According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements r...According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements restricted by satellite attitude dynamics and estimates the gyro bias generated when the gyro is electrified. Observability of the calibration model is analyzed and applicable conditions of the technology are derived. Simulation results indicate that the calibration algorithm is accurate and robust at gyro sampling rate, and its convergence speed is fast. Within the given attitude dynamics model error, the convergence time is less than 100 s and the convergence accuracy is about 1.0 (°)/h. Calibration performance can meet requirements of spacecraft operations.展开更多
Sufficient sleep duration and good sleep quality are crucial to ensure normal physical and mental health, cognition and work performance for the common people, as well as astronauts. On-orbit sleep problem is very com...Sufficient sleep duration and good sleep quality are crucial to ensure normal physical and mental health, cognition and work performance for the common people, as well as astronauts. On-orbit sleep problem is very common among astronauts and has potential detrimental influences on the health of crewmembers and the safety of flight missions. Sleep in space is becoming a new medical research frontier. In this review we summarized on-orbit sleep problems of astronauts and six kinds of causes, and we presented the effects of lack of sleep on performance as well as mental and physical health, then we proposed seven kinds of countermeasures for sleep disturbance in spaceflight, including pharmacologic interventions, light treatment, crew selection and training, Traditional Chinese Medicine and so on. Furthermore, we discussed and oriented the prospect of researches on sleep in space.展开更多
A new type of estimator is developed for the satellite formation to track and inspect on-orbit targets. The follower satellite in the formation works without relative sensors, and its target pointing commands are deri...A new type of estimator is developed for the satellite formation to track and inspect on-orbit targets. The follower satellite in the formation works without relative sensors, and its target pointing commands are derived based on relative orbital dynamics. The centralized estimator based on truth measurement is designed, however, this estimator is proved unstable because of the lack of necessary measurement information. After that, an alternative estimator based on pseudo measurement is designed, and its observability and controllability are analyzed to qualitatively evaluate the convergence performance. Finally, an on-orbit target inspection scenario is numerically simulated to verify the performance of the estimator based on pseudo measurement.展开更多
The paper presents a geometric calibration method based on the sparse ground control points (GCPs), aiming to the linear push-broom optical satellite. This method can achieve the optimal estimate of internal and exter...The paper presents a geometric calibration method based on the sparse ground control points (GCPs), aiming to the linear push-broom optical satellite. This method can achieve the optimal estimate of internal and external parameters with two overlapped image pair along the charge-coupled device (CCD), and sparse GCPs in the image region, further get rid of the dependence on the expensive calibration site data. With the calibrated parameters, the line of sight (LOS) of all CCD detectors can be recovered. This paper firstly establishes the rigorous imaging model of linear push-broom optical satellite based on its imaging mechanism. And then the calibration model is constructed by improving the internal sensor model with a viewing-angle model after an analysis on systematic errors existing in the imaging model is performed. A step-wise solution is applied aiming to the optimal estimate of external and internal parameters. At last, we conduct a set of experiments on the ZY-3 NAD camera and verify the accuracy and effectiveness of the presented method by comparison.展开更多
The Visible and Infrared Multispectral Imager (VIMI) is one of the main payloads of the GF-5 satellite. It has 12 spectral bands covering the wavelength from visible light to thermal infrared. The imager designed life...The Visible and Infrared Multispectral Imager (VIMI) is one of the main payloads of the GF-5 satellite. It has 12 spectral bands covering the wavelength from visible light to thermal infrared. The imager designed life is 8 years. In order to monitor and correct the radiometric performance of the imager for a long time and meet the user’s demand for the quantitative remote sensing application, the expandable diffuser used for calibration in full FOV and full optical path method is designed. The solar diffuser is installed on the front side of the optical system and does not affect the normal imaging of VIMI. When VIMI need calibration, the diffuser is expand to the front of optical system via the driving mechanism. According to the characteristics of the GF-5 satellite orbit, the requirement of the calibration energy and the installation matrix of the imager relative to the satellite, the expansion angle of the diffuser is 39 degrees. The 430 mm × 430 mm large-size PTEE diffuser is manufactured to ensure full FOV and full optical path calibration. The diffuser’s directional hemispherical reflectance is higher than 95% from 420 nm to 2400 nm and variation of BRDF in the direction of imager observation is better than 2.5%. The diffuser stability monitoring radiometer is designed to monitor the on-orbit attenuation performance of the diffuser. Results of ground simulation experiments and preliminary on-board calibration experiments were introduced.展开更多
In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM)...In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM) and an integrating sphere transfer radiometer(ISTR) was designed in this paper.Depending on the Sun,this chain based on detectors provides precise spectral radiometric calibration and measurement to spectrometers in the reflective solar band(RSB) covering 300–2500 nm with a spectral bandwidth of 0.5–6 nm.It shortens the traditional chain based on lamp source and reduces the calibration uncertainty from 5% to 0.5% by using the cryogenic radiometer in space as a radiometric benchmark and trap detectors as secondary standard.This paper also gives a detailed uncertainty budget with reasonable distribution of each impact factor,including the weak spectral signal measurement with uncertainty of 0.28%.According to the peculiar design and comprehensive uncertainty analysis,it illustrates that the spectral radiance measurement uncertainty of the ISTR system can reach to 0.48%.The result satisfies the requirements of SI-traceable on-orbit calibration and has wider significance for expanding the application of the remote sensing data with high-quality.展开更多
