期刊文献+
共找到11,356篇文章
< 1 2 250 >
每页显示 20 50 100
The influences of canopy temperature measuring on the derived crop water stress index
1
作者 WANG Hongxi LI Fei +4 位作者 SHEN Hongtao LI Mengyu YIN Gongchao FANG Qin SHAO Liwei 《中国生态农业学报(中英文)》 CAS CSCD 北大核心 2024年第9期1503-1519,共17页
Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the... Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the influences of atmospheric conditions,settled height,view angle of infrared thermography,and investigating time of temperature measuring on the performance of the CWSI.Three irrigation treatments were used to create different soil water conditions during the 2020-2021 and 2021-2022 winter wheat-growing seasons.The CWSI was calculated using the CWSI-E(an empirical approach)and CWSI-T(a theoretical approach)based on the T_(c).Weather conditions were recorded continuously throughout the experimental period.The results showed that atmospheric conditions influenced the estimation of the CWSI;when the vapor pressure deficit(VPD)was>2000 Pa,the estimated CWSI was related to soil water conditions.The height of the installed infrared thermograph influenced the T_(c)values,and the differences among the T_(c)values measured at height of 3,5,and 10 m was smaller in the afternoon than in the morning.However,the lens of the thermometer facing south recorded a higher T_(c)than those facing east or north,especially at a low height,indicating that the direction of the thermometer had a significant influence on T_(c).There was a large variation in CWSI derived at different times of the day,and the midday measurements(12:00-15:00)were the most reliable for estimating CWSI.Negative linear relationships were found between the transpiration rate and CWSI-E(R^(2)of 0.3646-0.5725)and CWSI-T(R^(2)of 0.5407-0.7213).The relations between fraction of available soil water(FASW)with CWSI-T was higher than that with CWSI-E,indicating CWSI-T was more accurate for predicting crop water status.In addition,The R^(2)between CWSI-T and FASW at 14:00 was higher than that at other times,indicating that 14:00 was the optimal time for using the CWSI for crop water status monitoring.Relative higher yield of winter wheat was obtained with average seasonal values of CWSI-E and CWSI-T around 0.23 and 0.25-0.26,respectively.The CWSI-E values were more easily influenced by meteorological factors and the timing of the measurements,and using the theoretical approach to derive the CWSI was recommended for precise irrigation water management. 展开更多
关键词 Canopy temperature measuring time measuring height and direction Crop water stress index
下载PDF
Deep learning-assisted common temperature measurement based on visible light imaging
2
作者 朱佳仪 何志民 +8 位作者 黄成 曾峻 林惠川 陈福昌 余超群 李燕 张永涛 陈焕庭 蒲继雄 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期230-236,共7页
Real-time,contact-free temperature monitoring of low to medium range(30℃-150℃)has been extensively used in industry and agriculture,which is usually realized by costly infrared temperature detection methods.This pap... Real-time,contact-free temperature monitoring of low to medium range(30℃-150℃)has been extensively used in industry and agriculture,which is usually realized by costly infrared temperature detection methods.This paper proposes an alternative approach of extracting temperature information in real time from the visible light images of the monitoring target using a convolutional neural network(CNN).A mean-square error of<1.119℃was reached in the temperature measurements of low to medium range using the CNN and the visible light images.Imaging angle and imaging distance do not affect the temperature detection using visible optical images by the CNN.Moreover,the CNN has a certain illuminance generalization ability capable of detection temperature information from the images which were collected under different illuminance and were not used for training.Compared to the conventional machine learning algorithms mentioned in the recent literatures,this real-time,contact-free temperature measurement approach that does not require any further image processing operations facilitates temperature monitoring applications in the industrial and civil fields. 展开更多
关键词 convolutional neural network visible light image temperature measurement low-to-medium-range temperatures
下载PDF
Design of weak current measurement system and research on temperature impact
3
作者 Chu-Xiang Zhao San-Gang Li +8 位作者 Rong-Rong Su Li Yang Ming-Zhe Liu Qing-Yue Xue Shan Liao Zhi Zhou Qing-Shan Tan Xian-Guo Tuo Yi Cheng 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第4期46-56,共11页
