期刊文献+
共找到375篇文章
< 1 2 19 >
每页显示 20 50 100
Comprehensive Overview on Computational Intelligence Techniques for Machinery Condition Monitoring and Fault Diagnosis 被引量:18
1
作者 Wan Zhang Min-Ping Jia +1 位作者 Lin Zhu Xiao-An Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第4期782-795,共14页
Computational intelligence is one of the most powerful data processing tools to solve complex nonlinear problems, and thus plays a significant role in intelligent fault diagnosis and prediction. However, only few com-... Computational intelligence is one of the most powerful data processing tools to solve complex nonlinear problems, and thus plays a significant role in intelligent fault diagnosis and prediction. However, only few com- prehensive reviews have summarized the ongoing efforts of computational intelligence in machinery condition moni- toring and fault diagnosis. The recent research and devel- opment of computational intelligence techniques in fault diagnosis, prediction and optimal sensor placement are reviewed. The advantages and limitations of computational intelligence techniques in practical applications are dis- cussed. The characteristics of different algorithms are compared, and application situations of these methods are summarized. Computational intelligence methods need to be further studied in deep understanding algorithm mech- anism, improving algorithm efficiency and enhancing engineering application. This review may be considered as a useful guidance for researchers in selecting a suit- able method for a specific situation and pointing out potential research directions. 展开更多
关键词 Computational intelligence Machinerycondition monitoring Fault diagnosis Neural networkFuzzy logic Support vector machine - Evolutionaryalgorithms
下载PDF
On-line Batch Process Monitoring and Diagnosing Based on Fisher Discriminant Analysis
2
作者 赵旭 邵惠鹤 《Journal of Shanghai Jiaotong university(Science)》 EI 2006年第3期307-312,316,共7页
A new on-line batch process monitoring and diagnosing approach based on Fisher discriminant analysis (FDA) was proposed. This method does not need to predict the future observations of variables, so it is more sensi... A new on-line batch process monitoring and diagnosing approach based on Fisher discriminant analysis (FDA) was proposed. This method does not need to predict the future observations of variables, so it is more sensitive to fault detection and stronger implement for monitoring. In order to improve the monitoring performance, the variables trajectories of batch process are separated into several blocks. The key to the proposed approach for on-line monitoring is to calculate the distance of block data that project to low-dimension Fisher space between new batch and reference batch. Comparing the distance with the predefine threshold, it can be considered whether the batch process is normal or abnormal. Fault diagnosis is performed based on the weights in fault direction calculated by FDA. The proposed method was applied to the simulation model of fed-batch penicillin fermentation and the resuits were compared with those obtained using MPCA. The simulation results clearly show that the on-line monitoring method based on FDA is more efficient than the MPCA. 展开更多
关键词 batch process on-line process monitoring fault diagnosis Fisher discriminant analysis (FDA) multiway principal component analysis (MPCA)
下载PDF
Multi-Sensor Intelligent System for On-Line and Real-Time Moneitoring Tool Cutting State in FMS 被引量:1
3
作者 徐春广 王信义 +1 位作者 邢济收 杨大勇 《Journal of Beijing Institute of Technology》 EI CAS 1997年第3期258-266,共9页