On-orbit servicing, such as spacecraft maintenance, on-orbit assembly, refueling, and de-orbiting, can reduce the cost of space missions, improve the performance of spacecraft, and extend its life span. The relative s...On-orbit servicing, such as spacecraft maintenance, on-orbit assembly, refueling, and de-orbiting, can reduce the cost of space missions, improve the performance of spacecraft, and extend its life span. The relative state between the servicing and target spacecraft is vital for on-orbit servicing missions, especially the final approaching stage. The major challenge of this stage is that the observed features of the target are incomplete or are constantly changing due to the short distance and limited Field of View (FOV) of camera. Different from cooperative spacecraft, non-cooperative target does not have artificial feature markers. Therefore, contour features, including triangle supports of solar array, docking ring, and corner points of the spacecraft body, are used as the measuring features. To overcome the drawback of FOV limitation and imaging ambiguity of the camera, a "selfie stick" structure and a self-calibration strategy were implemented, ensuring that part of the contour features could be observed precisely when the two spacecraft approached each other. The observed features were constantly changing as the relative distance shortened. It was difficult to build a unified measurement model for different types of features, including points, line segments, and circle. Therefore, dual quaternion was implemented to model the relative dynamics and measuring features. With the consideration of state uncertainty of the target, a fuzzy adaptive strong tracking filter( FASTF) combining fuzzy logic adaptive controller (FLAC) with strong tracking filter(STF) was designed to robustly estimate the relative states between the servicing spacecraft and the target. Finally, the effectiveness of the strategy was verified by mathematical simulation. The achievement of this research provides a theoretical and technical foundation for future on-orbit servicing missions.展开更多
GF-14 satellite is a new generation of sub-meter stereo surveying and mapping satellite in China,carrying dual-line array stereo mapping cameras to achieve 1∶10000 scale topographic mapping without Ground Control Poi...GF-14 satellite is a new generation of sub-meter stereo surveying and mapping satellite in China,carrying dual-line array stereo mapping cameras to achieve 1∶10000 scale topographic mapping without Ground Control Points(GCPs).In fact,space-based high-precision mapping without GCPs is a challenging task that depends on the close cooperation of several payloads and links,of which on-orbit geometric calibration is one of the most critical links.In this paper,the on-orbit geometric calibration of the dual-line array cameras of GF-14 satellite was performed using the control points collected in the high-precision digital calibration field,and the calibration parameters of the dual-line array cameras were solved as a whole by alternate iterations of forward and backward intersection.On this basis,the location accuracy of the stereo images using the calibration parameters was preliminarily evaluated by using several test fields around the world.The evaluation result shows that the direct forward intersection accuracy of GF-14 satellite images without GCPs after on-orbit geometric calibration reaches 2.34 meters(RMS)in plane and 1.97 meters(RMS)in elevation.展开更多
The paper designs a peripheral maximum gray differ-ence(PMGD)image segmentation method,a connected-compo-nent labeling(CCL)algorithm based on dynamic run length(DRL),and a real-time implementation streaming processor ...The paper designs a peripheral maximum gray differ-ence(PMGD)image segmentation method,a connected-compo-nent labeling(CCL)algorithm based on dynamic run length(DRL),and a real-time implementation streaming processor for DRL-CCL.And it verifies the function and performance in space target monitoring scene by the carrying experiment of Tianzhou-3 cargo spacecraft(TZ-3).The PMGD image segmentation method can segment the image into highly discrete and simple point tar-gets quickly,which reduces the generation of equivalences greatly and improves the real-time performance for DRL-CCL.Through parallel pipeline design,the storage of the streaming processor is optimized by 55%with no need for external me-mory,the logic is optimized by 60%,and the energy efficiency ratio is 12 times than that of the graphics processing unit,62 times than that of the digital signal proccessing,and 147 times than that of personal computers.Analyzing the results of 8756 images completed on-orbit,the speed is up to 5.88 FPS and the target detection rate is 100%.Our algorithm and implementation method meet the requirements of lightweight,high real-time,strong robustness,full-time,and stable operation in space irradia-tion environment.展开更多
Tiangong space station is a space station independently designed and developed by China.In order to build and operate the space station,it was necessary to make breakthroughs in many fields and master several key tech...Tiangong space station is a space station independently designed and developed by China.In order to build and operate the space station,it was necessary to make breakthroughs in many fields and master several key technologies,which were characterized over a long technological span and underwent difficult verifications.Therefore,in addition to ground verification,on-orbit flight tests of key technologies for the assembly,construction and operation of the space station were planned to be conducted used by the core module,taking into account the differences in the gravity environment between space and the Earth,in order to lay a foundation for the subsequent comprehensive assembly,construction and long-term on-orbit operation of the space station.In this paper,the mission characteristics of the space station are briefly introduced,along with the key technologies for the assembly and construction of the space station,and then the on-orbit verification tests are comprehensively introduced.展开更多
On-orbit servicing requires efficient techniques for manipulating passive objects. The paper aims at developing a reactionless control method that drives the manipulator to manipulate passive objects with high precisi...On-orbit servicing requires efficient techniques for manipulating passive objects. The paper aims at developing a reactionless control method that drives the manipulator to manipulate passive objects with high precision, while inducing no disturbances to its base attitude. To this end, decomposition of the target dynamics from the base dynamics is discussed, so that they can be considered as two independent subsystems. A reactionless nonlinear controller is presented, which ensures high-precision manipulation of the targets and that the base orientation is unchanged. This is achieved by combining the robust finite-time control with the reaction null space. Finally, the performance of the proposed method is examined by comparing it with that of a reactionless PD controller and a pure finite-time controller.展开更多
