期刊文献+
共找到471篇文章
< 1 2 24 >
每页显示 20 50 100
Exploring the molecular mechanism of action of curcumin for the treatment of diabetic retinopathy,using network pharmacology,molecular docking,and molecular dynamics simulation
1
作者 Yuan-Yuan Gan Yan-Mei Xu +4 位作者 Quan Shu Qi-Zhi Huang Tian-Long Zhou Ju-Fang Liu Wei Yu 《Integrative Medicine Discovery》 2024年第8期1-10,共10页
Background:Based on network pharmacology and molecular docking,the present study investigated the mechanism of curcumin(CUR)in diabetic retinopathy treatment.Methods:Based on the DisGeNET,Swiss TargetPrediction,GeneCa... Background:Based on network pharmacology and molecular docking,the present study investigated the mechanism of curcumin(CUR)in diabetic retinopathy treatment.Methods:Based on the DisGeNET,Swiss TargetPrediction,GeneCards,Online Mendelian Inheritance in Man,Gene Expression Omnibus,and Comparative Toxicogenomics Database,the intersection core targets of CUR and diabetic retinopathy were identified.The intersection target was imported into the STRING database to obtain the protein-protein interaction map.According to the Database for Annotation,Visualization and Integrated Discovery database,the intersected targets were enriched in Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes pathways.Then Cytoscape 3.9.1 is used to make the drug-target-disease-pathway network.The mechanism of CUR and diabetic retinopathy was further verified by molecular docking and molecular dynamics simulation.Results:There were 203 intersecting targets of CUR and diabetic retinopathy identified.1320 GO entries were enriched for GO functions,which were primarily involved in the composition of cells such as identical protein binding,protein binding,enzyme binding,etc.It was found that 175 pathways were enriched using Kyoto Encyclopedia of Genes and Genomes pathway enrichment methods,which were mainly included in the lipid and atherosclerosis,AGE-RAGE signaling pathway in diabetic complications,pathways in cancer,etc.In the molecular docking analysis,CUR was found to have a good ability to bind to the core targets of albumin,IL-1B,and IL-6.The binding of albumin to CUR was further verified by molecular dynamics simulation.Conclusion:As a result of this study,CUR may exert a role in the treatment of diabetic retinopathy through multi-target and multi-pathway regulation,which indicates a possible direction of future research. 展开更多
关键词 CURCUMIN diabetic retinopathy network pharmacology molecular docking molecular dynamics simulation
下载PDF
Elucidating the molecular targets of Curcuma longa for breast cancer treatment using network pharmacology,molecular docking and molecular dynamics simulation
2
作者 Christopher Terseer Tarkaa Damilare Adebayo Oyaniyi +5 位作者 Ridwan Abiodun Salaam Rachael Pius Ebuh Olusola Abayomi Akangbe Sayo Ebenezer Oladokun Rodiat Omotola Sowemimo Oluwaponmile Florence Ajayi 《Precision Medicine Research》 2023年第2期16-31,共16页
Background:To elucidate the molecular mechanisms of Curcuma longa(C.longa)in breast cancer treatment.Methods:Phytocompounds of C.longa were obtained from Dr.Duke’s Phytochemical and Ethnobotanical Database.Potential ... Background:To elucidate the molecular mechanisms of Curcuma longa(C.longa)in breast cancer treatment.Methods:Phytocompounds of C.longa were obtained from Dr.Duke’s Phytochemical and Ethnobotanical Database.Potential active targets were retrieved from Bindingdb,SEA and Swiss Target Prediction databases.Breast cancer targets were retrieved from the Therapeutic Target Database.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were done using DAVID and KOBAS3.0 databases respectively.The Cytoscape software was used to construct the phytocompound-target-pathway network.The PyRx and Desmond software were utilized for molecular docking and molecular dynamics simulation respectively.Results:Out of one hundred and fifty-six phytocompounds,fifty-four modulated proteins involved in breast cancer.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated C.longa exerts its therapeutic effect through regulating several key pathways.Molecular docking analysis revealed that most phytocompounds of C.longa had a good affinity with the key targets.Molecular dynamics simulation showed that ethinylestradiol formed stable ligand-protein complexes.Conclusion:The results of this study will enhance our understanding of the potential molecular mechanisms by which C.longa inhibits breast cancer and lay a foundation for future experimental studies. 展开更多
关键词 Curcuma longa network pharmacology breast cancer MECHANISM molecular docking molecular dynamics simulation
下载PDF
Network pharmacology and molecular dynamics study of the effect of the Astragalus-Coptis drug pair on diabetic kidney disease
3
作者 Mo-Yan Zhang Shu-Qin Zheng 《World Journal of Diabetes》 SCIE 2024年第7期1562-1588,共27页
