspection system (ASIS) based on signal processing in Baosteel NO. 4 cold-rolled plant is briefly presented. We demonstrate that the strip surface defect properties such as image, type, pitch, and position can be accurately calculated and classified by the automatic surface inspection system. In the manufacturing of the high-quality cold-rolled strips, it is necessary that the real-time surface defects can be detected and transferred by the automatic surface inspection system combined with annealing lines and recoiling lines.展开更多
In this paper, an automatic inspection system for weld surface appearance using machine vision has been developed to recognize weld surface defects such as porosities, cracks, etc. It can replace conventional manual v...In this paper, an automatic inspection system for weld surface appearance using machine vision has been developed to recognize weld surface defects such as porosities, cracks, etc. It can replace conventional manual visual inspection method, which is tedious, time-consuming, subjective, experience-depended, and sometimes biased. The system consists of a CCD camera, a self-designed annular light source, a sensor controller, a frame grabbing card, a computer and so on. After acquiring weld surface appearance images using CCD, the images are preprocessed using median filtering and a series of image enhancement algorithms. Then a dynamic threshold and morphology algorithms are applied to segment defect object. Finally, defect features information is obtained by eight neighborhoods boundary chain code algorithm. Experimental results show that the developed system is capable of inspecting most surface defects such as porosities, cracks with high reliability and accuracy.展开更多
Surface quality has been one of the key factors influencing the ongoing improvement of the quality of steel. Therefore,it is urgent to provide methods for efficient supervision of surface defects. This paper first exp...Surface quality has been one of the key factors influencing the ongoing improvement of the quality of steel. Therefore,it is urgent to provide methods for efficient supervision of surface defects. This paper first expressed the main problems existing in defect management and then focused on constructing a data platform of surface defect management using a multidimensional database. Finally, some onqine applications of the platform at Baosteel were demonstrated. Results show that the constructed multidimensional database provides more structured defect data, and thus it is suitable for swift and multi-angle analysis of the defect data.展开更多
基金Tianjin Research Program of Application Foundation and Advanced Technology(No.14JCYBJC18600,No.14JCZDJC39700)National Key Scientific Instrument and Equipment Development Project(No.2013YQ17053903)
文摘Defect inspection of specular curved surface is a challenging job. Taking steel balls for example, a new method based on reflected pattern integrity recognition is put forward. The specular steel ball surface will totally reflect the patterns when it is placed inside a dome-shaped light source, whose inner wall is modified by patterns with certain regular. Distortion or intermittence of reflected pattern will occur at the defective part, which indicates the pattern has lost its integrity. Based on the integrity analysis of reflected pattern images? surface defects can be revealed. In this paper, a set of concentric circles are used as the pattern and an image processing algorithm is customized to extract the surface defects. Results show that the proposed method is effective for the specular curved surface defect inspection
文摘In manufacture of precise optical products, it is important to inspect and classify the potential defects existing on the products’ surfaces after precise machining in order to obtain high quality in both functionality and aesthetics. The existing methods for detecting and classifying defects all are low accuracy or efficiency or high cost in inspection process. In this paper, a new inspection system based on machine vision has been introduced, which uses automatic focusing and image mosaic technologies to rapidly acquire distinct surface image, and employs Case-Based Reasoning(CBR)method in defects classification. A modificatory fuzzy similarity algorithm in CBR has been adopted for more quick and robust need of pattern recognition in practice inspection. Experiments show that the system can inspect surface diameter of 500mm in half an hour with resolving power of 0.8μm diameter according to digs or 0.5μm transverse width according to scratches. The proposed inspection principles and methods not only have meet manufacturing requirements of precise optical products, but also have great potential applications in other fields of precise surface inspection.
基金Supported by the National Natural Science Foundation of China (No. 60872096) and the Fundamental Research Funds for the Central Universities (No. 2009B31914).
文摘The traditional inspection methods are mostly based on manual inspection which is very likely to make erroneous judgments due to personal subjectivity or eye fatigue, and can't satisfy the accuracy. To overcome these difficulties, we develop a machine vision inspection system. We first compare several kinds of methods for feature extraction and classification, and then present a real-time automated visual inspection system for copper strips surface (CSS) defects based on compound moment invariants and support vector machine (SVM). The proposed method first processes images collected by hardware system, and then extracts feature characteristics based on grayscale characteristics and morphologic characteristics (Hu and Zernike compound moment invariants). Finally, we use SVM to classify the CSS defects. Furthermore, performance comparisons among SVM, back propagation (BP) and radial basis function (RBF) neural networks have been involved. Experimental results show that the proposed approach achieves an accuracy of 95.8% in detecting CSS defects.
文摘An intelligent camera for surface defect inspection is presented which can pre-process the surface image of a rolled strip and pick defective areas out at a spead of 1 600 meters per minute. The camera is made up of a high speed line CCD, a 60 Mb/s CCD digitizer with correlated double sampling function, and a field programmable gate array(FPGA), which can quickly distinguish defective areas using a perceptron embedded in FPGA thus the data to be further processed would dramatically be reduced. Some experiments show that the camera can meet high producing speed, and reduce cost and complexity of automation surface inspection systems.
文摘The detection and classification of real-time surface defects play an important role in automotive sheet inspection and production. In this paper, an automatic surface inspection system (ASIS) based on signal processing in Baosteel NO. 4 cold-rolled plant is briefly presented. We demonstrate that the strip surface defect properties such as image, type, pitch, and position can be accurately calculated and classified by the automatic surface inspection system. In the manufacturing of the high-quality cold-rolled strips, it is necessary that the real-time surface defects can be detected and transferred by the automatic surface inspection system combined with annealing lines and recoiling lines.
文摘In this paper, an automatic inspection system for weld surface appearance using machine vision has been developed to recognize weld surface defects such as porosities, cracks, etc. It can replace conventional manual visual inspection method, which is tedious, time-consuming, subjective, experience-depended, and sometimes biased. The system consists of a CCD camera, a self-designed annular light source, a sensor controller, a frame grabbing card, a computer and so on. After acquiring weld surface appearance images using CCD, the images are preprocessed using median filtering and a series of image enhancement algorithms. Then a dynamic threshold and morphology algorithms are applied to segment defect object. Finally, defect features information is obtained by eight neighborhoods boundary chain code algorithm. Experimental results show that the developed system is capable of inspecting most surface defects such as porosities, cracks with high reliability and accuracy.
文摘Surface quality has been one of the key factors influencing the ongoing improvement of the quality of steel. Therefore,it is urgent to provide methods for efficient supervision of surface defects. This paper first expressed the main problems existing in defect management and then focused on constructing a data platform of surface defect management using a multidimensional database. Finally, some onqine applications of the platform at Baosteel were demonstrated. Results show that the constructed multidimensional database provides more structured defect data, and thus it is suitable for swift and multi-angle analysis of the defect data.