In this paper,a hybrid passive/active vibration(HPAV)controller of a loosely connected spacecraft consisting of a servicing satellite,a target and an X-shape structure isolator is first proposed to suppress vibrations...In this paper,a hybrid passive/active vibration(HPAV)controller of a loosely connected spacecraft consisting of a servicing satellite,a target and an X-shape structure isolator is first proposed to suppress vibrations of the system when subjected to the impulsive external excitations during the on-orbit missions.The passive dynamic response of the combined system can be adjusted appropriately to achieve the desired vibration isolation performance by tuning the structural parameters of the bio-inspired X-shape structure.Moreover,the adaptive control design through dynamic scaling technique is selected as the active component to maintain high vibration isolation performance in the presence of parameter uncertainties such as mass of the satellite platform,the damping and rotation friction coefficients of the X-shape structure.Compared with the pure passive system and the traditional spring-mass-damper(SMD)isolator,the HPAV strategy witnesses lower transmissibility,smaller vibration amplitude and higher convergence rate when subjected to the post-capture impact.Numerical simulations demonstrate the feasibility and validity of the proposed hybrid control scheme in suppressing vibrations of the free-floating spacecraft.展开更多
A retrieval control strategy for failed satellite,which is connected to a servicing spacecraft by a tether,is studied.The Lagrange analytical mechanics based dynamics modeling for the system composed of a servicing sp...A retrieval control strategy for failed satellite,which is connected to a servicing spacecraft by a tether,is studied.The Lagrange analytical mechanics based dynamics modeling for the system composed of a servicing spacecraft,a tether and a failed satellite,is presented under the earth center inertia coordinate system,then model simplification is conducted under the assumption that the failed satellite’s mass is far smaller than the servicing spacecraft’s,meanwhile the tether’s length is far smaller than the size of the servicing spacecraft’s orbit.Analysis shows that the retrieval process is intrinsically unstable as the Coriolis force functions is a negative damping.A retrieval strategy based on only the tether’s tension is designed,resulting in the fastest retrieval speed.In the proposed strategy,firstly,the tether’s swing angle amplitude is adjusted to 45?by deploying/retrieving the tether;then the tether swings freely with fixed length until it reaches negative maximum angle–45?;finally,the tether is retrieved by the pre-assigned exponential law.For simplicity,only the coplanar situation,that the tether swings in the plane of the servicing spacecraft’s orbit,is studied.Numerical simulation verifies the effectiveness of the strategy proposed.展开更多
This paper summarized the on-orbit measurement performance of GLAS, and analyzed the precision of its data products. By comparing the high-accuracy ICE- Sat measurements with the GPS ground surveys during 21st CHINARE...This paper summarized the on-orbit measurement performance of GLAS, and analyzed the precision of its data products. By comparing the high-accuracy ICE- Sat measurements with the GPS ground surveys during 21st CHINARE inner ice sheets expedition, it is analyzed and validated that the suggested Dome A area and the measured peak point of Antarctica inner ice sheets defined during 21st CHINARE are both correct.展开更多
More space truss construction has been planned to develop and utilize space resources.These trusses are designed in the way of large-scale,complex,modular,and on-orbit assembly.To meet the upcoming challenge of large-...More space truss construction has been planned to develop and utilize space resources.These trusses are designed in the way of large-scale,complex,modular,and on-orbit assembly.To meet the upcoming challenge of large-scale space infrastructure construction,it is necessary to study space truss automation design and robotic construction.This paper proposes an ordinal finite screw adjacency matrix model(OFSAMM),focusing on the relationship between assembly motions,to express and compute a space truss structure.In this model,a space truss is abstracted as a set of ordered assembly motions,each of which is recorded as a finite screw as the basic element of the truss and its assembly.The operation of truss transformation is also derived under this model.Therefore,the truss configuration,the assembly sequence,the truss sub-assembly,the truss components,and the on-orbit assembly task can be expressed and calculated in a unified model,which is calculated and stores the truss topology and assembly with the minimum storage cost.At the end of this paper,we introduce how to synthesize and optimize space truss design through two cases.The study will help to improve design efficiency.Furthermore,it provides a theoretical basis for the automatic construction of space truss structures,especially in the next stage.展开更多
Once China’s Tianwen-1 Mars probe arrived in a Mars orbit after a seven-month flight in the deep cold space environment,it would be urgently necessary to monitor its state and the surrounding environment.To address t...Once China’s Tianwen-1 Mars probe arrived in a Mars orbit after a seven-month flight in the deep cold space environment,it would be urgently necessary to monitor its state and the surrounding environment.To address this issue,we developed a flexible deployable subsystem based on shape memory polymer composites(SMPC-FDS)with a large folding ratio,which incorporates a camera and two temperature telemetry points for monitoring the local state of the Mars orbiter and the deep space environment.Here,we report on the development,testing,and successful application of the SMPC-FDS.Before reaching its Mars remote-sensing orbit,the SMPC-FDS is designed to be in a folded state with high stiffness;after reaching orbit,it is in a deployed state with a large envelope.The transition from the folded state to the deployed state is achieved by electrically heating the shape memory polymer composites(SMPCs);during this process,the camera on the SMPC-FDS can capture the local state of the orbiter from multiple angles.Moreover,temperature telemetry points on the SMPC-FDS provide feedback on the environment temperature and the temperature change of the SMPCs during the energization process.By simulating a Mars on-orbit space environment,the engineering reliability of the SMPC-FDS was comprehensively verified in terms of the material properties,structural dynamic performance,and thermal vacuum deployment feasibility.Since the launch of Tianwen-1 on 23 July 2020,scientific data on the temperature environment around Tianwen-1 has been successfully acquired from the telemetry points on the SMPCFDS,and the local state of the orbiter has been photographed in orbit,showing the national flag of China fixed on the orbiter.展开更多