BACKGROUND Diabetic kidney disease(DKD)is the primary cause of end-stage renal disease.The Astragalus-Coptis drug pair is frequently employed in the management of DKD.However,the precise molecular mechanism underlying... BACKGROUND Diabetic kidney disease(DKD)is the primary cause of end-stage renal disease.The Astragalus-Coptis drug pair is frequently employed in the management of DKD.However,the precise molecular mechanism underlying its therapeutic effect remains elusive.AIM To investigate the synergistic effects of multiple active ingredients in the Astragalus-Coptis drug pair on DKD through multiple targets and pathways.METHODS The ingredients of the Astragalus-Coptis drug pair were collected and screened using the TCMSP database and the SwissADME platform.The targets were predicted using the SwissTargetPrediction database,while the DKD differential gene expression analysis was obtained from the Gene Expression Omnibus database.DKD targets were acquired from the GeneCards,Online Mendelian Inheritance in Man database,and DisGeNET databases,with common targets identified through the Venny platform.The protein-protein interaction network and the“disease-active ingredient-target”network of the common targets were constructed utilizing the STRING database and Cytoscape software,followed by the analysis of the interaction relationships and further screening of key targets and core active ingredients.Gene Ontology(GO)function and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichments were performed using the DAVID database.The tissue and organ distributions of key targets were evaluated.PyMOL and AutoDock software validate the molecular docking between the core ingredients and key targets.Finally,molecular dynamics(MD)simulations were conducted to simulate the optimal complex formed by interactions between core ingredients and key target proteins.RESULTS A total of 27 active ingredients and 512 potential targets of the Astragalus-Coptis drug pair were identified.There were 273 common targets between DKD and the Astragalus-Coptis drug pair.Through protein-protein interaction network topology analysis,we identified 9 core active ingredients and 10 key targets.GO and KEGG pathway enrichment analyses revealed that Astragalus-Coptis drug pair treatment for DKD involves various biological processes,including protein phosphorylation,negative regulation of apoptosis,inflammatory response,and endoplasmic reticulum unfolded protein response.These pathways are mainly associated with the advanced glycation end products(AGE)-receptor for AGE products signaling pathway in diabetic complications,as well as the Lipid and atherosclerosis.Molecular docking and MD simulations demonstrated high affinity and stability between the core active ingredients and key targets.Notably,the quercetin-AKT serine/threonine kinase 1(AKT1)and quercetin-tumor necrosis factor(TNF)protein complexes exhibited exceptional stability.CONCLUSION This study demonstrated that DKD treatment with the Astragalus-Coptis drug pair involves multiple ingredients,targets,and signaling pathways.We propose a novel approach for investigating the molecular mechanism underlying the therapeutic effects of the Astragalus-Coptis drug pair on DKD.Furthermore,we suggest that quercetin is the most potent active ingredient and specifically targets AKT1 and TNF,providing a theoretical foundation for further exploration of pharmacologically active ingredients and elucidating their molecular mechanisms in DKD treatment. 展开更多
关键词 Astragalus membranaceus Coptis chinensis Franch Diabetic kidney disease Network pharmacology Molecular docking Molecular dynamics simulation
下载PDF
Insight of Natural Compounds Halimane Diterpenoids against Mycobacterium tuberculosis: Virtual Screening, DFT, Drug-Likeness, and Molecular Dynamics Approach
4
作者 Laurent Gael Eyia Andiga Boris Davy Bekono +3 位作者 Désiré Mama Bikele Pie Pascal Onguéné Amoa Luc Calvin Owono Owono Luc Léonard Mbaze Meva’a 《Computational Molecular Bioscience》 2024年第2期35-58,共24页
In the purpose to design novel antituberculosis (anti-TB) drugs agents against Mycobacterium tuberculosis (Mtb), we have built a molecular library around 42 Halimane Diterpenoids isolated from natural sources. Two Mtb... In the purpose to design novel antituberculosis (anti-TB) drugs agents against Mycobacterium tuberculosis (Mtb), we have built a molecular library around 42 Halimane Diterpenoids isolated from natural sources. Two Mtb enzymes drug targets (Mtb Mycothiol S-transferase and Mtb Homoserine transacetylase) have been adopted. The pharmacological potential was investigated through molecular docking, molecular dynamics simulation, density functional theory (gas phase and water) and ADMET analysis. Our results indicate that (2R,5R,6S)-1,2,3,4,5,6,7,8-octahydro-5-((E)-5-hydroxy-3-methylpent-3-enyl)-1,1,5,6-tetramethylnaphtha-lene-2-ol (compound 20) has displays higher docking score with each of the selected drug targets. In addition, this molecule exhibits a satisfactory drug potential activity and a good chemical reactivity. Its improved kinetic stability in the Mtb Mycothiol S-transferase enzyme reflects its suitability as a novel inhibitor of Mtb growth. This molecule has displayed a good absorption potential. Our results also show that its passive passage of the intestinal permeability barrier is more effective than that of first-line treatments (ethambutol, isoniazid). In the same way, this anti-TB druglikeness has shown to be able to cross the blood brain barrier. 展开更多
关键词 Antituberculosis Druglikeness Density Functional Theory Halimane Diterpenoids Molecular docking Molecular dynamics Simulation
