The continuous operation of On-Load Tap-Changers (OLTC) is essential for maintaining stable voltage levels in power transmission and distribution systems. Timely fault detection in OLTC is essential for preventing maj...The continuous operation of On-Load Tap-Changers (OLTC) is essential for maintaining stable voltage levels in power transmission and distribution systems. Timely fault detection in OLTC is essential for preventing major failures and ensuring the reliability of the electrical grid. This research paper proposes an innovative approach that combines voiceprint detection using MATLAB analysis for online fault monitoring of OLTC. By leveraging advanced signal processing techniques and machine learning algorithms in MATLAB, the proposed method accurately detects faults in OLTC, providing real-time monitoring and proactive maintenance strategies.展开更多
At present, an automatic-mechanic contact tap-changer is widely used in power system, but it can not frequently operate. In addition, arc will occur when the switch changes. In order to solve these two problems, this ...At present, an automatic-mechanic contact tap-changer is widely used in power system, but it can not frequently operate. In addition, arc will occur when the switch changes. In order to solve these two problems, this paper presented an automatic on-load voltage-regulating distributing transformer which employed non-contact solid-state relay as tap-changer, and mainly introduced its structure, basic principal, design method of each key link and experimental results. Laboratory simulation experiments informed that the scheme was feasible. It was a smooth and effective experiment device, which was practical in application.展开更多
When large-scale distributed renewable energy power generation systems are connected to the power grid,the risk of grid voltage fluctuations and exceeding the limit increases greatly.Fortunately,the on-load tap change...When large-scale distributed renewable energy power generation systems are connected to the power grid,the risk of grid voltage fluctuations and exceeding the limit increases greatly.Fortunately,the on-load tap changer(OLTC)can adjust the transformer winding tap to maintain the secondary side voltage within the normal range.However,the inevitable delay in switching transformer taps makes it difficult to respond quickly to voltage fluctuations.Moreover,switching the transformer taps frequently will decrease the service life of OLTC.In order to solve this critical issue,a cooperative voltage regulation strategy applied between the battery energy storage systems(BESSs)and OLTSs.is proposed By adjusting the charge and discharge power of BESSs,the OLTC can frequently switch the transformer taps to achieve rapid voltage regulation.The effectiveness of the proposed coordinated regulation strategy is verified in the IEEE 33 node distribution systems.The simulation results show that the proposed coordinated regulation strategy can stabilize the voltage of the distribution network within a normal range and reduce the frequency of tap switching,as such elongating the service life of the equipment.展开更多
Decreasing costs and favorable policies have resulted in increased penetration of solar photovoltaic(PV)power generation in distribution networks.As the PV systems penetration is likely to increase in the future,utili...Decreasing costs and favorable policies have resulted in increased penetration of solar photovoltaic(PV)power generation in distribution networks.As the PV systems penetration is likely to increase in the future,utilizing the reactive power capability of PV inverters to mitigate voltage deviations is being promoted.In recent years,droop control of inverter-based distributed energy resources has emerged as an essential tool for use in this study.The participation of PV systems in voltage regulation and its coordination with existing controllers,such as on-load tap changers,is paramount for controlling the voltage within specified limits.In this work,control strategies are presented that can be coordinated with the existing controls in a distributed manner.The effectiveness of the proposed method was demonstrated through simulation results on a distribution system.展开更多
An on-line tap-changing circuit was developed for use with low voltage transformers (10 kV/380 V, or equivalent), in which the tap positions could be set independently for each low voltage feeder. This allows for poss...An on-line tap-changing circuit was developed for use with low voltage transformers (10 kV/380 V, or equivalent), in which the tap positions could be set independently for each low voltage feeder. This allows for possible variation in loads and distributed generation between different feeders fed from a given transformer, allowing the line voltages to be kept within limits on all feeders. A combination of computer simulation and practical experiments was used. A model constructed in Excel gave preliminary results, which was used to specify a more detailed model in Matlab? Simulink. A small-scale 220/380 V distribution network was constructed, with currents limited to 5 A per phase. Finally, a rotary switch was constructed, suitable for currents up to 500 A, which would be required for a full-scale low voltage distribution network. The results showed that the voltage could be kept within limits, even with a large difference in load and distributed generation from one feeder to another.展开更多