Space electromagnetic docking technology, free of propellant and plume contamination, offers continuous, reversible and synchronous controllability, which is widely applied in the future routine on-orbit servicing mis...Space electromagnetic docking technology, free of propellant and plume contamination, offers continuous, reversible and synchronous controllability, which is widely applied in the future routine on-orbit servicing missions. Due to the inherent nonlinearities, couplings and uncertainties of an electromagnetic force model, the dynamics and control problems of them are difficult. A new modeling approach for relative motion dynamics with intersatellite force is proposed. To resolve these control problems better, a novel nonlinear control method for soft space electro-magnetic docking is proposed, which combines merits of artificial potential function method, Lyapunov theory and extended state observer. In addition, the angular momentum management problem of space electromagnetic docking and approaches of handling it by exploiting the Earth's magnetic torque are investigated. Finally, nonlinear simulation results demonstrate the feasibility of the dynamic model and the novel nonlinear control method.展开更多
<div style="text-align:justify;"> Due to the influence of processing technology and environmental factors, there are errors in attitude measurement with the three-axis magnetometer, and the change of p...<div style="text-align:justify;"> Due to the influence of processing technology and environmental factors, there are errors in attitude measurement with the three-axis magnetometer, and the change of parameters during the operation of the magnetometer in orbit will have a great impact on the measurement accuracy. This paper studies the calibration method of magnetometer based on BP neural network, which reduces the influence of model error on calibration accuracy. Firstly, the error model of the magnetometer and the structural characteristics of the BP neural network are analyzed. Secondly, the number of hidden layers and hidden nodes is optimized. To avoid the problem of slow convergence and low accuracy of basic BP algorithm, this paper uses the Levenberg Marquardt backpropagation training method to improve the training speed and prediction accuracy and realizes the on-orbit calibration of magnetometer through online training of the neural network. Finally, the effectiveness of the method is verified by numerical simulation. The results show that the neural network designed in this paper can effectively reduce the measurement error of magnetometer, while the online training can effectively reduce the error caused by the change of magnetometer parameters, and reduce the measurement error of magnetometer to less than 10 nT. </div>展开更多
With the continuous improvement of the performance and the increasing variety of optical mapping and remote sensing satellites,they have become an important support for obtaining global accurate surveying and mapping ...With the continuous improvement of the performance and the increasing variety of optical mapping and remote sensing satellites,they have become an important support for obtaining global accurate surveying and mapping remote sensing information.At present,optical mapping and remote sensing satellites already have sub-meter spatial resolution capabilities,but there is a serious lag problem in mapping and remote sensing information services.It is urgent to develop intelligent mapping and remote sensing satellites to promote the transformation and upgrading to real-time intelligent services.Firstly,based on the three imaging systems of the optical mapping and remote sensing satellites and their realization methods and application characteristics,this paper analyzes the applicable system of the intelligent mapping and remote sensing satellites.Further,according to the application requirements of real-time,intelligence,and popularization,puts forward the design concept of integrated intelligent remote sensing satellite integrating communication,navigation,and remote sensing and focuses on the service mode and integrated function composition of intelligent remote sensing satellite.Then expounds on the performance and characteristics of the Luojia-301 satellite,a new generation of intelligent surveying and mapping remote sensing scientific test satellite.And finally summarizes and prospects the development and mission of intelligent mapping remote sensing satellites.Luojia-301 satellite integrates remote sensing and communication functions.It explores an efficient and intelligent service mode of mapping and remote sensing information from data acquisition to the application terminal and provides a real service verification platform for on-orbit processing and real-time transmission of remote sensing data based on space-ground internet,which is of great significance to the construction of China’s spatial information network.展开更多
The attitude control system design and its control effect are affected considerably by the mass-property parameters of the spacecraft. In the mission of on-orbit servicing, as fuel is expended, or the payloads are add...The attitude control system design and its control effect are affected considerably by the mass-property parameters of the spacecraft. In the mission of on-orbit servicing, as fuel is expended, or the payloads are added or removed, the center of mass will be changed in certain axe; consequently, some thrusters' directions are deviated from the center of mass(CM) in certain plane. The CM of assembled spacecraft estimation and thruster direction control are studied. Firstly, the attitude dynamics of the assembled spacecraft is established based on the Newton-Euler method. Secondly, the estimation can be identified by the least recursive squares algorithm. Then, a scheme to control the thrusters' directions is proposed. By using the gimbal installed at the end of the boom, the angle of the thruster is controlled by driving the gimbal; therefore, thrusters can be directed to the CM again. Finally, numerical simulations are used to verify this scheme. Results of the numerical simulations clearly show that this control scheme is rational and feasible.展开更多
文摘According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements restricted by satellite attitude dynamics and estimates the gyro bias generated when the gyro is electrified. Observability of the calibration model is analyzed and applicable conditions of the technology are derived. Simulation results indicate that the calibration algorithm is accurate and robust at gyro sampling rate, and its convergence speed is fast. Within the given attitude dynamics model error, the convergence time is less than 100 s and the convergence accuracy is about 1.0 (°)/h. Calibration performance can meet requirements of spacecraft operations.
