Tunnel water inrush is one of the common geological disasters in the underground engineering construction.In order to effectively evaluate and control the occurrence of water inrush,the risk assessment model of tunnel...Tunnel water inrush is one of the common geological disasters in the underground engineering construction.In order to effectively evaluate and control the occurrence of water inrush,the risk assessment model of tunnel water inrush was proposed based on improved attribute mathematical theory.The trigonometric functions were adopted to optimize the attribute mathematical theory,avoiding the influence of mutation points and linear variation zones in traditional linear measurement functions on the accuracy of the model.Based on comprehensive analysis of various factors,five parameters were selected as the evaluation indicators for the model,including tunnel head pressure,permeability coefficient of surrounding rock,crushing degree of surrounding rock,relative angle of joint plane and tunnel section size,under the principle of dimension rationality,independence,directness and quantification.The indicator classifications were determined.The links among measured data were analyzed in detail,and the objective weight of each indicator was determined by using similar weight method.Thereby the tunnel water inrush risk assessment model is established and applied in four target segments of two different tunnels in engineering.The evaluation results and the actual excavation data agree well,which indicates that the model is of high credibility and feasibility.展开更多
Avian Spirochaetosis is an acute endemic tick-borne disease of birds, caused by Borrelia anserins, a species of Borrelia bacteria. In this paper, we present a compartmental mathematical model of the disease for the bi...Avian Spirochaetosis is an acute endemic tick-borne disease of birds, caused by Borrelia anserins, a species of Borrelia bacteria. In this paper, we present a compartmental mathematical model of the disease for the bird population and Tick population. The disease steady-state and the conditions for reaching a stable disease-free steady state are determined. The analysis by Lyapunov method shows both local and global stability. Further investigation involves the introduction of controls to the model;the existence and uniqueness of optimal control are established. Finally, the effect of the controls is investigated using numerical solutions.展开更多
The aim of this work is mathematical education through the knowledge system and mathematical modeling. A net model of formation of mathematical knowledge as a deductive theory is suggested here. Within this model the ...The aim of this work is mathematical education through the knowledge system and mathematical modeling. A net model of formation of mathematical knowledge as a deductive theory is suggested here. Within this model the formation of deductive theory is represented as the development of a certain informational space, the elements of which are structured in the form of the orientated semantic net. This net is properly metrized and characterized by a certain system of coverings. It allows injecting net optimization parameters, regulating qualitative aspects of knowledge system under consideration. To regulate the creative processes of the formation and realization of mathematical know- edge, stochastic model of formation deductive theory is suggested here in the form of branching Markovian process, which is realized in the corresponding informational space as a semantic net. According to this stochastic model we can get correct foundation of criterion of optimization creative processes that leads to “great main points” strategy (GMP-strategy) in the process of realization of the effective control in the research work in the sphere of mathematics and its applications.展开更多
On-machine tool setting is a pivotal approach in achieving intelligent manufacturing,and laser tool setters have become a crucial component of smart machine tools.Laser tool setters play a crucial role in precisely me...On-machine tool setting is a pivotal approach in achieving intelligent manufacturing,and laser tool setters have become a crucial component of smart machine tools.Laser tool setters play a crucial role in precisely measuring the dimensions of cutting tools during the part machining process,focusing on tool length and diameter.As a measuring instrument,the positions of the laser axis of the laser tool setter need to be accurately calibrated before use.However,in actual calibration scenarios,traditional calibration methods face challenges due to installation errors in the tool setter and geometric errors in the measuring rod.To address this issue,this study proposes a novel calibration method.Initially,the calibration mechanism of the laser beam axis is established.Based on the accurate mathematical model of the laser beam and the measuring rod,and using the polygon clipping algorithm,the mathematical mechanism of the laser tool setter’s work is established.Then,a novel method is introduced to calculate the compensation distance between the laser beam reference point and the rod bottom center point at each moment during calibration.Furthermore,by utilizing the kinematic chain of the tool setter calibration system,a new calibration method is developed to accurately calibrate the position of the laser beam axis in the machine tool coordinate system.Finally,the accuracy of the calibration method is verified through simulation experiments and calibration tests.This method improves the calibration accuracy of the tool setter,and the mathematical model of the laser tool setter can be extended to the measurement of tools,thereby improving the precision of tool measurements.This research significantly improves the efficient production performance of smart machine tools.展开更多