In this paper,a new type of automatic transmitter(AT)is proposed to properly adjust the voltage of the train without installing additional equipment.The proposed tap-changing AT is expected to raise the voltage betwee...In this paper,a new type of automatic transmitter(AT)is proposed to properly adjust the voltage of the train without installing additional equipment.The proposed tap-changing AT is expected to raise the voltage between catenary and rail by regulating the turn-ratio between primary and secondary winding according to catenary voltage and verified its effects through the multi ports network analysis technique modeling of it.Through the simulation and analysis of the electric railway systems,it is shown that it can secure the load capacity and solve the large voltage drop problem by raising the voltage across railway vehicles back to the normal voltage level.展开更多
In distribution systems,voltage levels of the various buses should be maintained within the permissible limits for satisfactory operation of all electrical installations and equipment.The task of voltage control is cl...In distribution systems,voltage levels of the various buses should be maintained within the permissible limits for satisfactory operation of all electrical installations and equipment.The task of voltage control is closely associated with fluctuating load conditions and corresponding requirements of reactive power compensation.The problem of load bus voltage optimization in distribution systems that have distributed generation(DG)has recently become an issue.In Oman,the distribution code limits the load bus voltage variations within±6%of the nominal value.Several voltage control methods are employed in active distribution systems with a high share of photovoltaic systems(PV)to keep the voltage levels within the desirable limits.In addition to the constraint of targeting the best voltage profile,another constraint has to be achieved which is the minimum loss in the distribution network.An optimised solution for voltage of load busses with on-load tap-changing(OLTC)tarnsformers and PV sources is presented in this paper.This study addresses the problem of optimizing the injected power from PV systems associated with the facilities of tap-changing transformers,as it is an important means of controlling voltage throughout the system.To avoid violating tap-changing constraints,a method is depicted for determining the minimal changes in transformer taps to control voltage levels with distributed PV sources.The taps of a range+5 to-15%,can be achieved by tap-changing transformers.The OLTC operation was designed to keep the secondary bus within the voltage standard for MV networks.展开更多
With the growing demand for precise voltage adjustment and reactive regulation,the frequent operation of on-load tap changers(OLTCs)in oil-immersed systems has led to increased erosion of switch contacts by arcs durin...With the growing demand for precise voltage adjustment and reactive regulation,the frequent operation of on-load tap changers(OLTCs)in oil-immersed systems has led to increased erosion of switch contacts by arcs during the switching process.This erosion causes significant wear on the contacts,thereby reducing their lifespan.Therefore,the present study aims to investigate the behavior and mechanism of arc erosion on contact surfaces in oil-immersed OLTCs.To achieve this,a self-designed friction and wear test device for OLTC contacts was utilized to conduct experiments at various sliding speeds and contact pressures.Additionally,finite element analysis was employed to validate the experimental results regarding the influence of sliding speed on arc energy.The surface morphology of the contacts was observed using an optical microscope.The findings revealed that as the sliding speed increased,the arc energy,arc initiation rate,and contact resistance initially exhibited an upward trend,then decreased,and eventually increased again.The minimum values were observed at a sliding speed of 90 mm/s.Moreover,the arc energy,arc initiation rate,and contact resistance decreased gradually as the contact pressure increased.After reaching a contact pressure of 1.5 N,the variation in the arc energy stabilized.At lower contact pressures,arc erosion dominated the wear on the contact surface.However,at higher contact pressures,the wear transitioned from predominantly arc erosion to a combination of mechanical wear and arc erosion.In summary,experimental and analytical investigations provided insights into the effects of sliding speed and contact pressure on the behavior of arc erosion,contact resistance,and surface damage of OLTC contacts in oil-immersed systems.展开更多