A dedicated weak current measurement system was designed to measure the weak currents generated by the neutron ionization chamber.This system incorporates a second-order low-pass filter circuit and the Kalman filterin... A dedicated weak current measurement system was designed to measure the weak currents generated by the neutron ionization chamber.This system incorporates a second-order low-pass filter circuit and the Kalman filtering algorithm to effectively filter out noise and minimize interference in the measurement results.Testing conducted under normal temperature conditions has demonstrated the system's high precision performance.However,it was observed that temperature variations can affect the measurement performance.Data were collected across temperatures ranging from -20 to 70℃,and a temperature correction model was established through linear regression fitting to address this issue.The feasibility of the temperature correction model was confirmed at temperatures of -5 and 40℃,where relative errors remained below 0.1% after applying the temperature correction.The research indicates that the designed measurement system exhibits excellent temperature adaptability and high precision,making it particularly suitable for measuring weak currents. 展开更多
关键词 Weak current measurement system Neutron ionization chamber Kalman filter algorithm temperature correction model
下载PDF
Data-driven methods for predicting the representative temperature of bridge cable based on limited measured data
4
作者 WANG Fen DAI Gong-lian +2 位作者 HE Chang-lin GE Hao RAO Hui-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3168-3186,共19页
Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and mai... Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and maintenance of cable-stayed bridges.However,the representative temperatures of stayed cables are not specified in the existing design codes.To address this issue,this study investigates the distribution of the cable temperature and determinates its representative temperature.First,an experimental investigation,spanning over a period of one year,was carried out near the bridge site to obtain the temperature data.According to the statistical analysis of the measured data,it reveals that the temperature distribution is generally uniform along the cable cross-section without significant temperature gradient.Then,based on the limited data,the Monte Carlo,the gradient boosted regression trees(GBRT),and univariate linear regression(ULR)methods are employed to predict the cable’s representative temperature throughout the service life.These methods effectively overcome the limitations of insufficient monitoring data and accurately predict the representative temperature of the cables.However,each method has its own advantages and limitations in terms of applicability and accuracy.A comprehensive evaluation of the performance of these methods is conducted,and practical recommendations are provided for their application.The proposed methods and representative temperatures provide a good basis for the operation and maintenance of in-service long-span cable-stayed bridges. 展开更多
关键词 cable-stayed bridges representative temperature gradient boosted regression trees(GBRT)method field test limited measured data
下载PDF
On-line Temperature Rise Measurement of Submersible Motors
5
作者 王凤昌 刘宝廷 +1 位作者 宋黎明 姜思杰 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1995年第1期47-49,共3页
A new approach to the on-line temperature rise measurement of submersible pump's motors is presented. A new method of power supply and signed transmission for the measurement device in the pump well is also put fo... A new approach to the on-line temperature rise measurement of submersible pump's motors is presented. A new method of power supply and signed transmission for the measurement device in the pump well is also put forward here. The design and some experimental results are given. 展开更多
关键词 ss: SUBMERSIBLE MOTOR temperature RISE on-line measurement
下载PDF
Multipoint Infrared Telemetry System for Measuring the Piston Temperature in Internal Combustion Engines 被引量:5
6
作者 刘金祥 魏春源 +1 位作者 张卫正 郭良平 《Journal of Beijing Institute of Technology》 EI CAS 2002年第4期346-349,共4页
A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into correspon... A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into corresponding voltage signal by the thermo-couple first. Then after the V/F stage, the voltage signal is converted into the frequency signal to drive the infrared light-emitting diode to transmit infrared pulses. At the receiver end, a photosensitive audion receives the infrared pulses. After conversion, the voltage recorded by the receiver stands for the magnitude of temperature at the measuring point. Test results of the system indicate that the system is practical and the system can perform multipoint looping temperature measurements for the piston. 展开更多
