An investigation using Monte Carlo simulation on a minitype reference radiation(MRR) for the calibration of gamma personal dosimeters is reported. The distributions of dose rate and scattering gamma spectrum are the m...An investigation using Monte Carlo simulation on a minitype reference radiation(MRR) for the calibration of gamma personal dosimeters is reported. The distributions of dose rate and scattering gamma spectrum are the main simulation objects with the variable physical structures of MRR and the dosimeters as parameters that are to be calibrated. Further, the influences on the reference radiation caused by these parameters are analyzed in detail.This work provides a theoretical basis for better understanding of MRR used for calibration of gamma personal dosimeters. This analysis can help in the development of a calibration technology for such tools based on MRR.展开更多
Radiation cross-calibration is an effective method to check and verify theaccuracy and stability of sensor measurements. Satellites with high radiation accuracy areused to calibrate satellites with low radiation accur...Radiation cross-calibration is an effective method to check and verify theaccuracy and stability of sensor measurements. Satellites with high radiation accuracy areused to calibrate satellites with low radiation accuracy. In order to ensure the reliability ofthe radiation cross-calibration method, we propose to obtain the gain and offset of theGaoFen-1 satellite by linear regression after the radiation cross-calibration of the satellitewith low precision and compare with the official coefficient. Finally, we get therelationship between the error in radiation cross-calibration results and side swing angle.The linear correction coefficients of each band are: 0.618, 0.625, 0.512 and 0.474. Theresults show that after the method is corrected by the linear correction coefficient, theerror caused by the side swing angle during the cross-calibration of the orbital radiation isreduced. The accuracy of radiation cross-calibration is improved, the frequency ofcalibration is improved and the requirements of remote sensing applications in the newera are adapted.展开更多
According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements r...According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements restricted by satellite attitude dynamics and estimates the gyro bias generated when the gyro is electrified. Observability of the calibration model is analyzed and applicable conditions of the technology are derived. Simulation results indicate that the calibration algorithm is accurate and robust at gyro sampling rate, and its convergence speed is fast. Within the given attitude dynamics model error, the convergence time is less than 100 s and the convergence accuracy is about 1.0 (°)/h. Calibration performance can meet requirements of spacecraft operations.展开更多
The Visible and Infrared Multispectral Imager (VIMI) is one of the main payloads of the GF-5 satellite. It has 12 spectral bands covering the wavelength from visible light to thermal infrared. The imager designed life...The Visible and Infrared Multispectral Imager (VIMI) is one of the main payloads of the GF-5 satellite. It has 12 spectral bands covering the wavelength from visible light to thermal infrared. The imager designed life is 8 years. In order to monitor and correct the radiometric performance of the imager for a long time and meet the user’s demand for the quantitative remote sensing application, the expandable diffuser used for calibration in full FOV and full optical path method is designed. The solar diffuser is installed on the front side of the optical system and does not affect the normal imaging of VIMI. When VIMI need calibration, the diffuser is expand to the front of optical system via the driving mechanism. According to the characteristics of the GF-5 satellite orbit, the requirement of the calibration energy and the installation matrix of the imager relative to the satellite, the expansion angle of the diffuser is 39 degrees. The 430 mm × 430 mm large-size PTEE diffuser is manufactured to ensure full FOV and full optical path calibration. The diffuser’s directional hemispherical reflectance is higher than 95% from 420 nm to 2400 nm and variation of BRDF in the direction of imager observation is better than 2.5%. The diffuser stability monitoring radiometer is designed to monitor the on-orbit attenuation performance of the diffuser. Results of ground simulation experiments and preliminary on-board calibration experiments were introduced.展开更多
The paper presents a geometric calibration method based on the sparse ground control points (GCPs), aiming to the linear push-broom optical satellite. This method can achieve the optimal estimate of internal and exter...The paper presents a geometric calibration method based on the sparse ground control points (GCPs), aiming to the linear push-broom optical satellite. This method can achieve the optimal estimate of internal and external parameters with two overlapped image pair along the charge-coupled device (CCD), and sparse GCPs in the image region, further get rid of the dependence on the expensive calibration site data. With the calibrated parameters, the line of sight (LOS) of all CCD detectors can be recovered. This paper firstly establishes the rigorous imaging model of linear push-broom optical satellite based on its imaging mechanism. And then the calibration model is constructed by improving the internal sensor model with a viewing-angle model after an analysis on systematic errors existing in the imaging model is performed. A step-wise solution is applied aiming to the optimal estimate of external and internal parameters. At last, we conduct a set of experiments on the ZY-3 NAD camera and verify the accuracy and effectiveness of the presented method by comparison.展开更多
