Porous α-Fe2O3 was synthesized by a simple hydrothermal treatment of FeC13 aqueous solution followed by a calcination process. In the synthesis of porous α-Fe2O3, no templates or pore-directing agents were used. The...Porous α-Fe2O3 was synthesized by a simple hydrothermal treatment of FeC13 aqueous solution followed by a calcination process. In the synthesis of porous α-Fe2O3, no templates or pore-directing agents were used. The as-prepared porous α-Fe2O3 was further employed as a support for loading Pt nanoparticles. The gas sensing performance of the obtained porous α-Fe2O3-supported Pt to VOCs was investigated. The sensor presented a high response and fast response-recovery characteristic to several VOCs including acetone, ether, methanol, ethanol, butanol and hexanol. Meanwhile, it exhibited a much higher response than the pure α-Fe2O3 at the operating temperature of 260 ℃. The enhanced sensing properties may be related to the unique porous structure of the α-Fe2O3 support and the promoting effect of active Pt nanoparticles for the sensing reactions.展开更多
Polyaniline (PANI) was prepared by the chemical oxidative polymerization of aniline, and ZnO, with the mean particle size of 28 nm, was synthesized by a non-aqueous solvent method. The organic-inorganic PANI/ZnO hyb...Polyaniline (PANI) was prepared by the chemical oxidative polymerization of aniline, and ZnO, with the mean particle size of 28 nm, was synthesized by a non-aqueous solvent method. The organic-inorganic PANI/ZnO hybrids with different mass fractions of PANI were obtained by mechanically mixing the prepared PANI and ZnO. The gas sensing properties of PANI/ZnO hybrids to different volatile organic compounds (VOCs) including methanol, ethanol and acetone were investigated at a low operating temperature of 90°C. Compared with the pure PANI and ZnO, the PANI/ZnO hybrids presented much higher response to VOCs. Meanwhile, the PANI/ZnO hybrid exhibited a good reversibility and a short response-recovery time, implying its potential application for gas sensors. The sensing mechanism was suggested to be related to the existence of p-n heterojunctions in the PANI/ZnO hybrids.展开更多
Real-time and on-line monitoring volatile organic compounds(VOCs) are valuable for real-time evalua- ting air quality and monitoring the key source of pollution. A self-developed proton transfer reaction-mass spectr...Real-time and on-line monitoring volatile organic compounds(VOCs) are valuable for real-time evalua- ting air quality and monitoring the key source of pollution. A self-developed proton transfer reaction-mass spectro- meter(PTR-MS) was constructed and applied to on-line monitoring trace VOCs in ambient air in Hefei, China. With the help of a self-developed catalytic converter, the background signal of the instrument was detected and the stability of the instrument was evaluated. The relative standard deviation of signal at m/z 21 was only 0.74% and the detection limit of PTR-MS was 97 part per trillion(97x 10-12, volume ratio). As a case of the air monitoring in Hefei, the am- bient air at Dongpu reservoir spot was on-line monitored for 13 d with our self-developed PTR-MS. Meanwhile, a solid-phase micro-extraction(SPME) technique coupled to gas chromatography-mass spectrometry/mass spectrometry (GC-MS/MS) was also used for the off-line detection of the air. The results show that our self-developed PTR-MS can be used for the on-line and long-term monitoring of VOCs in air at part per trillion level, and the change trend of VOCs concentration monitored with PTR-MS was consistent with that detected with the conventional SPME-GC-MS. This self-developed PTR-MS can fully satisfy the requirements of air quality monitoring and real-time monitoring of the key pollution sources.展开更多
Multifunctional devices are of great interest for integration and miniaturization on the same platform, but simple addition of functionalities would lead to excessively large devices. Here, the photodetection and chem...Multifunctional devices are of great interest for integration and miniaturization on the same platform, but simple addition of functionalities would lead to excessively large devices. Here, the photodetection and chemical sensing device is developed based on two-dimensional(2D) glassygraphene that meets similar property requirements for the two functionalities. An appropriate bandgap arising from the distorted lattice structure enables glassy graphene to exhibit comparable or even improved photodetection and chemical sensing capability, compared with pristine graphene. Due to strong interactions between glassy graphene and the ambient atmosphere, the devices are less sensitive to photoinduced desorption than the ones based on graphene. Consequently,the few-layer glassy graphene device delivers positive photoresponse, with a responsivity of 0.22 A W^(-1) and specific detectivity reaching ~10^(10) Jones under 405 nm illumination.Moreover, the intrinsic defects and strain in glassy graphene can enhance the adsorption of analytes, leading to high chemical sensing performance. Specifically, the extracted signalto-noise-ratio of the glassy graphene device for detecting acetone is 48, representing more than 50% improvement over the device based on graphene. Additionally, bias-voltage-and thickness-dependent volatile organic compound(VOC) sensing features are identified, indicating the few-layer glassy graphene is more sensitive. This study successfully demonstrates the potential of glassy graphene for integrated photodetection and chemical sensing, providing a promising solution for multifunctional applications further beyond.展开更多
基金supported by the National Natural Science Foundation of China (No. 20871071)the Science and Technology Commission Foundation of Tianjin (Nos. 09JCYBJC03600 and 10JCYBJC03900)
文摘Porous α-Fe2O3 was synthesized by a simple hydrothermal treatment of FeC13 aqueous solution followed by a calcination process. In the synthesis of porous α-Fe2O3, no templates or pore-directing agents were used. The as-prepared porous α-Fe2O3 was further employed as a support for loading Pt nanoparticles. The gas sensing performance of the obtained porous α-Fe2O3-supported Pt to VOCs was investigated. The sensor presented a high response and fast response-recovery characteristic to several VOCs including acetone, ether, methanol, ethanol, butanol and hexanol. Meanwhile, it exhibited a much higher response than the pure α-Fe2O3 at the operating temperature of 260 ℃. The enhanced sensing properties may be related to the unique porous structure of the α-Fe2O3 support and the promoting effect of active Pt nanoparticles for the sensing reactions.