关键词 PISTON temperature measurement infrared telemetry
下载PDF
Spatial pattern recognition for near-surface high temperature increases in mountain areas using MODIS and SRTM DEM
7
作者 WANG Yanxia YANG Lisha +1 位作者 HUANG Xiaoyuan ZHOU Ruliang 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2025-2042,共18页
Abrupt near-surface temperature changes in mountainous areas are a special component of the mountain climate system.Fast and accurate measurements of the locations,intensity,and width of the near-surface changes are n... Abrupt near-surface temperature changes in mountainous areas are a special component of the mountain climate system.Fast and accurate measurements of the locations,intensity,and width of the near-surface changes are necessary but highly difficult due to the complicated environmental conditions and instrumental issues.This paper develops a spatial pattern recognition method to measure the near-surface high temperature increase(NSHTI),one of the lesser-attended changes.First,raster window measurement was proposed to calculate the temperature lapse rate using MODIS land surface temperature and SRTM DEM data.It fully considers the terrain heights of two neighboring cells on opposite or adjacent slopes with a moving window of 3×3 cell size.Second,a threshold selection was performed to identify the NSHTI cells using a threshold of-0.65℃/100 m.Then,the NSHTI strips were parameterized through raster vectorization and spatial analysis.Taking Yunnan,a mountainous province in southwestern China,as the study area,the results indicate that the NSHTI cells concentrate in a strip-like pattern along the mountains and valleys,and the strips are almost parallel to the altitude contours with a slight northward uplift.Also,they are located mostly at a 3/5 height of high mountains or within 400 m from the valley floors,where the controlling topographic index is the altitude of the terrain trend surface but not the absolute elevation and the topographic uplift height and cutting depth.Additionally,the NSHTI intensity varies with the geographic locations and the proportions increase with an exponential trend,and the horizontal width has a mean of about 1000 m and a maximum of over 5000 m.The result demonstrates that the proposed method can effectively recognize NSHTI boundaries over mountains,providing support for the modeling of weather and climate systems and the development of mountain resources. 展开更多
关键词 High temperature increase Mountain areas MODIS Spatial pattern recognition Raster window measurement Threshold selection
下载PDF
Experimental investigation for temperature and emissivity by flame emission spectrum in a cavity of rocket based combined cycle combustor chamber
8
作者 Weiguang Cai Shu Zheng +4 位作者 Yan Wang Bing Liu Shaohua Zhu Li Zhao Qiang Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期114-122,共9页
Flame temperature and spectral emissivity were the important parameters characterizing the sufficient degree of fuel combustion and the particle radiative characteristics in the Rocket Based Combined Cycle(RBCC)combus... Flame temperature and spectral emissivity were the important parameters characterizing the sufficient degree of fuel combustion and the particle radiative characteristics in the Rocket Based Combined Cycle(RBCC)combustor.To investigate the combustion characteristics of the complex supersonic flame in the RBCC combustor,a new radiation thermometry combined with Levenberg-Marquardt(LM)algorithm and the least squares method was proposed to measure the temperature,emissivity and spectral radiative properties based on the flame emission spectrum.In-situ measurements of the flame temperature,emissivity and spectral radiative properties were carried out in the RBCC direct-connected test bench with laser-induced plasma combustion enhancement(LIPCE)and without LIPCE.The flame average temperatures at fuel global equivalence ratio(a)of 1.0b and 0.6 with LIPCE were 4.51%and 2.08%higher than those without LIPCE.The flame combustion oscillation of kerosene tended to be stable in the recirculation zone of cavity with the thermal and chemical effects of laser induced plasma.The differences of flame temperature at a=1.0b and 0.6 were 503 K and 523 K with LIPCE,which were 20.07%and42.64%lower than those without