In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM)...In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM) and an integrating sphere transfer radiometer(ISTR) was designed in this paper.Depending on the Sun,this chain based on detectors provides precise spectral radiometric calibration and measurement to spectrometers in the reflective solar band(RSB) covering 300–2500 nm with a spectral bandwidth of 0.5–6 nm.It shortens the traditional chain based on lamp source and reduces the calibration uncertainty from 5% to 0.5% by using the cryogenic radiometer in space as a radiometric benchmark and trap detectors as secondary standard.This paper also gives a detailed uncertainty budget with reasonable distribution of each impact factor,including the weak spectral signal measurement with uncertainty of 0.28%.According to the peculiar design and comprehensive uncertainty analysis,it illustrates that the spectral radiance measurement uncertainty of the ISTR system can reach to 0.48%.The result satisfies the requirements of SI-traceable on-orbit calibration and has wider significance for expanding the application of the remote sensing data with high-quality.展开更多
GF-14 satellite is a new generation of sub-meter stereo surveying and mapping satellite in China,carrying dual-line array stereo mapping cameras to achieve 1∶10000 scale topographic mapping without Ground Control Poi...GF-14 satellite is a new generation of sub-meter stereo surveying and mapping satellite in China,carrying dual-line array stereo mapping cameras to achieve 1∶10000 scale topographic mapping without Ground Control Points(GCPs).In fact,space-based high-precision mapping without GCPs is a challenging task that depends on the close cooperation of several payloads and links,of which on-orbit geometric calibration is one of the most critical links.In this paper,the on-orbit geometric calibration of the dual-line array cameras of GF-14 satellite was performed using the control points collected in the high-precision digital calibration field,and the calibration parameters of the dual-line array cameras were solved as a whole by alternate iterations of forward and backward intersection.On this basis,the location accuracy of the stereo images using the calibration parameters was preliminarily evaluated by using several test fields around the world.The evaluation result shows that the direct forward intersection accuracy of GF-14 satellite images without GCPs after on-orbit geometric calibration reaches 2.34 meters(RMS)in plane and 1.97 meters(RMS)in elevation.展开更多
A minitype reference radiation(MRR) with dimensions of only 1 m × 1 m × 1 m has been developed for the in situ calibration of photon dosimeters.The present work conducts a feasibility study on determining th...A minitype reference radiation(MRR) with dimensions of only 1 m × 1 m × 1 m has been developed for the in situ calibration of photon dosimeters.The present work conducts a feasibility study on determining the conventional true value of gamma-ray air kerma at the point of test in the MRR.Owing to its smaller dimensions,the scattered gamma-rays in the MRR are expected to induce a non-negligible interference with the radiation field compared with conditions in the standard reference radiation stipulated by ISO4037-1 or GB/T12162.1.A gamma-ray spectrometer was employed to obtain the spectra of scattered gamma-rays within the MRR,and the feature components of the spectra were extracted by principal component analysis to characterize the interference of a dosimeter probe in the radiation field.A prediction model of the CAK at the point of test was built by least squares support vector machine based on the feature component data obtained from nine sample dosimeters under five different dose rates.The mean prediction error of the CAK prediction model was within ±4.5%,and the maximum prediction error was about ±10%.展开更多
This paper aims at describing the theoretical fundamentals of a reciprocity-based ultrasonic measurement model. This complete inspection simulation can be decomposed in two modeling steps, one dedicated to transducer ...This paper aims at describing the theoretical fundamentals of a reciprocity-based ultrasonic measurement model. This complete inspection simulation can be decomposed in two modeling steps, one dedicated to transducer radiation and one to flaw scattering and echo synthesis. The physical meaning of the input/output signals used in these two modeling tools is defined and the theoretical principles of both field calculation and echo computation models are then detailed. The influence on the modeling results of some changes in the simulated configuration (as the incident angle) or some input signal parameters (like the frequency) are studied: it is thus theoretically established that the simulated results can be compared between each other in terms of amplitude for numerous applications when changing some inspection parameters in the simulation but that a calibration for echo calculation is generally required.展开更多