基金financially supported by the National Natural Science Foundation of China(No.21171099)Science and Technology Commission Foundation of Tianjin(Nos.09JCYBJC03600 and 10JCYBJC03900)
文摘Polyaniline (PANI) was prepared by the chemical oxidative polymerization of aniline, and ZnO, with the mean particle size of 28 nm, was synthesized by a non-aqueous solvent method. The organic-inorganic PANI/ZnO hybrids with different mass fractions of PANI were obtained by mechanically mixing the prepared PANI and ZnO. The gas sensing properties of PANI/ZnO hybrids to different volatile organic compounds (VOCs) including methanol, ethanol and acetone were investigated at a low operating temperature of 90°C. Compared with the pure PANI and ZnO, the PANI/ZnO hybrids presented much higher response to VOCs. Meanwhile, the PANI/ZnO hybrid exhibited a good reversibility and a short response-recovery time, implying its potential application for gas sensors. The sensing mechanism was suggested to be related to the existence of p-n heterojunctions in the PANI/ZnO hybrids.
基金Supported by the National Natural Science Foundation of China(Nos.21477132, 21577145), the National Key Technology Research and Development Program of China(No.2015BAI01B04), the National Key Research Program of China (No.2016YFC0200200), the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology of China(No.2014FXCX007) and the Functional Development Program of Instrument and Equipment in Chinese Academy of Sciences.
文摘Real-time and on-line monitoring volatile organic compounds(VOCs) are valuable for real-time evalua- ting air quality and monitoring the key source of pollution. A self-developed proton transfer reaction-mass spectro- meter(PTR-MS) was constructed and applied to on-line monitoring trace VOCs in ambient air in Hefei, China. With the help of a self-developed catalytic converter, the background signal of the instrument was detected and the stability of the instrument was evaluated. The relative standard deviation of signal at m/z 21 was only 0.74% and the detection limit of PTR-MS was 97 part per trillion(97x 10-12, volume ratio). As a case of the air monitoring in Hefei, the am- bient air at Dongpu reservoir spot was on-line monitored for 13 d with our self-developed PTR-MS. Meanwhile, a solid-phase micro-extraction(SPME) technique coupled to gas chromatography-mass spectrometry/mass spectrometry (GC-MS/MS) was also used for the off-line detection of the air. The results show that our self-developed PTR-MS can be used for the on-line and long-term monitoring of VOCs in air at part per trillion level, and the change trend of VOCs concentration monitored with PTR-MS was consistent with that detected with the conventional SPME-GC-MS. This self-developed PTR-MS can fully satisfy the requirements of air quality monitoring and real-time monitoring of the key pollution sources.
基金supported by the National Natural Science Foundation of China (61974014)the EPSRC Future Compound Semiconductor Manufacturing Hub (EP/P006973/1)。
文摘Multifunctional devices are of great interest for integration and miniaturization on the same platform, but simple addition of functionalities would lead to excessively large devices. Here, the photodetection and chemical sensing device is developed based on two-dimensional(2D) glassygraphene that meets similar property requirements for the two functionalities. An appropriate bandgap arising from the distorted lattice structure enables glassy graphene to exhibit comparable or even improved photodetection and chemical sensing capability, compared with pristine graphene. Due to strong interactions between glassy graphene and the ambient atmosphere, the devices are less sensitive to photoinduced desorption than the ones based on graphene. Consequently,the few-layer glassy graphene device delivers positive photoresponse, with a responsivity of 0.22 A W^(-1) and specific detectivity reaching ~10^(10) Jones under 405 nm illumination.Moreover, the intrinsic defects and strain in glassy graphene can enhance the adsorption of analytes, leading to high chemical sensing performance. Specifically, the extracted signalto-noise-ratio of the glassy graphene device for detecting acetone is 48, representing more than 50% improvement over the device based on graphene. Additionally, bias-voltage-and thickness-dependent volatile organic compound(VOC) sensing features are identified, indicating the few-layer glassy graphene is more sensitive. This study successfully demonstrates the potential of glassy graphene for integrated photodetection and chemical sensing, providing a promising solution for multifunctional applications further beyond.