A numerical model and transmission characteristic analysis of DPSK (differential phase shift keying) pressure signals in mud channels is introduced. With the control logic analysis of the rotary valve mud telemetry,...A numerical model and transmission characteristic analysis of DPSK (differential phase shift keying) pressure signals in mud channels is introduced. With the control logic analysis of the rotary valve mud telemetry, a logical control signal is built from a Gate function sequence according to the binary symbols of transmitted data and a phase-shift function is obtained by integrating the logical control signal. A mathematical model of the DPSK pressure signal is built based on principles of communications by modulating carrier phase with the phase-shift function and a numerical simulation of the pressure wave is implemented with the mathematical model by MATLAB programming. Considering drillpipe pressure and drilling fluid temperature profile along drillpipes, the drillpipe of a vertical well is divided into a number of sections. With water-based drilling fluids, the impacts of travel distance, carrier frequency, drillpipe size, and drilling fluids on the signal transmission were studied by signal transmission characteristic analysis for all the sections. Numerical calculation results indicate that the influences of the viscosity of drilling fluids and volume fraction of gas in drilling fluids on the DPSK signal transmission are more notable than the others and the signal will distort in waveform with differential attenuations of the signal frequent component.展开更多
Drying operations can help in reducing the moisture content of food materials for avoidance of microbial growth and deterioration, for shelf life elongation, to minimize packaging and improving storage for easy transp...Drying operations can help in reducing the moisture content of food materials for avoidance of microbial growth and deterioration, for shelf life elongation, to minimize packaging and improving storage for easy transportation. Thin-layer drying of materials is necessary to understand the fundamental transport mechanism and a prerequisite to successfully simulate or scale up the whole process for optimization or control of the operating conditions. Researchers have shown that to rely solely on experimental drying practices without mathematical considerations for the drying kinetics, can significantly affect the efficiency of dryers, increase the cost of production, and reduce the quality of the dried product. An effective model is necessary for the process design, optimization, energy integration and control;hence, the use of mathematical models in finding the drying kinetics of agricultural products is very important. The statistical criteria in use for the evaluation of the best model(s) has it that coefficient of determination (R2) has to be close to unity while the rest statistical measures will have values tending to zero. In this work, the essence of drying using thin-layer, general approaches to modeling for food drying mechanisms thin layer drying models and optimization of the drying processes have been discussed.展开更多
The practical value of high-precision models of the studied physical phenomena and technological processes is a decisive factor in science and technology. Currently, numerous methods and criteria for optimizing models...The practical value of high-precision models of the studied physical phenomena and technological processes is a decisive factor in science and technology. Currently, numerous methods and criteria for optimizing models have been proposed. However, the classification of measurement uncertainties due to the number of variables taken into account and their qualitative choice is still not given sufficient attention. The goal is to develop a new criterion suitable for any groups of experimental data obtained as a result of applying various measurement methods. Using the “information-theoretic method”, we propose two procedures for analyzing experimental results using a quantitative indicator to calculate the relative uncertainty of the measurement model, which, in turn, determines the legitimacy of the declared value of a physical constant. The presented procedure is used to analyze the results of measurements of the Boltzmann constant, Planck constant, Hubble constant and gravitational constant.展开更多
We investigate the major characteristics of the occurrences, causes of and counter measures for aircraft accidents in Japan. We apply statistical data analysis and mathematical modeling techniques to determine the rel...We investigate the major characteristics of the occurrences, causes of and counter measures for aircraft accidents in Japan. We apply statistical data analysis and mathematical modeling techniques to determine the relations among economic growth, aviation demand, the frequency of aircraft/helicopter accidents, the major characteristics of the occurrence intervals of accidents, and the number of fatalities due to accidents. The statistical model analysis suggests that the occurrence intervals of accidents and the number of fatalities can be explained by probability distributions such as the exponential distribution and the negative binomial distribution, respectively. We show that countermeasures for preventing accidents have been developed in every aircraft model, and thus they have contributed to a significant decrease in the number of accidents in the last three decades. We find that the major cause of accidents involving large airplanes has been weather, while accidents involving small airplanes and helicopters are mainly due to the pilot error. We also discover that, with respect to accidents mainly due to pilot error, there is a significant decrease in the number of accidents due to the aging of airplanes, whereas the number of accidents due to weather has barely declined. We further determine that accidents involving small and large airplanes mostly occur during takeoff and landing, whereas those involving helicopters are most likely to happen during flight. In order to decrease the number of accidents, i) enhancing safety and security by further developing technologies for aircraft, airports and air control radars, ii) establishing and improving training methods for crew including pilots, mechanics and traffic controllers, iii) tightening public rules, and iv) strengthening efforts made by individual aviation-related companies are absolutely necessary.展开更多