The principle and the constitution of an intelligent system for on-line and real-time montitoring tool cutting state were discussed and a synthetic sensors schedule combined a new type fluid acoustic emission sens... The principle and the constitution of an intelligent system for on-line and real-time montitoring tool cutting state were discussed and a synthetic sensors schedule combined a new type fluid acoustic emission sensor (AE) with motor current sensor was presented. The parallel communication between control system of machine tools, the monitoring intelligent system,and several decision-making systems for identifying tool cutting state was established It can auto - matically select the sensor way ,monitoring mode and identifying method in machining process- ing so as to build a successful and effective intelligent system for on -line and real-time moni- toring cutting tool states in FMS. 展开更多
关键词 tool cutting state on-line monitoring intelligent system acoustic emission sensor
下载PDF
Challenges and Opportunities of AI-Enabled Monitoring, Diagnosis & Prognosis: A Review 被引量:11
4
作者 Zhibin Zhao Jingyao Wu +3 位作者 Tianfu Li Chuang Sun Ruqiang Yan Xuefeng Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期3-31,共29页
Prognostics and Health Management(PHM),including monitoring,diagnosis,prognosis,and health management,occupies an increasingly important position in reducing costly breakdowns and avoiding catastrophic accidents in mo... Prognostics and Health Management(PHM),including monitoring,diagnosis,prognosis,and health management,occupies an increasingly important position in reducing costly breakdowns and avoiding catastrophic accidents in modern industry.With the development of artificial intelligence(AI),especially deep learning(DL)approaches,the application of AI-enabled methods to monitor,diagnose and predict potential equipment malfunctions has gone through tremendous progress with verified success in both academia and industry.However,there is still a gap to cover monitoring,diagnosis,and prognosis based on AI-enabled methods,simultaneously,and the importance of an open source community,including open source datasets and codes,has not been fully emphasized.To fill this gap,this paper provides a systematic overview of the current development,common technologies,open source datasets,codes,and challenges of AI-enabled PHM methods from three aspects of monitoring,diagnosis,and prognosis. 展开更多
关键词 monitoring diagnosis PROGNOSIS PHM Artificial intelligence Deep learning
下载PDF
An intelligent singular value diagnostic method for concrete dam deformation monitoring 被引量:4
5
作者 Jie Yang Xu-dong Qu Meng Chang 《Water Science and Engineering》 EI CAS CSCD 2019年第3期205-212,共8页
Extracting implicit anomaly information through deformation monitoring data mining is highly significant to determining dam safety status.As an intelligent singular value diagnostic method for concrete dam deformation... Extracting implicit anomaly information through deformation monitoring data mining is highly significant to determining dam safety status.As an intelligent singular value diagnostic method for concrete dam deformation monitoring, shallow neural network models result in local optima and overfitting, and require manual feature extraction.To obtain an intelligent singular value diagnosis model that can be used for dam safety monitoring, a convolutional neural network (CNN) model that has advantages of deep learning (DL), such as automatic feature extraction, good model fitting, and strong generalizability, was trained in this study.An engineering example shows