Security and reliability of inverter are an indispensable part in power electronic system. Faults of inverter are usually caused by switch elements’ operating fault. Taking the inverter with hysteresis current contro...Security and reliability of inverter are an indispensable part in power electronic system. Faults of inverter are usually caused by switch elements’ operating fault. Taking the inverter with hysteresis current control as the research object, a universal open-circuit fault location method which can be applied to multiple control strategies is proposed in the paper. If the switch open-circuit fault happens in inverter, the output phase current will inevitably change, which can be used as a characteristic for diagnosis, combined with the comparison of phase-current direction before and after the fault occurrence, to diagnose and locate the open-circuit fault in a half cycle. Moreover, this method requires neither system control signals nor sensor. The validity, reliability and limitation of the fault location method in the paper are verified and analyzed through dSPACE-based experiment platform.展开更多
The enormous energy use of the building sector and the requirements for indoor living quality that aim to improve occupants' productivity and health, prioritize Smart Buildings as an emerging technology. The Heati...The enormous energy use of the building sector and the requirements for indoor living quality that aim to improve occupants' productivity and health, prioritize Smart Buildings as an emerging technology. The Heating, Ventilation and Air-Conditioning(HVAC) system is considered one of the most critical and essential parts in buildings since it consumes the largest amount of energy and is responsible for humans comfort. Due to the intermittent operation of HVAC systems, faults are more likely to occur, possibly increasing eventually building's energy consumption and/or downgrading indoor living quality. The complexity and large scale nature of HVAC systems complicate the diagnosis of faults in a centralized framework. This paper presents a distributed intelligent fault diagnosis algorithm for detecting and isolating multiple sensor faults in large-scale HVAC systems.Modeling the HVAC system as a network of interconnected subsystems allows the design of a set of distributed sensor fault diagnosis agents capable of isolating multiple sensor faults by applying a combinatorial decision logic and diagnostic reasoning. The performance of the proposed method is investigated with respect to robustness, fault detectability and scalability. Simulations are used to illustrate the effectiveness of the proposed method in the presence of multiple sensor faults applied to a 83-zone HVAC system and to evaluate the sensitivity of the method with respect to sensor noise variance.展开更多
Accurate and timely fault diagnosis is of great significance for the safe operation and power supply reliability of distribution systems.However,traditional intelligent methods limit the use of the physical structures...Accurate and timely fault diagnosis is of great significance for the safe operation and power supply reliability of distribution systems.However,traditional intelligent methods limit the use of the physical structures and data information of power networks.To this end,this study proposes a fault diagnostic model for distribution systems based on deep graph learning.This model considers the physical structure of the power network as a significant constraint during model training,which endows the model with stronger information perception to resist abnormal data input and unknown application conditions.In addition,a special spatiotemporal convolutional block is utilized to enhance the waveform feature extraction ability.This enables the proposed fault diagnostic model to be more effective in dealing with both fault waveform changes and the spatial effects of faults.In addition,a multi-task learning framework is constructed for fault location and fault type analysis,which improves the performance and generalization ability of the model.The IEEE 33-bus and IEEE 37-bus test systems are modeled to verify the effectiveness of the proposed fault diagnostic model.Finally,different fault conditions,topological changes,and interference factors are considered to evaluate the anti-interference and generalization performance of the proposed model.Experimental results demonstrate that the proposed model outperforms other state-of-the-art methods.展开更多
基金Projects(2016YFB1200401,2017YFB1200801)supported by the National Key R&D Program of China
文摘Security and reliability of inverter are an indispensable part in power electronic system. Faults of inverter are usually caused by switch elements’ operating fault. Taking the inverter with hysteresis current control as the research object, a universal open-circuit fault location method which can be applied to multiple control strategies is proposed in the paper. If the switch open-circuit fault happens in inverter, the output phase current will inevitably change, which can be used as a characteristic for diagnosis, combined with the comparison of phase-current direction before and after the fault occurrence, to diagnose and locate the open-circuit fault in a half cycle. Moreover, this method requires neither system control signals nor sensor. The validity, reliability and limitation of the fault location method in the paper are verified and analyzed through dSPACE-based experiment platform.
基金supported by the European Union’s Horizon 2020 Research and Innovation Programme(739551)(KIOS CoE)。
文摘The enormous energy use of the building sector and the requirements for indoor living quality that aim to improve occupants' productivity and health, prioritize Smart Buildings as an emerging technology. The Heating, Ventilation and Air-Conditioning(HVAC) system is considered one of the most critical and essential parts in buildings since it consumes the largest amount of energy and is responsible for humans comfort. Due to the intermittent operation of HVAC systems, faults are more likely to occur, possibly increasing eventually building's energy consumption and/or downgrading indoor living quality. The complexity and large scale nature of HVAC systems complicate the diagnosis of faults in a centralized framework. This paper presents a distributed intelligent fault diagnosis algorithm for detecting and isolating multiple sensor faults in large-scale HVAC systems.Modeling the HVAC system as a network of interconnected subsystems allows the design of a set of distributed sensor fault diagnosis agents capable of isolating multiple sensor faults by applying a combinatorial decision logic and diagnostic reasoning. The performance of the proposed method is investigated with respect to robustness, fault detectability and scalability. Simulations are used to illustrate the effectiveness of the proposed method in the presence of multiple sensor faults applied to a 83-zone HVAC system and to evaluate the sensitivity of the method with respect to sensor noise variance.
基金supported by National Natural Science Foundation of China(No.52277083)。
文摘Accurate and timely fault diagnosis is of great significance for the safe operation and power supply reliability of distribution systems.However,traditional intelligent methods limit the use of the physical structures and data information of power networks.To this end,this study proposes a fault diagnostic model for distribution systems based on deep graph learning.This model considers the physical structure of the power network as a significant constraint during model training,which endows the model with stronger information perception to resist abnormal data input and unknown application conditions.In addition,a special spatiotemporal convolutional block is utilized to enhance the waveform feature extraction ability.This enables the proposed fault diagnostic model to be more effective in dealing with both fault waveform changes and the spatial effects of faults.In addition,a multi-task learning framework is constructed for fault location and fault type analysis,which improves the performance and generalization ability of the model.The IEEE 33-bus and IEEE 37-bus test systems are modeled to verify the effectiveness of the proposed fault diagnostic model.Finally,different fault conditions,topological changes,and interference factors are considered to evaluate the anti-interference and generalization performance of the proposed model.Experimental results demonstrate that the proposed model outperforms other state-of-the-art methods.