LIPCE.The flame emissivity with methane assisted ignition was 80.46%lower than that without methane assisted ignition,due to the carbon-hydrogen ratio of kerosene was higher than that of methane.The spectral emissivities at 600 nm with LIPCE were 1.25%,22.2%,and 4.22%lower than those without LIPCE at a=1.0a(with methane assisted ignition),1.0b(without methane assisted ignition)and 0.6.The effect of concentration in the emissivity was removed by normalization to analyze the flame radiative properties in the RBCC combustor chamber.The maximum differences of flame normalized emissivity were 50.91%without LIPCE and 27.53%with LIPCE.The flame radiative properties were stabilized under the thermal and chemical effects of laser induced plasma at a=0.6. 展开更多
关键词 Rocket-based combined-cycle Supersonic combustion Flame temperature measurement EMISSIVITY Laser induced plasma combustion enhancement
下载PDF
In situ temperature measurement of vapor based on atomic speed selection
9
作者 于露 曹俐 +2 位作者 岳子骞 李林 翟跃阳 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期189-192,共4页
We demonstrate an experimental method for the in situ temperature measurement of atomic vapor using the saturated absorption spectrum. By separately manipulating the frequency of the pump and probe beams, the position... We demonstrate an experimental method for the in situ temperature measurement of atomic vapor using the saturated absorption spectrum. By separately manipulating the frequency of the pump and probe beams, the position of the crossover peaks can move along the spectrum. Different velocity classes of atoms contribute to the crossover during the movement. We study the relationship between the intensity change of peaks and vapor temperature. Our experimental result around room temperature shows a deviation of less than 0.3 K. Compared with traditional thermometry using absorption spectroscopy, higher accuracy can theoretically be achieved with real-time thermometry. 展开更多
关键词 temperature measurement saturated absorption spectrum Doppler broadening atomic velocity distribution
下载PDF
Revamping design of an EAF automatic temperature measurement and sampling robot
10
作者 JIN Guoping WEI Zhenhong DONG Yiming 《Baosteel Technical Research》 CAS 2023年第3期32-39,共8页
The function,features,and architecture of a robot that performs automatic temperature measurement and sampling applied on a 150-t AC electric arc furnace(EAF)production line of Baosteel were presented,and the key poin... The function,features,and architecture of a robot that performs automatic temperature measurement and sampling applied on a 150-t AC electric arc furnace(EAF)production line of Baosteel were presented,and the key points of design and revamping experience on the site layout,device protection,lance tool,probe container,measuring position control,and system safety were summarized.Furthermore,a valuable reference for the application of automatic temperature measuring and sampling robots in EAF steelmaking plants will be provided. 展开更多
关键词 ROBOT electric arc furnace(EAF) temperature measuring sampling
下载PDF
Self-heating Probe Instrument and Method for Measuring High Temperature Melting Volume Change Rate of Material 被引量:2
11
作者 WANG Junwei WANG Zhiping +1 位作者 LU Yang CHENG Bo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第2期371-376,共6页
The castings defects are affected by the melting volume change rate of material. The change rate has an important effect on running safety of the high temperature thermal storage chamber, too. But the characteristics ... The castings defects are affected by the melting volume change rate of material. The change rate has an important effect on running safety of the high temperature thermal storage chamber, too. But the characteristics of existing measuring installations are complex structure, troublesome operation and low precision. In order to measure the melting volume change rate of material accurately and conveniently, a self-designed measuring instrument, self-heating probe instrument, and measuring method are described. Temperature in heating cavity is controlled by PID temperature controller; melting volume change rate υ and molten density are calculated based on the melt volume which is measured by the instrument. Positive and negative υ represent expansion and shrinkage of the sample volume after melting, respectively. Taking eutectic LiF+CaF2 for example, its melting volume change rate and melting density at 1 123 K are -20.6% and 2 651 kg/m–3 measured by this instrument, which is only 0.71% smaller than literature value. Density and melting volume