Machine learning-based surrogate models have significant advantages in terms of computing efficiency. In this paper, we present a pilot study on fast calibration using machine learning techniques. Technology computer-...Machine learning-based surrogate models have significant advantages in terms of computing efficiency. In this paper, we present a pilot study on fast calibration using machine learning techniques. Technology computer-aided design(TCAD) is a powerful simulation tool for electronic devices. This simulation tool has been widely used in the research of radiation effects.However, calibration of TCAD models is time-consuming. In this study, we introduce a fast calibration approach for TCAD model calibration of metal–oxide–semiconductor field-effect transistors(MOSFETs). This approach utilized a machine learning-based surrogate model that was several orders of magnitude faster than the original TCAD simulation. The desired calibration results were obtained within several seconds. In this study, a fundamental model containing 26 parameters is introduced to represent the typical structure of a MOSFET. Classifications were developed to improve the efficiency of the training sample generation. Feature selection techniques were employed to identify important parameters. A surrogate model consisting of a classifier and a regressor was built. A calibration procedure based on the surrogate model was proposed and tested with three calibration goals. Our work demonstrates the feasibility of machine learning-based fast model calibrations for MOSFET. In addition, this study shows that these machine learning techniques learn patterns and correlations from data instead of employing domain expertise. This indicates that machine learning could be an alternative research approach to complement classical physics-based research.展开更多
Traditional operating range prediction methods assume that the atmospheric radiances in a target path and a background path are equal. But they are different in a real-world environment. To solve this problem,the infl...Traditional operating range prediction methods assume that the atmospheric radiances in a target path and a background path are equal. But they are different in a real-world environment. To solve this problem,the influence of atmospheric radiance on operating range prediction is analyzed in this paper. Range estimation model in thermal imaging based on background radiation( REBR) is proposed. Infrared image radiometric calibration is used to calculate the background radiation of a system entrance pupil. The result shows that,compared with traditional operating range prediction methods,the REBR method is more suitable for the actual atmospheric transmission process and the physical process of infrared imaging.展开更多
For precise and accurate patient dose delivery,the dosimetry system must be calibrated properly according to the recommendations of standard dosimetry protocols such as TG-51 and TRS-398. However, the dosimetry protoc...For precise and accurate patient dose delivery,the dosimetry system must be calibrated properly according to the recommendations of standard dosimetry protocols such as TG-51 and TRS-398. However, the dosimetry protocol followed by a calibration laboratory is usually different from the protocols that are followed by different clinics, which may result in variations in the patient dose.Our prime objective in this study was to investigate the effect of the two protocols on dosimetry measurements.Dose measurements were performed for a Co-60 teletherapy unit and a high-energy Varian linear accelerator with 6 and 15 MV photon and 6, 9, 12, and 15 MeV electron beams, following the recommendations and procedures of the AAPM TG-51 and IAEA TRS-398 dosimetry protocols. The dosimetry systems used for this study were calibrated in a Co-60 radiation beam at the Secondary Standard Dosimetry Laboratory(SSDL) PINSTECH,Pakistan, following the IAEA TRS-398 protocol. The ratio of the measured absorbed doses to water in clinical setting,D_w(TG-51/TRS-398), was 0.999 and 0.997 for 6 and15 MV photon beams,whereas these ratios were 1.013,1.009, 1.003, and 1.000 for 6, 9, 12, and 15 MeV electron beams, respectively. This difference in the absorbed dosesto-water D_w ratio may be attributed mainly due to beam quality(K_Q) and ion recombination correction factor.展开更多
The real-time monitoring of environmental radiation dose for nuclear fa-cilities is an important part of safety, in order to guarantee the accuracy of the monitoring results regular calibration is necessary. Around nu...The real-time monitoring of environmental radiation dose for nuclear fa-cilities is an important part of safety, in order to guarantee the accuracy of the monitoring results regular calibration is necessary. Around nuclear facilities there are so many environmental dosimeters installed dispers-edly, because of its huge quantity, widely distributed, and in real-time monitoring state;it will cost lots of manpower and finance if it were tak-en to calibrate on standard laboratory;what’s more it will make the en-vironment out of control. To solve the problem of the measurement ac-curacy of the stationary