下载PDF
Molecular Docking, 3D-QSAR and Molecular Dynamics Simulation Studies of Substituted Pyrimidines as Selective Covalent Janus Kinase 3 Inhibitors 被引量:2
5
作者 蔡晓力 马玉卓 +2 位作者 赵钟祥 张玲 刘鹰翔 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2018年第6期839-853,共15页
Janus kinase 3(JAK3) is a member of Janus kinase(JAK) family, and it represents a promising target for the treatment of immune diseases and cancers. However, no highly selective inhibitors of JAK3 have been develo... Janus kinase 3(JAK3) is a member of Janus kinase(JAK) family, and it represents a promising target for the treatment of immune diseases and cancers. However, no highly selective inhibitors of JAK3 have been developed. For discovering the binding mechanism of JAK3 and these inhibitors, a molecular modeling study combining molecular docking, three-dimensional quantitative structure-activity relationships(3D-QSAR), molecular dynamics and binding free energy calculations was performed on a series of pyrimidine-based compounds which could bind with the unique residue Cys909 of JAK3 kinase as the selective inhibitors of JAK3 in this work. The optimum Co MFA and Co MSIA models were generated based on the conformations obtained by molecular docking. The results showed that the models have satisfactory predicted capacity in both internal and external validation. Furthermore, a 50 ns molecular dynamics simulation was carried out to determine the detailed binding process of inhibitors with different activities. It was demonstrated that hydrogen bond interactions with Leu828, Glu903, Tyr904, Leu905 and Leu956 of JAK3 are significant for activity increase, and the Van der Waals interaction is mainly responsible for stable complex. 展开更多
关键词 JAK3 molecular docking 3D-QSAR molecular dynamics simulations binding free energy
下载PDF
Dynamics and nonlinear control of space electromagnetic docking
6
作者 Yuanwen Zhang Leping Yang +1 位作者 Yanwei Zhu Huan Huang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第3期454-462,共9页
Space electromagnetic docking technology, free of propellant and plume contamination, offers continuous, reversible and synchronous controllability, which is widely applied in the future routine on-orbit servicing mis... Space electromagnetic docking technology, free of propellant and plume contamination, offers continuous, reversible and synchronous controllability, which is widely applied in the future routine on-orbit servicing missions. Due to the inherent nonlinearities, couplings and uncertainties of an electromagnetic force model, the dynamics and control problems of them are difficult. A new modeling approach for relative motion dynamics with intersatellite force is proposed. To resolve these control problems better, a novel nonlinear control method for soft space electro-magnetic docking is proposed, which combines merits of artificial potential function method, Lyapunov theory and extended state observer. In addition, the angular momentum management problem of space electromagnetic docking and approaches of handling it by exploiting the Earth's magnetic torque are investigated. Finally, nonlinear simulation results demonstrate the feasibility of the dynamic model and the novel nonlinear control method. 展开更多
关键词 space electromagnetic docking dynamic model soft docking control angular momentum management inter-satellite electromagnetic force on-orbit servicing.
下载PDF
Research on Rigid-flexible Coupling Dynamics of Flexible Cone-probe Docking Mechanism
7
作者 HAN Wei JIANG Zhijie +1 位作者 HUANG Yiyong CHEN Xiaoqian 《空间科学学报》 CAS CSCD 北大核心 2019年第5期684-693,共10页
In this paper,a new kind of flexible cone composed of the thin-walled plates based on space probecone docking mechanism for small-sized spacecraft is presented.The theoretical model of docking impact dynamics,which ta... In this paper,a new kind of flexible cone composed of the thin-walled plates based on space probecone docking mechanism for small-sized spacecraft is presented.The theoretical model of docking impact dynamics,which takes into account the additional stiffness terms,is derived based on Lagrange Analytical Mechanics theory and Hertz contact theory.Finite element method is employed for the discretization of the thin-walled plate.The results show that the traditional dynamic model without considering the additional stiffness terms will be difficult to reach steady state.The method proposed in this paper can correctly predict the dynamic behavior of the system. 展开更多
关键词 Probe-cone docking mechanism FLEXIBLE CONE FEM Impact dynamics Additional STIFFNESS TERM
下载PDF
Interaction of Cationic and Anionic Phthalocyanines with Adenosine Deaminase, Molecular Dynamics Simulation and Docking Studies
8
作者 Davood Ajloo Seyyed Morteza Fazeli Farhad Janbaz Amirani 《Computational Molecular Bioscience》 2013年第4期81-93,共13页