change rate of industry pure aluminum at 973 K and analysis pure NaCl at 1 123 K are detected by the instrument too. The measure results are agreed with report values. Measuring error sources are analyzed and several improving measures are proposed. In theory, the measuring errors of the change rate and molten density which are measured by the self-designed instrument is nearly 1/20-1/50 of that measured by the refitted mandril thermal expansion instrument. The self-designed instrument and method have the advantages of simple structure, being easy to operate, extensive applicability for material, relatively high accuracy, and most importantly, temperature and sample vapor pressure have little effect on the measurement accuracy. The presented instrument and method solve the problems of complicated structure and procedures, and large measuring errors for the samples with high vapor pressure by existing installations. 展开更多
关键词 high temperature volume expansion rate molten density measuring instrument measuring method
下载PDF
Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage 被引量:2
12
作者 Qinyu Wang Xinglin Tong +3 位作者 Cui Zhang Chengwei Deng Siyu Xu Jingchuang Wei 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第8期410-417,共8页
Electrical sensing systems, such as those involving eutectic salt, are mostly used in connection to leakage from existing airborne high-temperature air-conducting pipelines. Such complex structured systems are suscept... Electrical sensing systems, such as those involving eutectic salt, are mostly used in connection to leakage from existing airborne high-temperature air-conducting pipelines. Such complex structured systems are susceptible to external interferences and, thus, cannot meet the increasingly strict monitoring needs of a complex air-conducting pipeline system of an aircraft. In view of this point, this paper studies an alternative sensor system based on a dense array fiber grating. To obtain a compact and light-weight airborne signal processing system, a field programmable gate array is used as the main control core that controls the output of the light source. The functions of pulse modulation, analog-to-digital conversion,data buffering and transmission are integrated into a single system, while the linear sensing monitoring is obtained by detecting the time-division and wavelength-division wavelength drift signals of the fiber Bragg grating array. Our experiments show that the spatial resolution of the linear sensing system approaches 5 cm, the temperature measurement accuracy reaches 2 ℃, the temperature measurement range is between 0–250 ℃, and the response time is within 4 s. Compared with the existing electrical monitoring systems, various monitoring indicators have been greatly improved and have broad application prospects. 展开更多
关键词 gating array quasi-distributed measurement temperature monitoring prague grating MINIATURIZATION
下载PDF
A Study on Comprehensive Modeling for Errors in on-line Measuring System of Machining Center 被引量:1
13
作者 Liu Libing Zhang Qing(Tianjin University, Tianjin (300072) P. R. of ChinaZap Hongmei Yun Jintian)(Hebei University Of Technology, Tianjin (300130) P. R. of China) 《河北工业大学学报》 CAS 1997年第A01期14-22,共9页
Based on the theory of multi-body system (MBS), bine’s and huston’s methods are applied to an on-line measuring system of machining center in this paper. Through the study on modeling technique, the comprehensive mo... Based on the theory of multi-body system (MBS), bine’s and huston’s methods are applied to an on-line measuring system of machining center in this paper. Through the study on modeling technique, the comprehensive model for errors calculation in an on-line measuring System of machining center have been built for the first time. Using this model, the errors can be compensated by soft.ware and the measuring accuracy can be enhanced without any more inveSt. This model can be used in all kinds of machining center. 展开更多
关键词 MACHINING CENTER on-line measuring Multi-Body System (MBS) Model
下载PDF
Infrared radiation method for measuring ice segregation temperature of artificially frozen soils 被引量:3
14
作者 Zhou Guoqing Zhang Qi +1 位作者 Xu Zhiwei Zhou Yang 《International Journal of Mining Science and Technology》 2012年第1期35-40,共6页