gamma radiation dosimeter, an on-site calibra-tion method is proposed. The radioactive source is X-ray spectrum, and the dose reference instrument which has been calibrated by the national standard laboratory is a high pressure ionization. On-site calibration is divided into two parts;firstly the energy response experiment of dosim-eter for high and low energy is done in the laboratory, and the energy response curve is obtained combining with Monte Carlo simulation;sec-ondly experiment is carried out in the field of the measuring dosimeter, and the substitution method to calibrate the dosimeter is used;finally the calibration coefficient is gotten through energy curve correction. In order to verify the accuracy of on-site calibration method, the calibrated dosimeter is test in the standard laboratory and the error is 3.4%. The re-sult shows that the on-site calibration method using X-ray is feasible, and it can improves the accuracy of the measurement results of the stationary γ-ray instrument;what’s more important is that it has great reference value for the radiation safety management and radiation environment evaluation.展开更多
<div style="text-align:justify;"> Due to the influence of processing technology and environmental factors, there are errors in attitude measurement with the three-axis magnetometer, and the change of p...<div style="text-align:justify;"> Due to the influence of processing technology and environmental factors, there are errors in attitude measurement with the three-axis magnetometer, and the change of parameters during the operation of the magnetometer in orbit will have a great impact on the measurement accuracy. This paper studies the calibration method of magnetometer based on BP neural network, which reduces the influence of model error on calibration accuracy. Firstly, the error model of the magnetometer and the structural characteristics of the BP neural network are analyzed. Secondly, the number of hidden layers and hidden nodes is optimized. To avoid the problem of slow convergence and low accuracy of basic BP algorithm, this paper uses the Levenberg Marquardt backpropagation training method to improve the training speed and prediction accuracy and realizes the on-orbit calibration of magnetometer through online training of the neural network. Finally, the effectiveness of the method is verified by numerical simulation. The results show that the neural network designed in this paper can effectively reduce the measurement error of magnetometer, while the online training can effectively reduce the error caused by the change of magnetometer parameters, and reduce the measurement error of magnetometer to less than 10 nT. </div>展开更多
This study evaluates the in-orbit calibration uncertainty(CU)for the microwave radiation imager(MWRI)on board the Chinese polar-orbiting meteorological satellite Fengyun-3 C(FY-3 C).Uncertainty analysis of the MWRI pr...This study evaluates the in-orbit calibration uncertainty(CU)for the microwave radiation imager(MWRI)on board the Chinese polar-orbiting meteorological satellite Fengyun-3 C(FY-3 C).Uncertainty analysis of the MWRI provides a direct link to the calibration system of the sensor and quantifies the calibration confidence based on the prelaunch and postlaunch measurements.The unique design of the sensor makes the uncertainty in the calibration of the sensor highly correlate to the uncertainty in the brightness temperature(TB)measured at the hot view,while the cold view has negligible impacts on the calibration confidence.Lack of knowledge on the emission of the hot-load reflector hampers the MWRI calibration accuracy significantly in the descending passes of the orbits when the hotload reflector is heated nonuniformly by the solar illumination.Radiance contamination originating from the satellite and in-orbit environments could enter the primary reflector via the hot view and further impinge on the CU,especially at the 10.65-GHz channels where the main-beam width is much broader than that of higher-frequency channels.The monthly-mean CU is lower than 2 K at all channels,depending on the observed earth scenes and in-orbit environments,and the month-to-month variation of CU is also noticed for all channels.Due to the uncertainty in the emissive hot-load reflector,CU in the descending passes is generally larger than that in the ascending orbits.Moreover,up to 1-K CU difference between the ocean and land scenes is found for the 10.65-GHz channels,while this difference is less than 0.1 K at the 89-GHz channels.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11805111 and 11525521)the Fundamental Research Funds for the Central Universities(No.2018CDGFGD0008)
文摘An investigation using Monte Carlo simulation on a minitype reference radiation(MRR) for the calibration of gamma personal dosimeters is reported. The distributions of dose rate and scattering gamma spectrum are the main simulation objects with the variable physical structures of MRR and the dosimeters as parameters that are to be calibrated. Further, the influences on the reference radiation caused by these parameters are analyzed in detail.This work provides a theoretical basis for better understanding of MRR used for calibration of gamma personal dosimeters. This analysis can help in the development of a calibration technology for such tools based on MRR.