that the predicted result of the intelligent singular value diagnostic method based on CNN is highly compatible with the confusion matrix, with a precision of 92.41%, receiver operating characteristic (ROC) coordinates of (0.03, 0.97), an area-under-curve (AUC) value of 0.99, and an F1-score of 0.91.Moreover, the performance of the CNN model is better than those of models based on decision tree (DT) and k-nearest neighbor (KNN) methods.Therefore, the intelligent singular value diagnostic method based on CNN is simple to operate, highly intelligent, and highly reliable, and it has a high potential for application in engineering. 展开更多
关键词 SINGULAR VALUE diagnosis Convolutional NEURAL network Artificial intelligENCE DEFORMATION monitoring Concrete DAM
下载PDF
CONDITION MONITORING AND FAULT DIAGNOSIS FOR TENSION UNBALANCE OF ROPES IN MULTI-ROPE FRICTION WINDER
6
作者 杨兆建 王勤贤 任芳 《Journal of Coal Science & Engineering(China)》 1997年第1期69-73,共5页
This paper analyzes the reasons of the tension unbalance of the ropes in multi-rope fric-tion winder, introduces the method of an on-line monitoring rope tensions with a testing device de-veloped by authors, and propo... This paper analyzes the reasons of the tension unbalance of the ropes in multi-rope fric-tion winder, introduces the method of an on-line monitoring rope tensions with a testing device de-veloped by authors, and proposes the criteria of the fault diagnosis and the method of adjustment for the tension unbalance of the ropes, which is important to the theoretical study on the tension unbalance of the ropes and the maintenance of multi-rope winder. 展开更多
关键词 on-line monitoring fault diagnosis rope tension multi-rope friction winder
下载PDF
COMPARISON OF NO-LINE MONITORING AND FAULT DIAGNOSIS FOR HOISTER BRAKE SYSTEM
7
作者 任芳 杨兆建 王世文 《Journal of Coal Science & Engineering(China)》 1999年第2期73-76,共4页
This paper puts forward the LPM fault diagnosis method in the view of the important purpose of on-line monitoring and fault diagnosis for hoister brake system. The feasibility of the two diagnosis methods are proved i... This paper puts forward the LPM fault diagnosis method in the view of the important purpose of on-line monitoring and fault diagnosis for hoister brake system. The feasibility of the two diagnosis methods are proved in theories; two methods are proved about feasibility and reliability through testing. Two methods are manifestoed that they can undertake the on-line monitoring and fault diagnosis for hoister brake system with satisfied effect. 展开更多
关键词 brake system fault diagnosis on-line monitoring
全文增补中
A Novel Krill Herd Based Random Forest Algorithm for Monitoring Patient Health
8
作者 Md.Moddassir Alam Md Mottahir Alam +5 位作者 Muhammad Moinuddin Mohammad Tauheed Ahmad Jabir Hakami Anis Ahmad Chaudhary Asif Irshad Khan Tauheed Khan Mohd 《Computers, Materials & Continua》 SCIE EI 2023年第5期4553-4571,共19页
Artificial Intelligence(AI)is finding increasing application in healthcare monitoring.Machine learning systems are utilized for monitoring patient health through the use of IoT sensor,which keep track of the physiolog... Artificial Intelligence(AI)is finding increasing application in healthcare monitoring.Machine learning systems are utilized for monitoring patient health through the use of IoT sensor,which keep track of the physiological state by way of various health data.Thus,early detection of any disease or derangement can aid doctors in saving patients’lives.However,there are some challenges associated with predicting health status using the common algorithms,such as time