In order to study the evolution of the freezing fringe and final lenses of frost susceptible soils and advance the understanding of frost heave and mechanism of frost heave control, we used an open one-dimensional fro... In order to study the evolution of the freezing fringe and final lenses of frost susceptible soils and advance the understanding of frost heave and mechanism of frost heave control, we used an open one-dimensional frost heave test system of infrared radiation technology, instead of a traditional thermistor method. Temperatures of the freezing fringe and segregated ice were measured in a non-contact mode. The results show that accurate and precise temperatures of ice segregation can be obtained by infrared thermal imaging systems. A self-developed inversion program inverted the temperature field of frozen soils. Based on our analysis of temperature variation in segregated ice and our study of the relationship between temperature and rate of ice segregation in cooling and warming processes during intermittent freezing, the mechanism of decreasing frost heave of frozen soils by controlling the growth of final lenses with an intermittent freezing mode, can be explained properly. 展开更多
关键词 One-dimensional freezing Final lens Ice segregation temperature measurement Infrared radiation method
下载PDF
The Method for Measuring the Loop Resistance and the Temperature Rise Calculation of GIS Conductor Pole 被引量:1
15
作者 Li Zhou Tiecheng Lu Bo Zhang 《Journal of Power and Energy Engineering》 2015年第4期306-312,共7页
This paper studies the method for measuring the loop resistance of GIS conductor pole based on the super capacitor producing impulse current up to several thousand amperes. This method overcomes the limitations of con... This paper studies the method for measuring the loop resistance of GIS conductor pole based on the super capacitor producing impulse current up to several thousand amperes. This method overcomes the limitations of conventional diagnostic method. Typical GIS conductor poles are chosen. Based on FEA and lab tests, the effect of different forms of current and contact condition, relationship between the temperature of contact and the loop resistance is researched. In full- scale testing under realistic operating conditions on the new 220 kV GIS using prototype instrumentation a very good sensitivity in an early stage was obtained. 展开更多
关键词 The METHOD for measuring the Loop Resistance and the temperature RISE CALCULATION of GIS Conductor POLE
下载PDF
Measuring Technology of Temperature Based Transformer Internal on FBG Sensors 被引量:6
16
作者 LIU Jun CHEN Wei-gen +2 位作者 ZHAO Jian-bao LIANG Ya-feng ZHAO Xin 《高电压技术》 EI CAS CSCD 北大核心 2009年第3期539-543,共5页
关键词 电力变压器 温度 传感器 测量方法
下载PDF
Temperature Effects on the Electrical Performance of Large Area Multicrystalline Silicon Solar Cells Using the Current Shunt Measuring Technique 被引量:1
17
作者 Hala Mohamed Abdel Mageed Ahmed Faheem Zobaa +2 位作者 Mohamed Helmy Abdel Raouf Abla Hosni Abd El-Rahman Mohamed Mamdouh Abdel Aziz 《Engineering(科研)》 2010年第11期888-894,共7页
The temperature effects on the electrical performance of a large area multicrystalline silicon solar cell with back-contact technology have been studied in a desert area under ambient conditions using the current shun... The temperature effects on the electrical performance of a large area multicrystalline silicon solar cell with back-contact technology have been studied in a desert area under ambient conditions using the current shunt measuring technique. Therefore, most of the problems encountered with traditional measuring techniques are avoided. The temperature dependency of the current shunt from 5oC up to 50oC has been investigated. Its temperature coefficient proves to be negligible which means that the temperature dependency of the solar cell is completely independent of the current shunt. The solar module installed in a tilted position at the optimum angle of the location, has been tested in two different seasons (winter and summer). The obtained solar cell short circuit current, open circuit voltage and output power are correlated with the measured incident radiation in both seasons and all results are discussed. 展开更多
关键词 Large Area MULTICRYSTALLINE Silicon Solar Cell CURRENT SHUNT measuring Technique temperature Effects SHORT CIRCUIT CURRENT Open CIRCUIT Voltage Accumulated Power INCIDENT Radiation
下载PDF
Research on key techniques of expendable conductivity temperature depth measuring system 被引量:5
18
作者 CHEN Guangyuan DU Libin +3 位作者 HE Haijing LEI Zhuo ZHANG Qisheng WU Chengxuan 《Instrumentation》 2015年第2期18-27,共10页