Interactions of anionic, cationic and metal phthalocyanine with adenosine deaminase were studied by molecular dynamics and docking simulation. Structural parameters such as solvent accessible surface area (SAS), mid-p... Interactions of anionic, cationic and metal phthalocyanine with adenosine deaminase were studied by molecular dynamics and docking simulation. Structural parameters such as solvent accessible surface area (SAS), mid-point of transition temperature (Tm), radial distribution function (RDF) and hydrogen bond, helix, coil, beta percentage and other physical parameters were obtained. The denaturation of adenosine deaminase (ADA) by heat, anionic and cationic phthalocyanines was compared. A series of 20 ns simulation performed at temperatures ranging from 275 to 450 K, starting from the ADA native structure. Results of radial distribution functions (RDFs) showed that metallic derivative at low concentration behaves the same as osmolytes that increases the beta form and increases the enzyme stability. Molecular docking studies have been carried out to confirm the simulation results. Investigation of binding site and free energy confirmed that the efficiency of interaction with adenosine deaminase depends on metal core. Binding energy of non-metallic form is more negative than metallic form and it significantly decreases for phthalocyanine. Self-aggregation of anionic phthalocyanine decreases in comparison with cationic derivative, therefore enzyme denaturation in the presence of anionic form is higher than the other. Furthermore, thermal stability of the enzyme also depends on temperature in presence of phthalocyanine. Binding site of phthalocyanine on the enzyme has been identified by docking analysis. 展开更多
关键词 MOLECULAR dynamics MOLECULAR docking PHTHALOCYANINE ADENOSINE DEAMINASE DENATURATION
下载PDF
Investigation of SARS-CoV-2 Main Protease Potential Inhibitory Activities of Some Natural Antiviral Compounds Via Molecular Docking and Dynamics Approaches
9
作者 Nada M.Mostafa Muhammad I.Ismail +5 位作者 Amr M.El-Araby Dina M.Bahgat Ahmed M.Elissawy Ahmed M.Mostafa Omayma A.Eldahshan Abdel Nasser B.Singab 《Phyton-International Journal of Experimental Botany》 SCIE 2022年第5期1089-1104,共16页
Coronaviruses caused an outbreak pandemic disease characterized by a severe acute respiratory distress syndrome leading to the infection of more than 200 million patients and the death of more than 4 million individua... Coronaviruses caused an outbreak pandemic disease characterized by a severe acute respiratory distress syndrome leading to the infection of more than 200 million patients and the death of more than 4 million individuals.The primary treatment is either supportive or symptomatic.Natural products have an important role in the development of various drugs.Thus,screening of natural compounds with reported antiviral activities can lead to the discovery of potential inhibitory entities against coronaviruses.In the current study,an in-silico molecular docking experiment was conducted on the effects of some of these natural antiviral phytoconstituents,(e.g.,procyanidin B2,theaflavin,quercetin,ellagic acid,caffeoylquinic acid derivatives,berginin,eudesm-1β,6α,11-triol and arbutin),on the crystal structure of SARS-CoV-2 main protease(PDB ID:6w63)using AutoDock-Vina software.Many of the docked compounds revealed good binding affinity,with procyanidin B2(–8.6 Kcal/mol)and theaflavin(–8.5 Kcal/mol)showing a better or similar binding score as the ligand(–8.5 Kcal/mol).Molecular dynamics simulations were carried out at 100 ns and revealed that procyanidin B2 forms a more stable complex with SARS-CoV-2 main protease than theaflavin.Procyanidin B2,theaflavin,and 4,5-dicaffeoylquinic acid were evaluated for toxicity by ProTox-II webserver and were non-toxic according to the predicted LD50 values and safe on different organs and pathways.Additionally,these phytoconstituents showed good ADME properties and acceptable lipophilicity,as evaluated using WLOGP.Amongst the tested compounds,procyanidin B2 showed the highest lipophilic value.It is worth mentioning that these natural inhibitiors of SARS-CoV-2 main protease are components of green and black tea that can be used as a supporting supplement for COVID patients or as potential nuclei for further drug design and development campaigns. 展开更多
关键词 CORONAVIRUS natural products SARS-CoV-2 main protease molecular docking molecular dynamics TEA
下载PDF
The active ingredients of Huanglian Jiedu Decoction in treating COVID- 19 based on network pharmacology, molecular docking and molecular dynamics simulation
10
作者 Ping Xie Xiaohan Jin +4 位作者 Yuanfa Lai Chunli Hao Huabin Huang Shaogui He Qihua You 《TMR Modern Herbal Medicine》 2021年第1期9-23,共15页
Objective:To explore the active ingredients of Huanglian Jiedu Decoction(HLJD)for the treatment of COVID-19 and to further verify the combination mode.Methods:The TCMSP database was used to search for HLJD active ingr... Objective:To explore the active ingredients of Huanglian Jiedu Decoction(HLJD)for the treatment of COVID-19 and to further verify the combination mode.Methods:The TCMSP database was used to search for HLJD active ingredients and targets.COVID-19 targets were collected from GeneCards,DisGeNET and OMIM databases.Material-active-ingredients-targets(gene)network and targets protein-protein interaction network were constructed using Cytoscape 3.8.0 and the STRING database.GO functional enrichment analysis and KEGG pathway enrichment analysis of core targets were performed using R software.Cytoscape 3.8.0 was used to build“compound-targets-pathways”to predict HLJD mechanisms,and active ingredients were used