基金funded by the National Key Research Program ofChina (No. 2016YFB0502500)Guangxi innovative Development Grand Grant (GuiKeAA18118038)+2 种基金Land Observation Satellite Supporting Platform of National civilspace infrastructureNational Natural Science Foundation of China (No. 41671345)theNanjing University of Information Science and Technology Talent Start-up Fund.
文摘Radiation cross-calibration is an effective method to check and verify theaccuracy and stability of sensor measurements. Satellites with high radiation accuracy areused to calibrate satellites with low radiation accuracy. In order to ensure the reliability ofthe radiation cross-calibration method, we propose to obtain the gain and offset of theGaoFen-1 satellite by linear regression after the radiation cross-calibration of the satellitewith low precision and compare with the official coefficient. Finally, we get therelationship between the error in radiation cross-calibration results and side swing angle.The linear correction coefficients of each band are: 0.618, 0.625, 0.512 and 0.474. Theresults show that after the method is corrected by the linear correction coefficient, theerror caused by the side swing angle during the cross-calibration of the orbital radiation isreduced. The accuracy of radiation cross-calibration is improved, the frequency ofcalibration is improved and the requirements of remote sensing applications in the newera are adapted.
文摘According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements restricted by satellite attitude dynamics and estimates the gyro bias generated when the gyro is electrified. Observability of the calibration model is analyzed and applicable conditions of the technology are derived. Simulation results indicate that the calibration algorithm is accurate and robust at gyro sampling rate, and its convergence speed is fast. Within the given attitude dynamics model error, the convergence time is less than 100 s and the convergence accuracy is about 1.0 (°)/h. Calibration performance can meet requirements of spacecraft operations.
文摘The Visible and Infrared Multispectral Imager (VIMI) is one of the main payloads of the GF-5 satellite. It has 12 spectral bands covering the wavelength from visible light to thermal infrared. The imager designed life is 8 years. In order to monitor and correct the radiometric performance of the imager for a long time and meet the user’s demand for the quantitative remote sensing application, the expandable diffuser used for calibration in full FOV and full optical path method is designed. The solar diffuser is installed on the front side of the optical system and does not affect the normal imaging of VIMI. When VIMI need calibration, the diffuser is expand to the front of optical system via the driving mechanism. According to the characteristics of the GF-5 satellite orbit, the requirement of the calibration energy and the installation matrix of the imager relative to the satellite, the expansion angle of the diffuser is 39 degrees. The 430 mm × 430 mm large-size PTEE diffuser is manufactured to ensure full FOV and full optical path calibration. The diffuser’s directional hemispherical reflectance is higher than 95% from 420 nm to 2400 nm and variation of BRDF in the direction of imager observation is better than 2.5%. The diffuser stability monitoring radiometer is designed to monitor the on-orbit attenuation performance of the diffuser. Results of ground simulation experiments and preliminary on-board calibration experiments were introduced.