This paper analysis the developing of expendable conductivity temperature depth measuring system(XCTD)and introduce its principle of measuring about temperature,salinity and depth of ocean.Some key techniques are put ... This paper analysis the developing of expendable conductivity temperature depth measuring system(XCTD)and introduce its principle of measuring about temperature,salinity and depth of ocean.Some key techniques are put forward.According to the real needs of XCTD,conductivity sensor with high sensitivity is designed by principle of electromagnetic induce,the ocean conductivity from induced electromotive force has been calculated.Adding temperature correction circuit would help to reduce error of conductivity measurement because of sharply changing temperature.Advanced temperature measuring circuit of high precision and the constant current source is used to weaken effect of self-heating of resistance and fluctuation of the source.On respect of remote data transmission,LVDS is a good choice for the purpose of guarantee the quality of data transmitted and the transmission distance is reaching to thousand meters in the seawater.Modular programming method is also brought into this research aimed at improve the stability,reliability and maintainability of the whole measuring system.In February,2015,the trials in South China Sea demonstrate that the developed XCTD realize effective measurement at a speed of 6 knots and detection depth at 800 m.The consistency coefficient of the acquired data is greater than 0.99 and the success rate of probe launching is above 90%. 展开更多
关键词 expendable device XCTD conductivity sensor high precision temperature measuring circuit remote data transmission
下载PDF
Analysis and Application of the Synthetic Relative Measuring Method in On-Line Monitoring for Capacitive Equipment in Power Systems
19
作者 Qing Guo Li-Jun Qin Hua-Wei Jin 《Journal of Electronic Science and Technology》 CAS 2011年第3期270-277,共8页
On-line measurement for dielectric loss angle can effectively monitor the insulation condition of capacitive equipment in power systems. Synthetic relative measuring methods not only markedly overcome the shortcomings... On-line measurement for dielectric loss angle can effectively monitor the insulation condition of capacitive equipment in power systems. Synthetic relative measuring methods not only markedly overcome the shortcomings of traditional absolute measuring methods but also greatly improve the accuracy of dielectric loss angle measurement. However, synthetic relative measuring methods based on two or three pieces of capacitive equipment do not have the characteristic of generality. In this paper, a principle of synthetic relative measuring method is presented. The example of application for synthetic relative methods based on three and four pieces of capacitive equipment running in the same phase is taken to present the failure judgment matrices for N pieces of equipment. According to these matrices, the fault condition of N pieces of capacitive equipment can be watched, which is more general. Then some problems needing to be concerned along with two diagnostic methods used in diagnostic system are introduced. Finally, two programmable flow charts for the two methods are given and corresponding examples demonstrate their feasibility in practice. 展开更多
关键词 Index Terms-Capacitive equipment dielectric loss angle on-line monitoring synthetic relative measuring method failure judgment matrix.
下载PDF
Influence of Temperature on the Measuring Accuracy of Devices Based on Surface Plasmon Resonance Phenomenon
20
作者 Hanna V. Dorozinska Tatyana A. Turu +2 位作者 Olga M. Markina Glib V. Dorozinsky Volodymyr P. Maslov 《Modern Instrumentation》 2018年第1期1-10,共10页
The main reasons for the occurrence of temperature error and perspective directions of decreasing of its value are presented by improving the device design based on the phenomenon of surface plasmon resonance (SPR) an... The main reasons for the occurrence of temperature error and perspective directions of decreasing of its value are presented by improving the device design based on the phenomenon of surface plasmon resonance (SPR) and numerical methods of processing the results of measurements by this device. The most essential influence on changes in results of measurements can be rendered by temperature changes in the analyte refractive index. It is shown that the application of the integrated temperature stabilization of the device with the test substance, and numerical processing of the measurement results for compensation of temperature changes of the test substance and the use of film heaters it is possible to reduce the measurement error of the refractive index of the analyte at least 30 times from 2.4 × 10-4 to 7.6 × 10-6. 展开更多
关键词 Surface PLASMON RESONANCE temperature FACTOR measuring ACCURACY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部