requirements,chances of errors,and improper classification.We propose an Artificial Krill Herd based on the Random Forest(AKHRF)technique for monitoring patients’health and eliciting an optimal prescription based on their health status.To begin with,various patient datasets were collected and trained into the system using IoT sensors.As a result,the framework developed includes four processes:preprocessing,feature extraction,classification,and result visibility.Additionally,preprocessing removes errors,noise,and missing values from the dataset,whereas feature extraction extracts the relevant information.Then,in the classification layer,we updated the fitness function of the krill herd to classify the patient’s health status and also generate a prescription.We found that the results fromthe proposed framework are comparable to the results from other state-of-the-art techniques in terms of sensitivity,specificity,Area under the Curve(AUC),accuracy,precision,recall,and F-measure. 展开更多
关键词 Healthcare system health monitoring clinical decision support internet of things artificial intelligence machine learning diagnosis
下载PDF
Intelligent Information Management in Aquaponics to Increase Mutual Benefits
9
作者 Divas Karimanzira Cai Na +1 位作者 Mu Hong Yaoguang Wei 《Intelligent Information Management》 2021年第1期50-69,共20页
Aquaponics are feedback and two player systems, in which fish and crops mutually benefit from one another and, therefore require close monitoring, management and control. Vast amount of data and information flow from ... Aquaponics are feedback and two player systems, in which fish and crops mutually benefit from one another and, therefore require close monitoring, management and control. Vast amount of data and information flow from the aquaponics plant itself with its huge amount of smart sensors for water quality, fish and plant growth, system state etc. and from the stakeholder, e.g., farmers, retailers and end consumers. The intelligent management of aquaponics is only possible if this data and information are managed and used in an intelligent way. Therefore, the main focus of this paper is to introduce an intelligent information management (IIM) for aquaponics. It will be shown how the information can be used to create services such as predictive analytics, system optimization and anomaly detection to improve the aquaponics system. The results show that the system enabled full traceability and transparency in the aquaponics processes (customers can follow what is going on at the farm), reduced water and energy use and increased revenue through early fault detection. In this, paper the information management approach will be introduced and the key benefits of the digitized aquaponics system will be given. 展开更多
关键词 intelligent Information Management Double Recirculation Aquaponic System DIGITIZATION monitoring and Remote diagnosis System Optimization
下载PDF
Smart gas sensor arrays powered by artificial intelligence 被引量:5
10
作者 Zhesi Chen Zhuo Chen +2 位作者 Zhilong Song Wenhao Ye Zhiyong Fan 《Journal of Semiconductors》 EI CAS CSCD 2019年第11期3-12,共10页