This article presents a mathematical model of the plane evolution of alluvial meandering streams,through downstream migration and lateral expansion of meander loops.Under the conditions prevailing in natural streams,t...This article presents a mathematical model of the plane evolution of alluvial meandering streams,through downstream migration and lateral expansion of meander loops.Under the conditions prevailing in natural streams,the channel centerlines follow sine-generated curves,with an assumed steady-state turbulent and subcritical flow,of large width-to-depth ratio(≥ 15,for example) and small Froude number(Fr ).The plane deformation of the channel is caused by the action on the banks of the convective vertically-averaged meandering flow.The growth(migration and expansion) of meander loops is attributed to the regime-trend.The computational results of the model show that the obtained migration and expansion patterns of the meander loops are in good agreement with those of observations and measurements in similar meandering streams.展开更多
基金Project(2013CB036004) supported by National Basic Research Program(973)of ChinaProject(51378510) supported by National Natural Science Foundation of China
文摘Tunnel water inrush is one of the common geological disasters in the underground engineering construction.In order to effectively evaluate and control the occurrence of water inrush,the risk assessment model of tunnel water inrush was proposed based on improved attribute mathematical theory.The trigonometric functions were adopted to optimize the attribute mathematical theory,avoiding the influence of mutation points and linear variation zones in traditional linear measurement functions on the accuracy of the model.Based on comprehensive analysis of various factors,five parameters were selected as the evaluation indicators for the model,including tunnel head pressure,permeability coefficient of surrounding rock,crushing degree of surrounding rock,relative angle of joint plane and tunnel section size,under the principle of dimension rationality,independence,directness and quantification.The indicator classifications were determined.The links among measured data were analyzed in detail,and the objective weight of each indicator was determined by using similar weight method.Thereby the tunnel water inrush risk assessment model is established and applied in four target segments of two different tunnels in engineering.The evaluation results and the actual excavation data agree well,which indicates that the model is of high credibility and feasibility.
文摘Avian Spirochaetosis is an acute endemic tick-borne disease of birds, caused by Borrelia anserins, a species of Borrelia bacteria. In this paper, we present a compartmental mathematical model of the disease for the bird population and Tick population. The disease steady-state and the conditions for reaching a stable disease-free steady state are determined. The analysis by Lyapunov method shows both local and global stability. Further investigation involves the introduction of controls to the model;the existence and uniqueness of optimal control are established. Finally, the effect of the controls is investigated using numerical solutions.
文摘The aim of this work is mathematical education through the knowledge system and mathematical modeling. A net model of formation of mathematical knowledge as a deductive theory is suggested here. Within this model the formation of deductive theory is represented as the development of a certain informational space, the elements of which are structured in the form of the orientated semantic net. This net is properly metrized and characterized by a certain system of coverings. It allows injecting net optimization parameters, regulating qualitative aspects of knowledge system under consideration. To regulate the creative processes of the formation and realization of mathematical know- edge, stochastic model of formation deductive theory is suggested here in the form of branching Markovian process, which is realized in the corresponding informational space as a semantic net. According to this stochastic model we can get correct foundation of criterion of optimization creative processes that leads to “great main points” strategy (GMP-strategy) in the process of realization of the effective control in the research work in the sphere of mathematics and its applications.
文摘On-machine tool setting is a pivotal approach in achieving intelligent manufacturing,and laser tool setters have become a crucial component of smart machine tools.Laser tool setters play a crucial role in precisely measuring the dimensions of cutting tools during the part machining process,focusing on tool length and diameter.As a measuring instrument,the positions of the laser axis of the laser tool setter need to be accurately calibrated before use.However,in actual calibration scenarios,traditional calibration methods face challenges due to installation errors in the tool setter and geometric errors in the measuring rod.To address this issue,this study proposes a novel calibration method.Initially,the calibration mechanism of the laser beam axis is established.Based on the accurate mathematical model of the laser beam and the measuring rod,and using the polygon clipping algorithm,the mathematical mechanism of the laser tool setter’s work is established.Then,a novel method is introduced to calculate the compensation distance between the laser beam reference point and the rod bottom center point at each moment during calibration.Furthermore,by utilizing the kinematic chain of the tool setter calibration system,a new calibration method is developed to accurately calibrate the position of the laser beam axis in the machine tool coordinate system.Finally,the accuracy of the calibration method is verified through simulation experiments and calibration tests.This method improves the calibration accuracy of the tool setter,and the mathematical model of the laser tool setter can be extended to the measurement of tools,thereby improving the precision of tool measurements.This research significantly improves the efficient production performance of smart machine tools.
基金supported by High Technology Research and Development Program of China(No.2006AA06A101).