This paper proposes an on-load voltage distortion compensation method,in which the voltage distortion is mainly produced in the surface-mounted permanent magnet machines having closed slot.Apart from the voltage disto...This paper proposes an on-load voltage distortion compensation method,in which the voltage distortion is mainly produced in the surface-mounted permanent magnet machines having closed slot.Apart from the voltage distortions caused by the inverter,such as dead time and inverter non-linearity,the on-load voltage distortion has relatively large magnitude dependent of machine speed.As a result,it causes a significant distortion of current waveforms and deteriorates control performance.Hence,a voltage disturbance compensation method using a disturbance observer is proposed and implemented.Based on the machine model,the disturbance observer is chosen which helps to observe a voltage disturbance,while the error between measured and estimated currents is minimized.The disturbance observer only compensates the sixth-multiple harmonic components of the inverter voltage in synchronous reference frame.The harmonic compensator with multiple narrow-band pass based adaptive filter is proposed and implemented in the feedback loop with current controllers.The observed voltage disturbances are compensated to the reference voltages.In addition,robust performance of the proposed method is shown against the parameter uncertainties.The effectiveness of the proposed compensation scheme is validated by the experiments.展开更多
An accurate extraction of vibration signal characteristics of an on-load tap changer(OLTC)during contact switching can effectively help detect its abnormal state.Therefore,an improved fuzzy C-means clustering method f...An accurate extraction of vibration signal characteristics of an on-load tap changer(OLTC)during contact switching can effectively help detect its abnormal state.Therefore,an improved fuzzy C-means clustering method for abnormal state detection of the OLTC contact is proposed.First,the wavelet packet and singular spectrum analysis are used to denoise the vibration signal generated by the moving and static contacts of the OLTC.Then,the Hilbert-Huang transform that is optimized by the ensemble empirical mode decomposition(EEMD)is used to decompose the vibration signal and extract the boundary spectrum features.Finally,the gray wolf algorithm-based fuzzy C-means clustering is used to denoise the signal and determine the abnormal states of the OLTC contact.An analysis of the experimental data shows that the proposed secondary denoising method has a better denoising effect compared to the single denoising method.The EEMD can improve the modal aliasing effect,and the improved fuzzy C-means clustering can effectively identify the abnormal state of the OLTC contacts.The analysis results of field measured data further verify the effectiveness of the proposed method and provide a reference for the abnormal state detection of the OLTC.展开更多
Power systems depend on discrete devices, such as shunt capacitors/reactors and on-load tap changers, for their long-term reliability.In transmission systems that contain large wind farms, we must take into account th...Power systems depend on discrete devices, such as shunt capacitors/reactors and on-load tap changers, for their long-term reliability.In transmission systems that contain large wind farms, we must take into account the uncertainties in wind power generation when deciding when to operate these devices.In this paper, we describe a method to schedule the operation of these devices over the course of the following day.These schedules are designed to minimize wind-power generation curtailment, bus voltage violations, and dynamic reactive-power deviations,even under the worst possible conditions.Daily voltagecontrol decisions are initiated every 15 min using a dynamic optimization algorithm that predicts the state of the system over the next 4-hour period.For this, forecasts updated in real-time are employed, because they are more precise than forecasts for the day ahead.Day-ahead schedules are calculated using a two-stage robust mixedinteger optimization algorithm.The proposed control strategies were tested on a Chinese power network with wind power sources; the control performance was also validated numerically.展开更多
文摘The continuous operation of On-Load Tap-Changers (OLTC) is essential for maintaining stable voltage levels in power transmission and distribution systems. Timely fault detection in OLTC is essential for preventing major failures and ensuring the reliability of the electrical grid. This research paper proposes an innovative approach that combines voiceprint detection using MATLAB analysis for online fault monitoring of OLTC. By leveraging advanced signal processing techniques and machine learning algorithms in MATLAB, the proposed method accurately detects faults in OLTC, providing real-time monitoring and proactive maintenance strategies.
文摘At present, an automatic-mechanic contact tap-changer is widely used in power system, but it can not frequently operate. In addition, arc will occur when the switch changes. In order to solve these two problems, this paper presented an automatic on-load voltage-regulating distributing transformer which employed non-contact solid-state relay as tap-changer, and mainly introduced its structure, basic principal, design method of each key link and experimental results. Laboratory simulation experiments informed that the scheme was feasible. It was a smooth and effective experiment device, which was practical in application.