as ligands to molecularly dock with SARS-CoV-23CL hydrolase,Spike glycoprotein and ACE2.The binding energy was calculated by molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area method,and intermolecular interactions and the contribution of each residue to the binding free energy were analyzed.Results:Four medicinal materials,66 compounds and 219 targets were identified.It is found that the Protein-Protein Interaction core network contained 35 HLJD key targets proteins for COVID-19 treatment.705 GO functional enrichment entries(P<0.05)were produced;while KEGG pathway enrichment analysis identified 142 pathways(P<0.05)involving the Tumor Necrosis Factor signaling pathway and Interleukin-17 signaling pathway,etc.The binding energies of Kihadanin A,Palmidin A,Obacunone and Hispidone are much smaller than those of the currently reported clinical drugs with anti-SARS-CoV-2 drugs.The results of the binding energy indicate that van der Waals force is the main driving force for enzyme-substrate combination,whereas the electrostatic interaction and non-polar solvents contribute less.Conclusion:The“multi-component-multi-targets-multi-pathway”synergy of HLJD,which binds to SARSCoV-23CL hydrolase,Spike glycoprotein and ACE2,can act on targets Heat Shock Protein 90 Alpha Family Class A Member 1,Adrenoceptor Beta 2,Checkpoint Kinase 1,Peroxisome Proliferator-Activated Receptor Gamma and Mitogen-activated protein kinase 14 to regulate multiple signal pathways,and it may have a therapeutic effect on COVID-19. 展开更多
关键词 Network pharmacology Molecular docking Molecular dynamics simulation Huanglian Jiedu Decoction COVID-19
下载PDF
Insight into the interaction of human pancreatic lipase with potential anti-obesity drug,Cetilistat,using a molecular docking and molecular dynamics simulation
11
作者 Dnyaneshwar Nirmale Sunil S.Jalalpure 《TMR Pharmacology Research》 2022年第3期7-11,共5页
Background:Obesity is a lifestyle disease that involves an excessive amount of body fat deposition.Cetilistat is being used to treat obesity.It mainly inhibits human pancreatic lipase,an enzyme that helps to break dow... Background:Obesity is a lifestyle disease that involves an excessive amount of body fat deposition.Cetilistat is being used to treat obesity.It mainly inhibits human pancreatic lipase,an enzyme that helps to break down the oil into small molecules of glycerol and fatty acids in the intestine.Therefore,pancreatic lipase inhibition is a potential therapeutic approach for obesity control and treatment.Methods:cetilistat’s binding mode and interaction with human pancreatic lipase are not well understood.In this study,the human pancreatic lipase inhibitory activity of cetilistat was investigated by employing molecular docking and molecular dynamics simulation.Human pancreatic lipase has two states:closed state and open state which is controlled by a surface loop i.e.“lid region”which normally undergoes conformational changes only upon addition of lipids and then breakdown into glycerol and fatty acid.In the present study,open state conformation of the human pancreatic lipase structure was used(2OXE.pdb).The docking study reveals that the cetilistat prefers to bind at the“lid region”of pancreatic lipase.Furthermore,molecular dynamics simulation reveals that the cetilistat affects the structure and dynamics of human pancreatic lipase.Mainly,cetilistat affects the conformational changes in the“lid region”of pancreatic lipase which is important for the breakdown of lipids.Furthermore,the radius of gyration(Rg)and solvent-accessible surface area shows that the cetilistat-bound pancreatic lipase affects the compactness of the lipase structure.Thus,our computational modeling study reveals the inhibitory action of cetilistat with human pancreatic lipase and may be further useful for the design and development of anti-obesity drugs.Results:To explore the binding mode and interaction of HPL with cetilistat,we employed molecular docking,a molecular dynamics simulation study.The details of which are discussed below.Conclusion:Thus,our computational modeling study reveals the inhibitory action of cetilistat with human pancreatic lipase and may be further useful for the design and development of anti-obesity drugs. 展开更多
关键词 pancreatic lipase Cetilistat OBESITY docking molecular dynamics simulation
下载PDF
Novel ligand-based docking; molecular dynamic simulations;and absorption, distribution, metabolism, and excretion approach to analyzing potential acetylcholinesterase inhibitors for Alzheimer's disease
12
作者 Subramaniyan Vijayakumar Palani Manogar +1 位作者 Srinivasan Prabhu Ram Avadhar Sanjeevkumar Singh 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2018年第6期413-420,共8页