Mobile robots behaving as humans should possess multifunctional flexible sensing systems including vision,hearing,touch,smell,and taste.A gas sensor array(GSA),also known as electronic nose,is a possible solution for ... Mobile robots behaving as humans should possess multifunctional flexible sensing systems including vision,hearing,touch,smell,and taste.A gas sensor array(GSA),also known as electronic nose,is a possible solution for a robotic olfactory system that can detect and discriminate a wide variety of gas molecules.Artificial intelligence(AI)applied to an electronic nose involves a diverse set of machine learning algorithms which can generate a smell print by analyzing the signal pattern from the GSA.A combination of GSA and AI algorithms can empower intelligent robots with great capabilities in many areas such as environmental monitoring,gas leakage detection,food and beverage production and storage,and especially disease diagnosis through detection of different types and concentrations of target gases with the advantages of portability,low-powerconsumption and ease-of-operation.It is exciting to envisage robots equipped with a"nose"acting as family doctor who will guard every family member's health and keep their home safe.In this review,we give a summary of the state-of the-art research progress in the fabrication techniques for GSAs and typical algorithms employed in artificial olfactory systems,exploring their potential applications in disease diagnosis,environmental monitoring,and explosive detection.We also discuss the key limitations of gas sensor units and their possible solutions.Finally,we present the outlook of GSAs over the horizon of smart homes and cities. 展开更多
关键词 mobile ROBOTS gas sensor array electronic NOSE artificial intelligENCE ENVIRONMENTAL monitoring DISEASE diagnosis
下载PDF
Research progress and prospects of intelligent technology in underground mining of hard rock mines
11
作者 Xiaobo Liu Xingfan Zhang +8 位作者 Liancheng Wang Fuming Qu Anlin Shao Lingyu Zhao Huaiyuan Wang Xingtong Yue Yizhuo Li Wenzhen Yan Jiang He 《Green and Smart Mining Engineering》 2024年第1期12-26,共15页
Minerals are the material foundation for advancing human civilization,the starting point of the manufacturing supply chain,and strategic resources essential for national security and economic progress.In recent years,... Minerals are the material foundation for advancing human civilization,the starting point of the manufacturing supply chain,and strategic resources essential for national security and economic progress.In recent years,deep learning and big data have strongly supported improving mining efficiency and safety in underground hard rock mines.Against this backdrop,this paper focuses on the production processes and vital auxiliary aspects of underground mining in hard rock mines.It delves into six aspects:driling,blasting,transportation,hoisting,ventilation,and support and flling.The paper elaborates on the latest advancements in intelligent technology research for each aspect and provides a summary and outlook on the key technologies relevant to these processes.Research results show that the current intelligent technology used in underground mining not only improves production efficiency but also further improves the safety production level of mining enterprises.To achieve intelligent unmanned mining,bottleneck problems in each primary process must be further addressed. 展开更多
关键词 Hard rock mines Underground mining intelligent mining intelligent sensing Fault diagnosis Smart monitoring
原文传递
基于多物理量集成的智能轴承监测系统 被引量:1
12
作者 张志鑫 牛青波 +2 位作者 杨明奇 高大为 朱永生 《轴承》 北大核心 2024年第4期55-63,共9页
针对国内现有智能轴承技术监测信息单一,智能化程度低的问题,以发展可工业应用的智能轴承为目标,研究了多物理量集成的智能轴承监测技术。通过充分考虑轴承工作及状态特点,设计了振动、温度、转速、声音等多物理量信息高度集成监测的智... 针对国内现有智能轴承技术监测信息单一,智能化程度低的问题,以发展可工业应用的智能轴承为目标,研究了多物理量集成的智能轴承监测技术。通过充分考虑轴承工作及状态特点,设计了振动、温度、转速、声音等多物理量信息高度集成监测的智能轴承单元;根据智能轴承监测系统的功能,将其划分为供电模块、数据采集模块、最小系统、存储发送模块并进行相关模块的设计;设计开发上位机软件对监测系统采集的信号进行分析,实现对多套智能轴承监测信息的集中管理和处理;最后通过试验验证了所开发的智能轴承监测系统监测多物理量信息的有效性。 展开更多
关键词 滚动轴承 智能化系统 监测系统 信息融合 故障诊断
下载PDF
基于“5G+AI”技术的远程心电监测系统研究 被引量:1
13