基金Supported by the Postdoctoral Science Foundation of China(No.2022M710039)。
文摘When large-scale distributed renewable energy power generation systems are connected to the power grid,the risk of grid voltage fluctuations and exceeding the limit increases greatly.Fortunately,the on-load tap changer(OLTC)can adjust the transformer winding tap to maintain the secondary side voltage within the normal range.However,the inevitable delay in switching transformer taps makes it difficult to respond quickly to voltage fluctuations.Moreover,switching the transformer taps frequently will decrease the service life of OLTC.In order to solve this critical issue,a cooperative voltage regulation strategy applied between the battery energy storage systems(BESSs)and OLTSs.is proposed By adjusting the charge and discharge power of BESSs,the OLTC can frequently switch the transformer taps to achieve rapid voltage regulation.The effectiveness of the proposed coordinated regulation strategy is verified in the IEEE 33 node distribution systems.The simulation results show that the proposed coordinated regulation strategy can stabilize the voltage of the distribution network within a normal range and reduce the frequency of tap switching,as such elongating the service life of the equipment.
基金by a project under the scheme entitled“Developing Policies&Adaptation Strategies to Climate Change in the Baltic Sea Region”(ASTRA),Project No.ASTRA6-4(2014-2020.4.01.16-0032).
文摘Decreasing costs and favorable policies have resulted in increased penetration of solar photovoltaic(PV)power generation in distribution networks.As the PV systems penetration is likely to increase in the future,utilizing the reactive power capability of PV inverters to mitigate voltage deviations is being promoted.In recent years,droop control of inverter-based distributed energy resources has emerged as an essential tool for use in this study.The participation of PV systems in voltage regulation and its coordination with existing controllers,such as on-load tap changers,is paramount for controlling the voltage within specified limits.In this work,control strategies are presented that can be coordinated with the existing controls in a distributed manner.The effectiveness of the proposed method was demonstrated through simulation results on a distribution system.
文摘An on-line tap-changing circuit was developed for use with low voltage transformers (10 kV/380 V, or equivalent), in which the tap positions could be set independently for each low voltage feeder. This allows for possible variation in loads and distributed generation between different feeders fed from a given transformer, allowing the line voltages to be kept within limits on all feeders. A combination of computer simulation and practical experiments was used. A model constructed in Excel gave preliminary results, which was used to specify a more detailed model in Matlab? Simulink. A small-scale 220/380 V distribution network was constructed, with currents limited to 5 A per phase. Finally, a rotary switch was constructed, suitable for currents up to 500 A, which would be required for a full-scale low voltage distribution network. The results showed that the voltage could be kept within limits, even with a large difference in load and distributed generation from one feeder to another.
基金KETEP(Korea Institute of Energy Technology Evaluation and Planning)grant funded by the Korea government(MOTIE)(No.20191210301890)。
文摘In this paper,a new type of automatic transmitter(AT)is proposed to properly adjust the voltage of the train without installing additional equipment.The proposed tap-changing AT is expected to raise the voltage between catenary and rail by regulating the turn-ratio between primary and secondary winding according to catenary voltage and verified its effects through the multi ports network analysis technique modeling of it.Through the simulation and analysis of the electric railway systems,it is shown that it can secure the load capacity and solve the large voltage drop problem by raising the voltage across railway vehicles back to the normal voltage level.
文摘In distribution systems,voltage levels of the various buses should be maintained within the permissible limits for satisfactory operation of all electrical installations and equipment.The task of voltage control is closely associated with fluctuating load conditions and corresponding requirements of reactive power compensation.The problem of load bus voltage optimization in distribution systems that have distributed generation(DG)has recently become an issue.In Oman,the distribution code limits the load bus voltage variations within±6%of the nominal value.Several voltage control methods are employed in active distribution systems with a high share of photovoltaic systems(PV)to keep the voltage levels within the desirable limits.In addition to the constraint of targeting the best voltage profile,another constraint has to be achieved which is the minimum loss in the distribution network.An optimised solution for voltage of load busses with on-load tap-changing(OLTC)tarnsformers and PV sources is presented in this paper.This study addresses the problem of optimizing the injected power from PV systems associated with the facilities of tap-changing transformers,as it is an important means of controlling voltage throughout the system.To avoid violating tap-changing constraints,a method is depicted for determining the minimal changes in transformer taps to control voltage levels with distributed PV sources.The taps of a range+5 to-15%,can be achieved by tap-changing transformers.The OLTC operation was designed to keep the secondary bus within the voltage standard for MV networks.