基金National Natural Science Foundation of China(No.41601492)SAST Foundation(No.SAST2016091)Development Program of China(No.2016YFB0501402)。
文摘The paper presents a geometric calibration method based on the sparse ground control points (GCPs), aiming to the linear push-broom optical satellite. This method can achieve the optimal estimate of internal and external parameters with two overlapped image pair along the charge-coupled device (CCD), and sparse GCPs in the image region, further get rid of the dependence on the expensive calibration site data. With the calibrated parameters, the line of sight (LOS) of all CCD detectors can be recovered. This paper firstly establishes the rigorous imaging model of linear push-broom optical satellite based on its imaging mechanism. And then the calibration model is constructed by improving the internal sensor model with a viewing-angle model after an analysis on systematic errors existing in the imaging model is performed. A step-wise solution is applied aiming to the optimal estimate of external and internal parameters. At last, we conduct a set of experiments on the ZY-3 NAD camera and verify the accuracy and effectiveness of the presented method by comparison.
基金Project supported by the National Natural Science Foundation of China(Grant No.41474161)the National High-Technology Program of China(Grant No.2015AA123703)
文摘In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM) and an integrating sphere transfer radiometer(ISTR) was designed in this paper.Depending on the Sun,this chain based on detectors provides precise spectral radiometric calibration and measurement to spectrometers in the reflective solar band(RSB) covering 300–2500 nm with a spectral bandwidth of 0.5–6 nm.It shortens the traditional chain based on lamp source and reduces the calibration uncertainty from 5% to 0.5% by using the cryogenic radiometer in space as a radiometric benchmark and trap detectors as secondary standard.This paper also gives a detailed uncertainty budget with reasonable distribution of each impact factor,including the weak spectral signal measurement with uncertainty of 0.28%.According to the peculiar design and comprehensive uncertainty analysis,it illustrates that the spectral radiance measurement uncertainty of the ISTR system can reach to 0.48%.The result satisfies the requirements of SI-traceable on-orbit calibration and has wider significance for expanding the application of the remote sensing data with high-quality.
基金Independent Project of State Key Laboratory of Geo-information Engineering(SKLGIE2022-ZZ-01)The Youth Science Innovation Fund(No.2023-01)。
文摘GF-14 satellite is a new generation of sub-meter stereo surveying and mapping satellite in China,carrying dual-line array stereo mapping cameras to achieve 1∶10000 scale topographic mapping without Ground Control Points(GCPs).In fact,space-based high-precision mapping without GCPs is a challenging task that depends on the close cooperation of several payloads and links,of which on-orbit geometric calibration is one of the most critical links.In this paper,the on-orbit geometric calibration of the dual-line array cameras of GF-14 satellite was performed using the control points collected in the high-precision digital calibration field,and the calibration parameters of the dual-line array cameras were solved as a whole by alternate iterations of forward and backward intersection.On this basis,the location accuracy of the stereo images using the calibration parameters was preliminarily evaluated by using several test fields around the world.The evaluation result shows that the direct forward intersection accuracy of GF-14 satellite images without GCPs after on-orbit geometric calibration reaches 2.34 meters(RMS)in plane and 1.97 meters(RMS)in elevation.
文摘A minitype reference radiation(MRR) with dimensions of only 1 m × 1 m × 1 m has been developed for the in situ calibration of photon dosimeters.The present work conducts a feasibility study on determining the conventional true value of gamma-ray air kerma at the point of test in the MRR.Owing to its smaller dimensions,the scattered gamma-rays in the MRR are expected to induce a non-negligible interference with the radiation field compared with conditions in the standard reference radiation stipulated by ISO4037-1 or GB/T12162.1.A gamma-ray spectrometer was employed to obtain the spectra of scattered gamma-rays within the MRR,and the feature components of the spectra were extracted by principal component analysis to characterize the interference of a dosimeter probe in the radiation field.A prediction model of the CAK at the point of test was built by least squares support vector machine based on the feature component data obtained from nine sample dosimeters under five different dose rates.The mean prediction error of the CAK prediction model was within ±4.5%,and the maximum prediction error was about ±10%.