Acetylcholinesterase(AChE) plays an important role in Alzheimer's disease(AD). The excessive activity of AChE causes various neuronal problems, particularly dementia and neuronal cell deaths. Generally, antiAChE d... Acetylcholinesterase(AChE) plays an important role in Alzheimer's disease(AD). The excessive activity of AChE causes various neuronal problems, particularly dementia and neuronal cell deaths. Generally, antiAChE drugs induce some serious neuronal side effects in humans. Therefore, this study sought to identify alternative drug molecules from natural products with fewer side effects than those of conventional drugs for treating AD. To achieve this, we developed computational methods for predicting drug and target binding affinities using the Schrodinger suite. The target and ligand molecules were retrieved from established databases. The target enzyme has 539 amino acid residues in its sequence alignment. Ligand molecules of 20 bioactive molecules were obtained from different kinds of plants, after which we performed critical analyses such as molecular docking; molecular dynamic(MD) simulations; and absorption, distribution, metabolism, and excretion(ADME) analysis. In the docking studies, the natural compound rutin showed a superior docking score of à 12.335 with a good binding energy value ofà73.313 kcal/mol. Based on these findings, rutin and the target complex was used to perform MD simulations to analyze rutin stability at 30 ns. In conclusion, our study demonstrates that rutin is a superior drug candidate for AD. Therefore, we propose that this molecule is worth further investigation using in vitro studies. 展开更多
关键词 Alzheimer's disease ACETYLCHOLINESTERASE Phytocompounds MOLECULAR docking Free energy calculations MOLECULAR dynamic simulations
下载PDF
A possible therapeutic potential of quercetin through inhibition of μ-calpain in hypoxia induced neuronal injury:a molecular dynamics simulation study 被引量:4
13
作者 Anand Kumar Pandey Swet Chand Shukla +1 位作者 Pallab Bhattacharya Ranjana Patnaik 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第8期1247-1253,共7页
The neuroprotective property of quercetin is well reported against hypoxia and ischemia in past studies.This property of quercetin lies in its antioxidant property with blood-brain barrier permeability and anti-inflam... The neuroprotective property of quercetin is well reported against hypoxia and ischemia in past studies.This property of quercetin lies in its antioxidant property with blood-brain barrier permeability and anti-inflammatory capabilities.μ-Calpain,a calcium ion activated intracellular cysteine protease causes serious cellular insult,leading to cell death in various pathological conditions including hypoxia and ischemic stroke.Hence,it may be considered as a potential drug target for the treatment of hypoxia induced neuronal injury.As the inhibitory property of μ-calpain is yet to be explored in details,hence,in the present study,we investigated the interaction of quercetin with μ-calpain through a molecular dynamics simulation study as a tool through clarifying the molecular mechanism of such inhibition and determining the probable sites and modes of quercetin interaction with the μ-calpain catalytic domain.In addition,we also investigated the structure-activity relationship of quercetin with μ-calpain.Affinity binding of quercetin with μ-calpain had a value of –28.73 k J/mol and a Ki value of 35.87 μM that may be a probable reason to lead to altered functioning of μ-calpain.Hence,quercetin was found to be an inhibitor of μ-calpain which might have a possible therapeutic role in hypoxic injury. 展开更多
关键词 nerve regeneration QUERCETIN μ-calpain molecular docking molecular dynamics simulation HYPOXIA NEUROPROTECTION neural regeneration
下载PDF
SPACECRAFT DOCKING SIMULATION USING HARDWARE-IN-THE-LOOP SIMULATOR WITH STEWART PLATFORM 被引量:12
14
作者 Huang Qitao Jiang Hongzhou Zhang Shangying Han Junwei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第3期415-418,共4页
A ground-based hardware-in-the-loop (HIL) simulation system with hydraulically driven Stewart platform for spacecraft docking simulation is presented. The system is used for simulating docking process of the on-orbi... A ground-based hardware-in-the-loop (HIL) simulation system with hydraulically driven Stewart platform for spacecraft docking simulation is presented. The system is used for simulating docking process of the on-orbit spacecraft. Principle and structure of the six-degree-of-freedom simulation system are introduced. The docking process dynamic of the vehicles is modeled. Experiment results and mathematical simulation data are compared to validating the simulation system. The comparisons of the results prove that the simulation system proposed can effectively simulate the on-orbit docking process of the spacecraft. 展开更多
关键词 Spacecraft docking Hardware-in-the-loop simulation dynamic modeling Stewart platforms
下载PDF
Structural requirements and interaction mechanisms of ACE inhibitory peptides:molecular simulation and thermodynamics studies on LAPYK and its modifi ed peptides 被引量:5
15
作者 Biying Zhang Jingbo Liu +3 位作者 Hedi Wen Feng Jiang Erlei Wang Ting Zhang 《Food Science and Human Wellness》 SCIE 2022年第6期1623-1630,共8页