文摘With the growing demand for precise voltage adjustment and reactive regulation,the frequent operation of on-load tap changers(OLTCs)in oil-immersed systems has led to increased erosion of switch contacts by arcs during the switching process.This erosion causes significant wear on the contacts,thereby reducing their lifespan.Therefore,the present study aims to investigate the behavior and mechanism of arc erosion on contact surfaces in oil-immersed OLTCs.To achieve this,a self-designed friction and wear test device for OLTC contacts was utilized to conduct experiments at various sliding speeds and contact pressures.Additionally,finite element analysis was employed to validate the experimental results regarding the influence of sliding speed on arc energy.The surface morphology of the contacts was observed using an optical microscope.The findings revealed that as the sliding speed increased,the arc energy,arc initiation rate,and contact resistance initially exhibited an upward trend,then decreased,and eventually increased again.The minimum values were observed at a sliding speed of 90 mm/s.Moreover,the arc energy,arc initiation rate,and contact resistance decreased gradually as the contact pressure increased.After reaching a contact pressure of 1.5 N,the variation in the arc energy stabilized.At lower contact pressures,arc erosion dominated the wear on the contact surface.However,at higher contact pressures,the wear transitioned from predominantly arc erosion to a combination of mechanical wear and arc erosion.In summary,experimental and analytical investigations provided insights into the effects of sliding speed and contact pressure on the behavior of arc erosion,contact resistance,and surface damage of OLTC contacts in oil-immersed systems.
基金Supported by Guangdong Welling Motor Manufacturing Co.,Ltd and Guangdong Innovative Research Team Program(No.2011N084),China。
文摘This paper proposes an on-load voltage distortion compensation method,in which the voltage distortion is mainly produced in the surface-mounted permanent magnet machines having closed slot.Apart from the voltage distortions caused by the inverter,such as dead time and inverter non-linearity,the on-load voltage distortion has relatively large magnitude dependent of machine speed.As a result,it causes a significant distortion of current waveforms and deteriorates control performance.Hence,a voltage disturbance compensation method using a disturbance observer is proposed and implemented.Based on the machine model,the disturbance observer is chosen which helps to observe a voltage disturbance,while the error between measured and estimated currents is minimized.The disturbance observer only compensates the sixth-multiple harmonic components of the inverter voltage in synchronous reference frame.The harmonic compensator with multiple narrow-band pass based adaptive filter is proposed and implemented in the feedback loop with current controllers.The observed voltage disturbances are compensated to the reference voltages.In addition,robust performance of the proposed method is shown against the parameter uncertainties.The effectiveness of the proposed compensation scheme is validated by the experiments.
文摘An accurate extraction of vibration signal characteristics of an on-load tap changer(OLTC)during contact switching can effectively help detect its abnormal state.Therefore,an improved fuzzy C-means clustering method for abnormal state detection of the OLTC contact is proposed.First,the wavelet packet and singular spectrum analysis are used to denoise the vibration signal generated by the moving and static contacts of the OLTC.Then,the Hilbert-Huang transform that is optimized by the ensemble empirical mode decomposition(EEMD)is used to decompose the vibration signal and extract the boundary spectrum features.Finally,the gray wolf algorithm-based fuzzy C-means clustering is used to denoise the signal and determine the abnormal states of the OLTC contact.An analysis of the experimental data shows that the proposed secondary denoising method has a better denoising effect compared to the single denoising method.The EEMD can improve the modal aliasing effect,and the improved fuzzy C-means clustering can effectively identify the abnormal state of the OLTC contacts.The analysis results of field measured data further verify the effectiveness of the proposed method and provide a reference for the abnormal state detection of the OLTC.
基金supported by the National Science Funds for Excellent Young Scholars (No.51621065)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No.51621065)
文摘Power systems depend on discrete devices, such as shunt capacitors/reactors and on-load tap changers, for their long-term reliability.In transmission systems that contain large wind farms, we must take into account the uncertainties in wind power generation when deciding when to operate these devices.In this paper, we describe a method to schedule the operation of these devices over the course of the following day.These schedules are designed to minimize wind-power generation curtailment, bus voltage violations, and dynamic reactive-power deviations,even under the worst possible conditions.Daily voltagecontrol decisions are initiated every 15 min using a dynamic optimization algorithm that predicts the state of the system over the next 4-hour period.For this, forecasts updated in real-time are employed, because they are more precise than forecasts for the day ahead.Day-ahead schedules are calculated using a two-stage robust mixedinteger optimization algorithm.The proposed control strategies were tested on a Chinese power network with wind power sources; the control performance was also validated numerically.