基金supported by the Manned Spaceflight Program of China,the Advanced Space Medio-Engineering Research Project of China(2014SY54A0001)
文摘Sufficient sleep duration and good sleep quality are crucial to ensure normal physical and mental health, cognition and work performance for the common people, as well as astronauts. On-orbit sleep problem is very common among astronauts and has potential detrimental influences on the health of crewmembers and the safety of flight missions. Sleep in space is becoming a new medical research frontier. In this review we summarized on-orbit sleep problems of astronauts and six kinds of causes, and we presented the effects of lack of sleep on performance as well as mental and physical health, then we proposed seven kinds of countermeasures for sleep disturbance in spaceflight, including pharmacologic interventions, light treatment, crew selection and training, Traditional Chinese Medicine and so on. Furthermore, we discussed and oriented the prospect of researches on sleep in space.
基金supported by the National Natural Science Foundation of China (11102018)
文摘A new type of estimator is developed for the satellite formation to track and inspect on-orbit targets. The follower satellite in the formation works without relative sensors, and its target pointing commands are derived based on relative orbital dynamics. The centralized estimator based on truth measurement is designed, however, this estimator is proved unstable because of the lack of necessary measurement information. After that, an alternative estimator based on pseudo measurement is designed, and its observability and controllability are analyzed to qualitatively evaluate the convergence performance. Finally, an on-orbit target inspection scenario is numerically simulated to verify the performance of the estimator based on pseudo measurement.
基金National Natural Science Foundation of China(No.41601492)SAST Foundation(No.SAST2016091)Development Program of China(No.2016YFB0501402)。
文摘The paper presents a geometric calibration method based on the sparse ground control points (GCPs), aiming to the linear push-broom optical satellite. This method can achieve the optimal estimate of internal and external parameters with two overlapped image pair along the charge-coupled device (CCD), and sparse GCPs in the image region, further get rid of the dependence on the expensive calibration site data. With the calibrated parameters, the line of sight (LOS) of all CCD detectors can be recovered. This paper firstly establishes the rigorous imaging model of linear push-broom optical satellite based on its imaging mechanism. And then the calibration model is constructed by improving the internal sensor model with a viewing-angle model after an analysis on systematic errors existing in the imaging model is performed. A step-wise solution is applied aiming to the optimal estimate of external and internal parameters. At last, we conduct a set of experiments on the ZY-3 NAD camera and verify the accuracy and effectiveness of the presented method by comparison.
文摘The Visible and Infrared Multispectral Imager (VIMI) is one of the main payloads of the GF-5 satellite. It has 12 spectral bands covering the wavelength from visible light to thermal infrared. The imager designed life is 8 years. In order to monitor and correct the radiometric performance of the imager for a long time and meet the user’s demand for the quantitative remote sensing application, the expandable diffuser used for calibration in full FOV and full optical path method is designed. The solar diffuser is installed on the front side of the optical system and does not affect the normal imaging of VIMI. When VIMI need calibration, the diffuser is expand to the front of optical system via the driving mechanism. According to the characteristics of the GF-5 satellite orbit, the requirement of the calibration energy and the installation matrix of the imager relative to the satellite, the expansion angle of the diffuser is 39 degrees. The 430 mm × 430 mm large-size PTEE diffuser is manufactured to ensure full FOV and full optical path calibration. The diffuser’s directional hemispherical reflectance is higher than 95% from 420 nm to 2400 nm and variation of BRDF in the direction of imager observation is better than 2.5%. The diffuser stability monitoring radiometer is designed to monitor the on-orbit attenuation performance of the diffuser. Results of ground simulation experiments and preliminary on-board calibration experiments were introduced.