文摘A numerical model and transmission characteristic analysis of DPSK (differential phase shift keying) pressure signals in mud channels is introduced. With the control logic analysis of the rotary valve mud telemetry, a logical control signal is built from a Gate function sequence according to the binary symbols of transmitted data and a phase-shift function is obtained by integrating the logical control signal. A mathematical model of the DPSK pressure signal is built based on principles of communications by modulating carrier phase with the phase-shift function and a numerical simulation of the pressure wave is implemented with the mathematical model by MATLAB programming. Considering drillpipe pressure and drilling fluid temperature profile along drillpipes, the drillpipe of a vertical well is divided into a number of sections. With water-based drilling fluids, the impacts of travel distance, carrier frequency, drillpipe size, and drilling fluids on the signal transmission were studied by signal transmission characteristic analysis for all the sections. Numerical calculation results indicate that the influences of the viscosity of drilling fluids and volume fraction of gas in drilling fluids on the DPSK signal transmission are more notable than the others and the signal will distort in waveform with differential attenuations of the signal frequent component.
文摘Drying operations can help in reducing the moisture content of food materials for avoidance of microbial growth and deterioration, for shelf life elongation, to minimize packaging and improving storage for easy transportation. Thin-layer drying of materials is necessary to understand the fundamental transport mechanism and a prerequisite to successfully simulate or scale up the whole process for optimization or control of the operating conditions. Researchers have shown that to rely solely on experimental drying practices without mathematical considerations for the drying kinetics, can significantly affect the efficiency of dryers, increase the cost of production, and reduce the quality of the dried product. An effective model is necessary for the process design, optimization, energy integration and control;hence, the use of mathematical models in finding the drying kinetics of agricultural products is very important. The statistical criteria in use for the evaluation of the best model(s) has it that coefficient of determination (R2) has to be close to unity while the rest statistical measures will have values tending to zero. In this work, the essence of drying using thin-layer, general approaches to modeling for food drying mechanisms thin layer drying models and optimization of the drying processes have been discussed.
文摘The practical value of high-precision models of the studied physical phenomena and technological processes is a decisive factor in science and technology. Currently, numerous methods and criteria for optimizing models have been proposed. However, the classification of measurement uncertainties due to the number of variables taken into account and their qualitative choice is still not given sufficient attention. The goal is to develop a new criterion suitable for any groups of experimental data obtained as a result of applying various measurement methods. Using the “information-theoretic method”, we propose two procedures for analyzing experimental results using a quantitative indicator to calculate the relative uncertainty of the measurement model, which, in turn, determines the legitimacy of the declared value of a physical constant. The presented procedure is used to analyze the results of measurements of the Boltzmann constant, Planck constant, Hubble constant and gravitational constant.
文摘We investigate the major characteristics of the occurrences, causes of and counter measures for aircraft accidents in Japan. We apply statistical data analysis and mathematical modeling techniques to determine the relations among economic growth, aviation demand, the frequency of aircraft/helicopter accidents, the major characteristics of the occurrence intervals of accidents, and the number of fatalities due to accidents. The statistical model analysis suggests that the occurrence intervals of accidents and the number of fatalities can be explained by probability distributions such as the exponential distribution and the negative binomial distribution, respectively. We show that countermeasures for preventing accidents have been developed in every aircraft model, and thus they have contributed to a significant decrease in the number of accidents in the last three decades. We find that the major cause of accidents involving large airplanes has been weather, while accidents involving small airplanes and helicopters are mainly due to the pilot error. We also discover that, with respect to accidents mainly due to pilot error, there is a significant decrease in the number of accidents due to the aging of airplanes, whereas the number of accidents due to weather has barely declined. We further determine that accidents involving small and large airplanes mostly occur during takeoff and landing, whereas those involving helicopters are most likely to happen during flight. In order to decrease the number of accidents, i) enhancing safety and security by further developing technologies for aircraft, airports and air control radars, ii) establishing and improving training methods for crew including pilots, mechanics and traffic controllers, iii) tightening public rules, and iv) strengthening efforts made by individual aviation-related companies are absolutely necessary.
基金supported by the National Natural Science Foundation of China (Grants Nos. 50879019, 50879020)the Funding for non-profit public research project of Ministry of Water Resources (Grant No. 200901005)+1 种基金the Central University Science Foundation of China and National Scienceand Technology Pillar Program of China in the Eleventh Five-Year Plan Period (Grant No. 2008BAB29B08)the Natural Sciences and Engineering Research Council of Canada(NSERC)
文摘This article presents a mathematical model of the plane evolution of alluvial meandering streams,through downstream migration and lateral expansion of meander loops.Under the conditions prevailing in natural streams,the channel centerlines follow sine-generated curves,with an assumed steady-state turbulent and subcritical flow,of large width-to-depth ratio(≥ 15,for example) and small Froude number(Fr ).The plane deformation of the channel is caused by the action on the banks of the convective vertically-averaged meandering flow.The growth(migration and expansion) of meander loops is attributed to the regime-trend.The computational results of the model show that the obtained migration and expansion patterns of the meander loops are in good agreement with those of observations and measurements in similar meandering streams.