文摘This paper aims at describing the theoretical fundamentals of a reciprocity-based ultrasonic measurement model. This complete inspection simulation can be decomposed in two modeling steps, one dedicated to transducer radiation and one to flaw scattering and echo synthesis. The physical meaning of the input/output signals used in these two modeling tools is defined and the theoretical principles of both field calculation and echo computation models are then detailed. The influence on the modeling results of some changes in the simulated configuration (as the incident angle) or some input signal parameters (like the frequency) are studied: it is thus theoretically established that the simulated results can be compared between each other in terms of amplitude for numerous applications when changing some inspection parameters in the simulation but that a calibration for echo calculation is generally required.
基金supported by the National Natural Science Foundation of China (Nos. 11690040 and 11690043)。
文摘Machine learning-based surrogate models have significant advantages in terms of computing efficiency. In this paper, we present a pilot study on fast calibration using machine learning techniques. Technology computer-aided design(TCAD) is a powerful simulation tool for electronic devices. This simulation tool has been widely used in the research of radiation effects.However, calibration of TCAD models is time-consuming. In this study, we introduce a fast calibration approach for TCAD model calibration of metal–oxide–semiconductor field-effect transistors(MOSFETs). This approach utilized a machine learning-based surrogate model that was several orders of magnitude faster than the original TCAD simulation. The desired calibration results were obtained within several seconds. In this study, a fundamental model containing 26 parameters is introduced to represent the typical structure of a MOSFET. Classifications were developed to improve the efficiency of the training sample generation. Feature selection techniques were employed to identify important parameters. A surrogate model consisting of a classifier and a regressor was built. A calibration procedure based on the surrogate model was proposed and tested with three calibration goals. Our work demonstrates the feasibility of machine learning-based fast model calibrations for MOSFET. In addition, this study shows that these machine learning techniques learn patterns and correlations from data instead of employing domain expertise. This indicates that machine learning could be an alternative research approach to complement classical physics-based research.
文摘Traditional operating range prediction methods assume that the atmospheric radiances in a target path and a background path are equal. But they are different in a real-world environment. To solve this problem,the influence of atmospheric radiance on operating range prediction is analyzed in this paper. Range estimation model in thermal imaging based on background radiation( REBR) is proposed. Infrared image radiometric calibration is used to calculate the background radiation of a system entrance pupil. The result shows that,compared with traditional operating range prediction methods,the REBR method is more suitable for the actual atmospheric transmission process and the physical process of infrared imaging.
文摘For precise and accurate patient dose delivery,the dosimetry system must be calibrated properly according to the recommendations of standard dosimetry protocols such as TG-51 and TRS-398. However, the dosimetry protocol followed by a calibration laboratory is usually different from the protocols that are followed by different clinics, which may result in variations in the patient dose.Our prime objective in this study was to investigate the effect of the two protocols on dosimetry measurements.Dose measurements were performed for a Co-60 teletherapy unit and a high-energy Varian linear accelerator with 6 and 15 MV photon and 6, 9, 12, and 15 MeV electron beams, following the recommendations and procedures of the AAPM TG-51 and IAEA TRS-398 dosimetry protocols. The dosimetry systems used for this study were calibrated in a Co-60 radiation beam at the Secondary Standard Dosimetry Laboratory(SSDL) PINSTECH,Pakistan, following the IAEA TRS-398 protocol. The ratio of the measured absorbed doses to water in clinical setting,D_w(TG-51/TRS-398), was 0.999 and 0.997 for 6 and15 MV photon beams,whereas these ratios were 1.013,1.009, 1.003, and 1.000 for 6, 9, 12, and 15 MeV electron beams, respectively. This difference in the absorbed dosesto-water D_w ratio may be attributed mainly due to beam quality(K_Q) and ion recombination correction factor.