基金Project supported by the National Natural Science Foundation of China(Grant No.41474161)the National High-Technology Program of China(Grant No.2015AA123703)
文摘In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM) and an integrating sphere transfer radiometer(ISTR) was designed in this paper.Depending on the Sun,this chain based on detectors provides precise spectral radiometric calibration and measurement to spectrometers in the reflective solar band(RSB) covering 300–2500 nm with a spectral bandwidth of 0.5–6 nm.It shortens the traditional chain based on lamp source and reduces the calibration uncertainty from 5% to 0.5% by using the cryogenic radiometer in space as a radiometric benchmark and trap detectors as secondary standard.This paper also gives a detailed uncertainty budget with reasonable distribution of each impact factor,including the weak spectral signal measurement with uncertainty of 0.28%.According to the peculiar design and comprehensive uncertainty analysis,it illustrates that the spectral radiance measurement uncertainty of the ISTR system can reach to 0.48%.The result satisfies the requirements of SI-traceable on-orbit calibration and has wider significance for expanding the application of the remote sensing data with high-quality.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61973153)
文摘On-orbit servicing, such as spacecraft maintenance, on-orbit assembly, refueling, and de-orbiting, can reduce the cost of space missions, improve the performance of spacecraft, and extend its life span. The relative state between the servicing and target spacecraft is vital for on-orbit servicing missions, especially the final approaching stage. The major challenge of this stage is that the observed features of the target are incomplete or are constantly changing due to the short distance and limited Field of View (FOV) of camera. Different from cooperative spacecraft, non-cooperative target does not have artificial feature markers. Therefore, contour features, including triangle supports of solar array, docking ring, and corner points of the spacecraft body, are used as the measuring features. To overcome the drawback of FOV limitation and imaging ambiguity of the camera, a "selfie stick" structure and a self-calibration strategy were implemented, ensuring that part of the contour features could be observed precisely when the two spacecraft approached each other. The observed features were constantly changing as the relative distance shortened. It was difficult to build a unified measurement model for different types of features, including points, line segments, and circle. Therefore, dual quaternion was implemented to model the relative dynamics and measuring features. With the consideration of state uncertainty of the target, a fuzzy adaptive strong tracking filter( FASTF) combining fuzzy logic adaptive controller (FLAC) with strong tracking filter(STF) was designed to robustly estimate the relative states between the servicing spacecraft and the target. Finally, the effectiveness of the strategy was verified by mathematical simulation. The achievement of this research provides a theoretical and technical foundation for future on-orbit servicing missions.
基金Independent Project of State Key Laboratory of Geo-information Engineering(SKLGIE2022-ZZ-01)The Youth Science Innovation Fund(No.2023-01)。
文摘GF-14 satellite is a new generation of sub-meter stereo surveying and mapping satellite in China,carrying dual-line array stereo mapping cameras to achieve 1∶10000 scale topographic mapping without Ground Control Points(GCPs).In fact,space-based high-precision mapping without GCPs is a challenging task that depends on the close cooperation of several payloads and links,of which on-orbit geometric calibration is one of the most critical links.In this paper,the on-orbit geometric calibration of the dual-line array cameras of GF-14 satellite was performed using the control points collected in the high-precision digital calibration field,and the calibration parameters of the dual-line array cameras were solved as a whole by alternate iterations of forward and backward intersection.On this basis,the location accuracy of the stereo images using the calibration parameters was preliminarily evaluated by using several test fields around the world.The evaluation result shows that the direct forward intersection accuracy of GF-14 satellite images without GCPs after on-orbit geometric calibration reaches 2.34 meters(RMS)in plane and 1.97 meters(RMS)in elevation.
文摘The paper designs a peripheral maximum gray differ-ence(PMGD)image segmentation method,a connected-compo-nent labeling(CCL)algorithm based on dynamic run length(DRL),and a real-time implementation streaming processor for DRL-CCL.And it verifies the function and performance in space target monitoring scene by the carrying experiment of Tianzhou-3 cargo spacecraft(TZ-3).The PMGD image segmentation method can segment the image into highly discrete and simple point tar-gets quickly,which reduces the generation of equivalences greatly and improves the real-time performance for DRL-CCL.Through parallel pipeline design,the storage of the streaming processor is optimized by 55%with no need for external me-mory,the logic is optimized by 60%,and the energy efficiency ratio is 12 times than that of the graphics processing unit,62 times than that of the digital signal proccessing,and 147 times than that of personal computers.Analyzing the results of 8756 images completed on-orbit,the speed is up to 5.88 FPS and the target detection rate is 100%.Our algorithm and implementation method meet the requirements of lightweight,high real-time,strong robustness,full-time,and stable operation in space irradia-tion environment.
文摘Tiangong space station is a space station independently designed and developed by China.In order to build and operate the space station,it was necessary to make breakthroughs in many fields and master several key technologies,which were characterized over a long technological span and underwent difficult verifications.Therefore,in addition to ground verification,on-orbit flight tests of key technologies for the assembly,construction and operation of the space station were planned to be conducted used by the core module,taking into account the differences in the gravity environment between space and the Earth,in order to lay a foundation for the subsequent comprehensive assembly,construction and long-term on-orbit operation of the space station.In this paper,the mission characteristics of the space station are briefly introduced,along with the key technologies for the assembly and construction of the space station,and then the on-orbit verification tests are comprehensively introduced.