作者 代文娟 冀峰 《中国现代医生》 2024年第7期94-96,共3页
为解决心血管疾病防控的难题,提高心血管疾病预防、诊断及治疗的时效性和精准性,基于5G通信和人工智能技术,搭建一个远程心电监测系统,包括患者心电数据采集和自动识别、医生远程诊疗等功能。此监测系统可远程不间断地实时采集并识别分... 为解决心血管疾病防控的难题,提高心血管疾病预防、诊断及治疗的时效性和精准性,基于5G通信和人工智能技术,搭建一个远程心电监测系统,包括患者心电数据采集和自动识别、医生远程诊疗等功能。此监测系统可远程不间断地实时采集并识别分析患者的心电数据,并将识别结果、结论反馈给医生和患者,为患者及时就医和医生诊疗提供意见和建议。该系统在心脏病患者的管理、突发心脏事件监测和早期心脏疾病筛查等方面具有一定的实用价值。 展开更多
关键词 心电监测 5G 人工智能 远程实时监测 自动诊断
下载PDF
智能化技术在电气设备监控与故障诊断中的应用探究 被引量:4
14
作者 刘永豹 田宇 王婷 《时代汽车》 2024年第7期148-150,共3页
本文研究了智能化技术在电气设备监控与故障诊断中的应用。首先介绍了智能化技术的定义和发展,探讨了其在电气设备领域的应用前景。随后详细分析了电气设备监控技术的原理和方法,以及故障诊断技术的特点和优势。接着针对智能化技术在电... 本文研究了智能化技术在电气设备监控与故障诊断中的应用。首先介绍了智能化技术的定义和发展,探讨了其在电气设备领域的应用前景。随后详细分析了电气设备监控技术的原理和方法,以及故障诊断技术的特点和优势。接着针对智能化技术在电气设备中的具体应用案例,包括智能化高压开关柜监控与故障诊断技术、智能化变压器状态诊断与检修技术、智能化电缆线路状态检测与维护技术进行了深入探讨。最后,对智能化技术在电气设备监控与故障诊断中的挑战与展望进行了分析,提出了技术挑战解决方案、成本和效益分析、未来发展趋势等建议。通过这项研究,我们得出了智能化技术在电气设备监控与故障诊断中的重要意义和潜在机遇,为相关领域的研究和实践提供了有益的启示。 展开更多
关键词 智能化技术 电气设备 监控 故障诊断 探究
下载PDF
电力变压器异常故障智能声纹监测与诊断系统研究及应用 被引量:2
15
作者 余金龙 《科技创新与应用》 2024年第8期149-152,共4页
如何提高电力变压器运行潜伏性异常故障监测,并且变压器运行不受干扰,是目前电力行业亟待解决的重要问题之一。提出电力变压器异常故障智能声纹监测与诊断系统的研究与应用,通过对电力变压器各种故障声音发声机理分析、混合声音采集与... 如何提高电力变压器运行潜伏性异常故障监测,并且变压器运行不受干扰,是目前电力行业亟待解决的重要问题之一。提出电力变压器异常故障智能声纹监测与诊断系统的研究与应用,通过对电力变压器各种故障声音发声机理分析、混合声音采集与分离、声音信号特征提取和故障类型识别的研究,结合独立分量分析算法、小波包能量分布向量和梅尔对数频谱、BP神经网络算法等人工智能技术的运用,在不影响变压器正常运行下对其进行监测,实现对变压器运行健康状态展示与告警,及时发现变压器异常故障,消除变压器隐患,保障变压器安全稳定运行,减少经济损失,对电力系统发展具有重要意义。 展开更多
关键词 变压器异常故障 声纹监测技术 智能诊断 声纹采集 监测算法
下载PDF
基于BIM的智能运维管理监控系统设计与实现
16
作者 宋博 彭炜杰 陈韶 《计算机应用与软件》 北大核心 2024年第4期28-33,共6页
为切实提升生产设备的信息化和智能化水平、提高生产效率和故障诊断能力,设计一套基于BIM的智能运维管理监控系统。系统将多源传感器数据融合,结合BIM技术进行展示,并引入基于专家经验转化的故障诊断技术。该系统已保障某场站安全运行生... 为切实提升生产设备的信息化和智能化水平、提高生产效率和故障诊断能力,设计一套基于BIM的智能运维管理监控系统。系统将多源传感器数据融合,结合BIM技术进行展示,并引入基于专家经验转化的故障诊断技术。该系统已保障某场站安全运行生产200余天,达到很好的预期。同时,系统产生160 GB原始监测数据和专家经验标定结果,为后续引入基于机器学习的故障诊断方法提供原始训练数据支持。 展开更多
关键词 BIM 智能运维管理 故障诊断 分布式消息队列 IETM
下载PDF
阀冷主泵状态监测与故障诊断技术研究 被引量:1
17
作者 耿要强 姚睿 +1 位作者 付兵非 杨慧霞 《自动化仪表》 CAS 2024年第6期99-103,110,共6页
为了进一步提高电网设备运维管理的支撑能力,建设了阀冷设备智能运维平台,研究了阀冷主泵状态监测与故障诊断技术。介绍了设备状态信号的准确获取技术。给出了能够反映主泵振动特性的测点。阐述了振动传感器的选型。通过对获取的振动信... 为了进一步提高电网设备运维管理的支撑能力,建设了阀冷设备智能运维平台,研究了阀冷主泵状态监测与故障诊断技术。介绍了设备状态信号的准确获取技术。给出了能够反映主泵振动特性的测点。阐述了振动传感器的选型。通过对获取的振动信号进行时域和频域分析,得出主泵运行过程中振动超标形成的机理以及造成振动超标的原因。评估振动过程对泵系统中各部件造成的损伤,进而采取针对性措施减轻主泵运行过程中的振动,为阀冷主泵的维护和保养提供建议。研究了阀冷主泵在启停过程中的性能评估方法,提出了在瞬态工况下有效的数据采集处理方法。该研究实现了对阀冷设备状态的智能监测预警与故障诊断,对提高电网精益化管理水平、推动智能电网技术进步具有重要意义。 展开更多
关键词 阀冷系统 主泵 状态监测 故障诊断 振动 智能运维
下载PDF
多绳摩擦式提升机天轮智能监测系统研究应用 被引量:1
18
作者 赵艳鹏 《当代化工研究》 CAS 2024年第7期114-116,共3页
本研究针对多绳摩擦式提升机天轮的实时在线监测与故障诊断需求,设计并实现了一套智能监测系统。该系统采用应变式变送器、振动传感器和温度传感器进行状态监测,并通过网络技术实现数据的远程传输和处理。通过LabVIEW和MATLAB平台,系统... 本研究针对多绳摩擦式提升机天轮的实时在线监测与故障诊断需求,设计并实现了一套智能监测系统。该系统采用应变式变送器、振动传感器和温度传感器进行状态监测,并通过网络技术实现数据的远程传输和处理。通过LabVIEW和MATLAB平台,系统能够进行数据的实时显示、存储、查询与预处理,并利用智能算法进行特征提取与状态识别。系统在实验台架和现场应用中均表现出良好的监测精度和故障检测能力,有效降低了设备的故障率和维修费用,显著提升了运行可靠性和安全性。该智能监测系统的成功应用展示了其在国内领先、国际先进的技术水平,为工矿企业装备智能化提供了有力支持。 展开更多
关键词 智能监测系统 多绳摩擦式提升机 故障诊断 状态监测
下载PDF
智能化变电站监测与故障诊断系统的设计与优化分析 被引量:3
19
作者 贾毓彦 贾飞 《集成电路应用》 2024年第1期292-293,共2页
阐述智能化变电站监测与故障诊断技术和应用案例,提出设计方案,包括系统架构设计与功能模块划分、数据采集与传输技术、数据处理与故障诊断算法设计,并进行系统性能优化和实验验证。
关键词 智能变电站监测 故障诊断 设计优化
下载PDF
变压器状态评估及故障诊断研究综述 被引量:3
20
作者 梁栋 朱建华 +1 位作者 张翠 康诗奇 《变压器》 2024年第2期35-43,共9页
电力变压器状态评估及故障诊断为设备安全稳定运行提供了重要保障。在电力大数据广泛应用的背景下,智能电网结构快速构建,电力设备状态数据呈现出数量大、类型多等特征,因而变压器状态评估及故障诊断算法由阈值判断法逐步过渡为机器学... 电力变压器状态评估及故障诊断为设备安全稳定运行提供了重要保障。在电力大数据广泛应用的背景下,智能电网结构快速构建,电力设备状态数据呈现出数量大、类型多等特征,因而变压器状态评估及故障诊断算法由阈值判断法逐步过渡为机器学习等算法。本文作者总结了近年来国内外变压器监测研究中采用的方法;概述了变压器状态评估和故障诊断领域的研究现状,介绍了常用算法相关原理,包括模糊理论法、集对分析法、传统机器学习算法、预测算法和深度机器学习算法等;分析了目前该领域亟需解决的问题,并对未来研究方向进行了展望。 展开更多
关键词 电力变压器 人工智能 状态监测 状态评估 故障诊断
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部