文摘The real-time monitoring of environmental radiation dose for nuclear fa-cilities is an important part of safety, in order to guarantee the accuracy of the monitoring results regular calibration is necessary. Around nuclear facilities there are so many environmental dosimeters installed dispers-edly, because of its huge quantity, widely distributed, and in real-time monitoring state;it will cost lots of manpower and finance if it were tak-en to calibrate on standard laboratory;what’s more it will make the en-vironment out of control. To solve the problem of the measurement ac-curacy of the stationary gamma radiation dosimeter, an on-site calibra-tion method is proposed. The radioactive source is X-ray spectrum, and the dose reference instrument which has been calibrated by the national standard laboratory is a high pressure ionization. On-site calibration is divided into two parts;firstly the energy response experiment of dosim-eter for high and low energy is done in the laboratory, and the energy response curve is obtained combining with Monte Carlo simulation;sec-ondly experiment is carried out in the field of the measuring dosimeter, and the substitution method to calibrate the dosimeter is used;finally the calibration coefficient is gotten through energy curve correction. In order to verify the accuracy of on-site calibration method, the calibrated dosimeter is test in the standard laboratory and the error is 3.4%. The re-sult shows that the on-site calibration method using X-ray is feasible, and it can improves the accuracy of the measurement results of the stationary γ-ray instrument;what’s more important is that it has great reference value for the radiation safety management and radiation environment evaluation.
文摘<div style="text-align:justify;"> Due to the influence of processing technology and environmental factors, there are errors in attitude measurement with the three-axis magnetometer, and the change of parameters during the operation of the magnetometer in orbit will have a great impact on the measurement accuracy. This paper studies the calibration method of magnetometer based on BP neural network, which reduces the influence of model error on calibration accuracy. Firstly, the error model of the magnetometer and the structural characteristics of the BP neural network are analyzed. Secondly, the number of hidden layers and hidden nodes is optimized. To avoid the problem of slow convergence and low accuracy of basic BP algorithm, this paper uses the Levenberg Marquardt backpropagation training method to improve the training speed and prediction accuracy and realizes the on-orbit calibration of magnetometer through online training of the neural network. Finally, the effectiveness of the method is verified by numerical simulation. The results show that the neural network designed in this paper can effectively reduce the measurement error of magnetometer, while the online training can effectively reduce the error caused by the change of magnetometer parameters, and reduce the measurement error of magnetometer to less than 10 nT. </div>
基金Supported by the National Key Research and Development Program of China(2018YFB0504900 and 2018YFB0504902)National Natural Science Foundation of China(41805024 and 42005105)Open Fund of the State Key Laboratory of Hydroscience and Engineering and Tsinghua University–Ningxia Yinchuan Joint Research Institute of Digital Water Governance with Internet of Waters(sklhse-2021-Iow08)。
文摘This study evaluates the in-orbit calibration uncertainty(CU)for the microwave radiation imager(MWRI)on board the Chinese polar-orbiting meteorological satellite Fengyun-3 C(FY-3 C).Uncertainty analysis of the MWRI provides a direct link to the calibration system of the sensor and quantifies the calibration confidence based on the prelaunch and postlaunch measurements.The unique design of the sensor makes the uncertainty in the calibration of the sensor highly correlate to the uncertainty in the brightness temperature(TB)measured at the hot view,while the cold view has negligible impacts on the calibration confidence.Lack of knowledge on the emission of the hot-load reflector hampers the MWRI calibration accuracy significantly in the descending passes of the orbits when the hotload reflector is heated nonuniformly by the solar illumination.Radiance contamination originating from the satellite and in-orbit environments could enter the primary reflector via the hot view and further impinge on the CU,especially at the 10.65-GHz channels where the main-beam width is much broader than that of higher-frequency channels.The monthly-mean CU is lower than 2 K at all channels,depending on the observed earth scenes and in-orbit environments,and the month-to-month variation of CU is also noticed for all channels.Due to the uncertainty in the emissive hot-load reflector,CU in the descending passes is generally larger than that in the ascending orbits.Moreover,up to 1-K CU difference between the ocean and land scenes is found for the 10.65-GHz channels,while this difference is less than 0.1 K at the 89-GHz channels.