文摘On-orbit servicing requires efficient techniques for manipulating passive objects. The paper aims at developing a reactionless control method that drives the manipulator to manipulate passive objects with high precision, while inducing no disturbances to its base attitude. To this end, decomposition of the target dynamics from the base dynamics is discussed, so that they can be considered as two independent subsystems. A reactionless nonlinear controller is presented, which ensures high-precision manipulation of the targets and that the base orientation is unchanged. This is achieved by combining the robust finite-time control with the reaction null space. Finally, the performance of the proposed method is examined by comparing it with that of a reactionless PD controller and a pure finite-time controller.
文摘In this paper,a hybrid passive/active vibration(HPAV)controller of a loosely connected spacecraft consisting of a servicing satellite,a target and an X-shape structure isolator is first proposed to suppress vibrations of the system when subjected to the impulsive external excitations during the on-orbit missions.The passive dynamic response of the combined system can be adjusted appropriately to achieve the desired vibration isolation performance by tuning the structural parameters of the bio-inspired X-shape structure.Moreover,the adaptive control design through dynamic scaling technique is selected as the active component to maintain high vibration isolation performance in the presence of parameter uncertainties such as mass of the satellite platform,the damping and rotation friction coefficients of the X-shape structure.Compared with the pure passive system and the traditional spring-mass-damper(SMD)isolator,the HPAV strategy witnesses lower transmissibility,smaller vibration amplitude and higher convergence rate when subjected to the post-capture impact.Numerical simulations demonstrate the feasibility and validity of the proposed hybrid control scheme in suppressing vibrations of the free-floating spacecraft.
基金supported by the Fundamental Research Funds for the Central Universities(NUAA-NS2016082)
文摘A retrieval control strategy for failed satellite,which is connected to a servicing spacecraft by a tether,is studied.The Lagrange analytical mechanics based dynamics modeling for the system composed of a servicing spacecraft,a tether and a failed satellite,is presented under the earth center inertia coordinate system,then model simplification is conducted under the assumption that the failed satellite’s mass is far smaller than the servicing spacecraft’s,meanwhile the tether’s length is far smaller than the size of the servicing spacecraft’s orbit.Analysis shows that the retrieval process is intrinsically unstable as the Coriolis force functions is a negative damping.A retrieval strategy based on only the tether’s tension is designed,resulting in the fastest retrieval speed.In the proposed strategy,firstly,the tether’s swing angle amplitude is adjusted to 45?by deploying/retrieving the tether;then the tether swings freely with fixed length until it reaches negative maximum angle–45?;finally,the tether is retrieved by the pre-assigned exponential law.For simplicity,only the coplanar situation,that the tether swings in the plane of the servicing spacecraft’s orbit,is studied.Numerical simulation verifies the effectiveness of the strategy proposed.
文摘This paper summarized the on-orbit measurement performance of GLAS, and analyzed the precision of its data products. By comparing the high-accuracy ICE- Sat measurements with the GPS ground surveys during 21st CHINARE inner ice sheets expedition, it is analyzed and validated that the suggested Dome A area and the measured peak point of Antarctica inner ice sheets defined during 21st CHINARE are both correct.
基金financial support under the Manned Aerospace Research Project(Grant No.040102)。
文摘More space truss construction has been planned to develop and utilize space resources.These trusses are designed in the way of large-scale,complex,modular,and on-orbit assembly.To meet the upcoming challenge of large-scale space infrastructure construction,it is necessary to study space truss automation design and robotic construction.This paper proposes an ordinal finite screw adjacency matrix model(OFSAMM),focusing on the relationship between assembly motions,to express and compute a space truss structure.In this model,a space truss is abstracted as a set of ordered assembly motions,each of which is recorded as a finite screw as the basic element of the truss and its assembly.The operation of truss transformation is also derived under this model.Therefore,the truss configuration,the assembly sequence,the truss sub-assembly,the truss components,and the on-orbit assembly task can be expressed and calculated in a unified model,which is calculated and stores the truss topology and assembly with the minimum storage cost.At the end of this paper,we introduce how to synthesize and optimize space truss design through two cases.The study will help to improve design efficiency.Furthermore,it provides a theoretical basis for the automatic construction of space truss structures,especially in the next stage.