The understanding of the structural requirements and the intermolecular-interaction mechanism are important for discovering potent angiotensin-converting enzyme(ACE)inhibitory peptides.In this study,we modifi ed an eg... The understanding of the structural requirements and the intermolecular-interaction mechanism are important for discovering potent angiotensin-converting enzyme(ACE)inhibitory peptides.In this study,we modifi ed an egg-white derived peptide,LAPYK,using the amino acids with different properties to produce the LAPYK-modified peptides.The ACE inhibitory activities of the modified peptides were determined to explore the structural requirements of ACE inhibitory peptides(ACEIPs).Molecular simulation and isothermal titration calorimetry analysis were used to investigate interactions between the peptides and ACE.We found that hydrophobicity and the amino acids with ring structures were benefi cial for the ACE inhibitory activities of the peptides.The results of the molecular mechanics poisson boltzmann surface area(MMPBSA)binding free energy calculations indicated that the polar solvation free energy(ΔG_(polar))of the charged peptides(LAPYK,LAPYE)were unfavorable for binding to ACE.On the other hand,the results of isothermal titration calorimetry analyses suggested that the enthalpy-driven ACE-peptide interactions were more favorable than the entropy-driven ACE-peptide interaction counterparts. 展开更多
关键词 ACE inhibitory peptides Molecular docking Molecular dynamics simulation Isothermal titration calorimetry
下载PDF
Pharmacotherapeutics and molecular docking studies of alphasynuclein modulators as promising therapeutics for Parkinson’s disease 被引量:2
16
作者 RAHAT ALI AFTAB ALAM +1 位作者 SATYENDRA K.RAJPUT RAZI AHMAD 《BIOCELL》 SCIE 2022年第12期2681-2694,共14页
Parkinson’s disease(PD)is an age-related neurodegenerative ailment that affects dopamine-producing neurons in a specific area of the brain called the substantia nigra of the ventral midbrain.It is clinically characte... Parkinson’s disease(PD)is an age-related neurodegenerative ailment that affects dopamine-producing neurons in a specific area of the brain called the substantia nigra of the ventral midbrain.It is clinically characterized by movement disorder and marked with unusual synaptic protein alpha-synuclein accumulation in the brain.To date,only a few Food and Drug Administration(FDA)approved drugs are available on the market for the treatment of PD.Nonetheless,these drugs show parasympathomimetic related adverse events and remarkably higher toxicity;hence,it is important to find more efficacious molecules to treat PD.In our study,We chosen 22 natural compounds as inhibitors that potentially block the alpha-synuclein clump-the pathological hallmark of PD-and provide new avenues for its treatment.Most of these molecules exhibited good pharmacokinetic behaviors,making them decisively favorable drug candidates to cure PD.Molecular docking studies were performed to investigate the binding interactions between natural compounds and alpha-synuclein as anti-Parkinson drug targets.Among the examined compounds,curcumin and piperine emerged as promising phytochemicals with the highest binding affinity,key residual stable bindings and showed a good inhibitory features.Thus,the present study indicates that curcumin and piperine hold the potential to be developed as treatment options against PD.Experimental validations are needed for insights into their mechanism of action and potential clinical application. 展开更多
关键词 Parkinson’s disease(PD) ALPHA-SYNUCLEIN Molecular docking and dynamics Anti-Parkinson drug Curcumin PIPERINE
下载PDF
Hardware-in-the-Loop Simulation System for Space Manipulator Docking: Model,Stability and Experimental Evaluation 被引量:1
17
作者 Simiao Yu Shutao Zheng +2 位作者 Yu Yang Zhiyong Qu Junwei Han 《Journal of Beijing Institute of Technology》 EI CAS 2020年第1期89-102,共14页
A manipulator-type docking hardware-in-the-loop(HIL)simulation system is proposed in this paper,with further development of the space docking technology and corresponding requirements of the engineering project.First,... A manipulator-type docking hardware-in-the-loop(HIL)simulation system is proposed in this paper,with further development of the space docking technology and corresponding requirements of the engineering project.First,the structure of the manipulator-type HIL simulation system is explained.The mass and the flexibility of the manipulator has an important influence on the stability of the HIL system,which is the premise of accurately simulating actual space docking.Thus,the docking HIL simulation models of rigid,flexible and flexible-light space manipulators are established.The characteristics of the three HIL systems are studied from three important aspects:the system parameter configuration relation,the system stability condition and the dynamics frequency simulation ability.The key conclusions obtained were that the system satisfies stability or reproduction accuracy.Meanwhile,the influence of different manipulators on the system stability is further analyzed.The accuracy of the calculated results is verified experimentally. 展开更多
关键词 MANIPULATOR docking hardware-in-the-loop(HIL)simulation parameter configuration STABILITY condition dynamics frequency SIMULATION CAPABILITY
下载PDF
Homology modeling and docking studies of IscS from extremophile Acidithiobacillus ferrooxidans 被引量:1
18
作者 刘元东 丁建南 +1 位作者 邱冠周 王海东 《Journal of Central South University of Technology》 EI 2007年第6期742-749,共8页
The gene iscS-3 from ,4cidithiobacillus ferrooxidans may play a central role in the delivery of sulfur to a variety of metabolic pathways in this organism. For insight into the sulfur metabolic mechanism of the bacter... The gene iscS-3 from ,4cidithiobacillus ferrooxidans may play a central role in the delivery of sulfur to a variety of metabolic pathways in this organism. For insight into the sulfur metabolic mechanism of the bacteria, an integral three-dimensional (3D) molecular structure of the protein encoded by this gene was built by homology modeling techniques, refined by molecular dynamics simulations, assessed by PROFILE-3D and PROSTAT programs and further used to search bind sites, carry out flexible docking with cofactor pyridoxal 5'-phosphate(PLP) and substrate cysteine and hereby detect its key residues. Through these procedures, the detail conformations of PLP-IscS(P-I) and cysteine-PLP-IscS(C-P-I) complexes were obtained. In P-I complex, the residues of Lys208, His106, Thr78, Ser205, His207, Asp182 and Gln185 have large interaction energies and/or hydrogen bonds fixation with PLP. In C-P-I complex, the amino group in cysteine is very near His106, Lys208 and PLP, the interaction energies for cysteine with them are very high. The above results are well consistent with those experimental facts of the homologues from other sources. Interestingly, the four residues of Glul05, Glu79, Ser203 and Hisl80 in P-I docking and the residue of Lys213 in C-P-I docking also have great interaction energies, which are fitly conservation in IscSs from all kinds of sources but have not been identified before. From these results, this gene can be confirmed at 3D level to encode the iron-sulfur cluster assembly protein IscS and subsequently play a sulfur traffic role. Furthermore, the substrate cysteine can be presumed to be effectively recruited into the active site. Finally, the above detected key residues can be conjectured to be directly responsible for the bind and/or catalysis of PLP and cysteine. 展开更多
关键词 bioleaching ISCS Acidithiobacillus ferrooxidans homology modeling molecular dynamics docking pyridoxal 5'-phosphate(PLP) CYSTEINE
下载PDF
Numerical Analysis of Refueling Drogue Oscillation During Refueling Docking
19
作者 Chen Lele Liu Xueqiang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第2期173-179,共7页
Refueling docking at different velocities is simulated by using computational fluid dynamics(CFD)method.The Osher scheme and S-A turbulence model are used to solve the compressible Navier-Stokes equations,and the Dela... Refueling docking at different velocities is simulated by using computational fluid dynamics(CFD)method.The Osher scheme and S-A turbulence model are used to solve the compressible Navier-Stokes equations,and the Delaunay mapping dynamic grid method is also employed.All the numerical results show that the velocity of refueling docking is very important for aerial refueling.When the velocity is lower than 3m/s,the refueling drogue will move upward with obvious cycle staggering,while moving upward with slight cycle staggering at the speed of3m/s.The results can be referenced by aerial refueling design. 展开更多
关键词 AERIAL REFUELING numerical simulation REFUELING drogue dynamic GRID REFUELING docking
下载PDF
Molecular Docking of 3-Methylindole-containing Drugs Binding into CYP3A4
20
作者 MENG Xuan-yu, LI Zhuo, NIU Rui-juan, ZHANG Hong-xing and ZHENG Qing-chuan State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, P. R. China 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2012年第1期137-141,共5页
Drugs SPD-304(6,7-dimethyl-3-{[methyl-(2-{methyl-[1-(3-trifluoromethyl-phenyl)-1H-indol-3-ylme thyl]-amino}-ethyl)-amino]-methyl}-chromen-4-one) and zafirlukast contain a common structural element of 3-substitut... Drugs SPD-304(6,7-dimethyl-3-{[methyl-(2-{methyl-[1-(3-trifluoromethyl-phenyl)-1H-indol-3-ylme thyl]-amino}-ethyl)-amino]-methyl}-chromen-4-one) and zafirlukast contain a common structural element of 3-substituted indole moiety which closely relates to a dehydrogenated reaction catalyzed by cytochrome P450s(CYPs). It was reported that the dehydrogenation can produce a reactive electrophilic intermediate which cause toxicities and inactivate CYPs. Drug L-745,870(3-{[4-(4-chlorophenyl)piperazin-1-yl]-methyl}-1H-pyrrolo 2,3-β-pyridine) might have similar effect since it contains the same structural element. We used molecular docking approach combined with molecular dynamics(MD) simulation to model three-dimensional(3D) complex structures of SPD-304, zafirlukast and L-745,870 into CYP3A4, respectively. The results show that these three drugs can stably bind into the active site and the 3-methylene carbons of the drugs keep a reasonable reactive distance from the heme iron. The complex structure of SPD-304-CYP3A4 is in agreement with experimental data. For zafirlukast, the calcu lation results indicate that 3-methylene carbon might be the dehydrogenation reaction site. Docking model of L-745,870-CYP3A4 shows a potential possibility of L-745,870 dehydrogenated by CYP3A4 at 3-methylene carbon which is in agreement with experiment in vivo. In addition, residues in the phenylalanine cluster as well as S119 and R212 play a critical role in the ligands binding based on our calculations. The docking models could provide some clues to understand the metabolic mechanism of the drugs by CYP3A4. 展开更多
关键词 CYP3A4 Molecular docking Molecular dynamics(MD) simulation
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部