基金supported by the National Natural Science Foundation of China(11632005)the Heilongjiang Touyan Innovation Team Program。
文摘Once China’s Tianwen-1 Mars probe arrived in a Mars orbit after a seven-month flight in the deep cold space environment,it would be urgently necessary to monitor its state and the surrounding environment.To address this issue,we developed a flexible deployable subsystem based on shape memory polymer composites(SMPC-FDS)with a large folding ratio,which incorporates a camera and two temperature telemetry points for monitoring the local state of the Mars orbiter and the deep space environment.Here,we report on the development,testing,and successful application of the SMPC-FDS.Before reaching its Mars remote-sensing orbit,the SMPC-FDS is designed to be in a folded state with high stiffness;after reaching orbit,it is in a deployed state with a large envelope.The transition from the folded state to the deployed state is achieved by electrically heating the shape memory polymer composites(SMPCs);during this process,the camera on the SMPC-FDS can capture the local state of the orbiter from multiple angles.Moreover,temperature telemetry points on the SMPC-FDS provide feedback on the environment temperature and the temperature change of the SMPCs during the energization process.By simulating a Mars on-orbit space environment,the engineering reliability of the SMPC-FDS was comprehensively verified in terms of the material properties,structural dynamic performance,and thermal vacuum deployment feasibility.Since the launch of Tianwen-1 on 23 July 2020,scientific data on the temperature environment around Tianwen-1 has been successfully acquired from the telemetry points on the SMPCFDS,and the local state of the orbiter has been photographed in orbit,showing the national flag of China fixed on the orbiter.
基金supported by the National Natural Science Foundation of China(11172322)
文摘Space electromagnetic docking technology, free of propellant and plume contamination, offers continuous, reversible and synchronous controllability, which is widely applied in the future routine on-orbit servicing missions. Due to the inherent nonlinearities, couplings and uncertainties of an electromagnetic force model, the dynamics and control problems of them are difficult. A new modeling approach for relative motion dynamics with intersatellite force is proposed. To resolve these control problems better, a novel nonlinear control method for soft space electro-magnetic docking is proposed, which combines merits of artificial potential function method, Lyapunov theory and extended state observer. In addition, the angular momentum management problem of space electromagnetic docking and approaches of handling it by exploiting the Earth's magnetic torque are investigated. Finally, nonlinear simulation results demonstrate the feasibility of the dynamic model and the novel nonlinear control method.
文摘<div style="text-align:justify;"> Due to the influence of processing technology and environmental factors, there are errors in attitude measurement with the three-axis magnetometer, and the change of parameters during the operation of the magnetometer in orbit will have a great impact on the measurement accuracy. This paper studies the calibration method of magnetometer based on BP neural network, which reduces the influence of model error on calibration accuracy. Firstly, the error model of the magnetometer and the structural characteristics of the BP neural network are analyzed. Secondly, the number of hidden layers and hidden nodes is optimized. To avoid the problem of slow convergence and low accuracy of basic BP algorithm, this paper uses the Levenberg Marquardt backpropagation training method to improve the training speed and prediction accuracy and realizes the on-orbit calibration of magnetometer through online training of the neural network. Finally, the effectiveness of the method is verified by numerical simulation. The results show that the neural network designed in this paper can effectively reduce the measurement error of magnetometer, while the online training can effectively reduce the error caused by the change of magnetometer parameters, and reduce the measurement error of magnetometer to less than 10 nT. </div>
基金National Natural Science Foundation of China(Nos.91738302,91838303)。
文摘With the continuous improvement of the performance and the increasing variety of optical mapping and remote sensing satellites,they have become an important support for obtaining global accurate surveying and mapping remote sensing information.At present,optical mapping and remote sensing satellites already have sub-meter spatial resolution capabilities,but there is a serious lag problem in mapping and remote sensing information services.It is urgent to develop intelligent mapping and remote sensing satellites to promote the transformation and upgrading to real-time intelligent services.Firstly,based on the three imaging systems of the optical mapping and remote sensing satellites and their realization methods and application characteristics,this paper analyzes the applicable system of the intelligent mapping and remote sensing satellites.Further,according to the application requirements of real-time,intelligence,and popularization,puts forward the design concept of integrated intelligent remote sensing satellite integrating communication,navigation,and remote sensing and focuses on the service mode and integrated function composition of intelligent remote sensing satellite.Then expounds on the performance and characteristics of the Luojia-301 satellite,a new generation of intelligent surveying and mapping remote sensing scientific test satellite.And finally summarizes and prospects the development and mission of intelligent mapping remote sensing satellites.Luojia-301 satellite integrates remote sensing and communication functions.It explores an efficient and intelligent service mode of mapping and remote sensing information from data acquisition to the application terminal and provides a real service verification platform for on-orbit processing and real-time transmission of remote sensing data based on space-ground internet,which is of great significance to the construction of China’s spatial information network.
基金supported by the National Natural Science Foundation of China(11302010)
文摘The attitude control system design and its control effect are affected considerably by the mass-property parameters of the spacecraft. In the mission of on-orbit servicing, as fuel is expended, or the payloads are added or removed, the center of mass will be changed in certain axe; consequently, some thrusters' directions are deviated from the center of mass(CM) in certain plane. The CM of assembled spacecraft estimation and thruster direction control are studied. Firstly, the attitude dynamics of the assembled spacecraft is established based on the Newton-Euler method. Secondly, the estimation can be identified by the least recursive squares algorithm. Then, a scheme to control the thrusters' directions is proposed. By using the gimbal installed at the end of the boom, the angle of the thruster is controlled by driving the gimbal; therefore, thrusters can be directed to the CM again. Finally, numerical simulations are used to verify this scheme. Results of the numerical simulations clearly show that this control scheme is rational and feasible.