A new rapid determination method of wastewater COD in mixed acid solution H_2SO_4-H_3PO_4,with Mn(H_2PO_4)_2 as catalyst,has been proposed in this paper. Through orthogonal experiment, the optimal test conditions have...A new rapid determination method of wastewater COD in mixed acid solution H_2SO_4-H_3PO_4,with Mn(H_2PO_4)_2 as catalyst,has been proposed in this paper. Through orthogonal experiment, the optimal test conditions have been determined: Mn(H_2PO_4)_2:0. 3g,H_2SO_4:H_3PO_4=6:1(V/V),reflux time:5 minutes. The results were similar to that of the standard method, but the test time was only 1/24 of that and the test cost decreased 85%.展开更多
Endoscopic ultrasound (EUS) has become an essential tool for the study of pancreatic diseases. Specifically, EUS plays a pivotal role evaluating patients with a known or suspected pancreatic mass. In this setting, dif...Endoscopic ultrasound (EUS) has become an essential tool for the study of pancreatic diseases. Specifically, EUS plays a pivotal role evaluating patients with a known or suspected pancreatic mass. In this setting, differential diagnosis remains a clinical challenge. EUS-guided fine-needle aspiration (FNA) and fine-needle biopsy (FNB) have been proven to be safe and useful tools in this setting. EUS-guided FNA and FNB, by obtaining cytological and/or histological samples, are able to diagnose pancreatic lesions with high sensitivity and specificity. In this context, several methodological features, trying to increase the diagnostic yield of EUS-guided FNA and FNB, have been evaluated. In this review, we focus on the role of rapid on-site evaluation (ROSE). From data reported in the literature, ROSE may increase diagnostic yield of EUS-FNA specimens by 10%-30%, and thus, diagnostic accuracy. However, we should point out that many recent studies have reported adequacy rates of > 90% without ROSE, indicating that, perhaps, at high-volume centers, ROSE may not be indispensable to achieve excellent results. The use of ROSE can be considered important during the learning curve of EUS-FNA, and also in hospital with diagnostic accuracy rates < 90%.展开更多
Immunoassays greatly contribute to veterinary drug residue analysis. However, there are few reports on detecting neomycin residues by immunoassay. Here, a rapid and sensitive chemiluminescent enzyme immunoassay (CLIE...Immunoassays greatly contribute to veterinary drug residue analysis. However, there are few reports on detecting neomycin residues by immunoassay. Here, a rapid and sensitive chemiluminescent enzyme immunoassay (CLIEA) was successfully developed for neomycin residue analysis. CLIEA demonstrated good cross-reactivity for neomycin, and the IC50 value was 2.4 ng/mL in buffer.展开更多
The monitors used to measure radon concentration must be calibrated,and the calibration factor of each measurement cycle should be determined.Thus,the determination time of calibration factors of NRL-Ⅱ radon monitors...The monitors used to measure radon concentration must be calibrated,and the calibration factor of each measurement cycle should be determined.Thus,the determination time of calibration factors of NRL-Ⅱ radon monitors should be reduced.In this study,a method is proposed to determine the calibration factors of radon monitors rapidly.In the proposed method,the calibration factor is initially determined in the 60-min measurement cycle;the calibration factor is then identified in the other measurement cycle on the basis of the principle that the calibration factor of the same radon monitor in different measurement cycles is inversely proportional to the number of a particles produced by ^(218)Po decay in this cycle.Results demonstrate that the calculated calibration factor of the different measurement cycles is consistent with the experimental calibration factor.Therefore,this method is reliable and can be used to determine the calibration factor of radon monitors rapidly.展开更多
In view of the limited space of offshore platform and the large amount of polymer injection, the dissolution time method, solution viscosity method, conductivity method, undissolved filtration method and falling ball ...In view of the limited space of offshore platform and the large amount of polymer injection, the dissolution time method, solution viscosity method, conductivity method, undissolved filtration method and falling ball method are used as the rapid detection methods of polymer dissolution. The results show that the error of conductivity method is the largest, and that of dissolution time method is the second, and both methods are time-consuming. Solution viscosity method and insolubles filtration method have small error, but they are time-consuming, especially for offshore platforms, which makes detection inconvenient. The drop ball method is simple in operation and has a small error, so it is a promising method for rapid determination of polymer dissolution time.展开更多
Objective] This study aimed to detect al organophosphate, organochlorine and pyrethroid pesticide residues in fresh sweet corn in one determination using a gas chromatograph. [Method] The pesticide residues in fresh s...Objective] This study aimed to detect al organophosphate, organochlorine and pyrethroid pesticide residues in fresh sweet corn in one determination using a gas chromatograph. [Method] The pesticide residues in fresh sweet corn were ex-tracted and loaded to simultaneously the gas chromatograph Agilent 6890N which was equipped with two autosamplers, two columns and two detectors. [Result] Al the 26 pesticides were completely separated and eluted out within 25 min. The re-coveries of standard addition of the 26 pesticides ranged from 76% to 106%, with relative standard deviations (RSD) ranging from 0.5% to 8.9%. The linear regression equation fit wel from 0.050 to 1.500 mg/L corn extract (r2&gt;0.996). [Conclusion] The method is accuracy, which meets the requirements of pesticide residue analysis and can be used for the rapid detection, qualitative and quantitative analysis of pesticide residues in fresh sweet corn.展开更多
In this paper,the Fourier transform near-infrared(FTNIR)diffuse reflectance spectroscopy is applied for the rapid determination of protein in millet.The partial least-squares(PLS)regression is successfully used as an ...In this paper,the Fourier transform near-infrared(FTNIR)diffuse reflectance spectroscopy is applied for the rapid determination of protein in millet.The partial least-squares(PLS)regression is successfully used as an effective multivariate calibration technique.The calibration set is composed of 20 standard millet samples that the protein contents were determined by the traditional Kjeldahl method.The optimal model dimension is found to be 5 by cross-validation.22 millet samples were determined by the proposed FTNIR-PLS method.The correlation coefficient between the concentration values obtained by the FTNIR-PLS method and the traditional Kjeldahl method is 0.9805.The standard error of prediction(SEP)is 0.28% and the mean recovery is 100.2%.The proposed method has been successfully applied for the routine analysis of protein in about 10,000 grain samples.展开更多
A fluorimetric method for the determination of tyrosine in serum was proposed. The fluoriscence intensity is a linear function of tyrosine content in the range 0-1. 44ug/ml. The percentage of recovery was satisfactory.
A rapid method of determination of BaP in various environmental samples,using synchronous fluorescence spectroscopy scanning in defined range of dual-wavelengths(SFDW)is described in this paper.
Rapid simultaneous determination of chlorophyll a and chlorophyll b by reverse variable-angle synchronous spectrofluorimetry has been studied on a laboratory-constructed microcomputer-controlled versatile spectrofluor...Rapid simultaneous determination of chlorophyll a and chlorophyll b by reverse variable-angle synchronous spectrofluorimetry has been studied on a laboratory-constructed microcomputer-controlled versatile spectrofluorimeter.A method in estimation of scan parameters for the determination of two-component system by variable-angle synchronous spectrofluorimetry has been suggested展开更多
Glycogen,amino acids,fatty acids,and other nutrient components affect the flavor and nutritional quality of oysters.Methods based on near-infrared reflectance spectroscopy(NIRS)were developed to rapidly and proximatel...Glycogen,amino acids,fatty acids,and other nutrient components affect the flavor and nutritional quality of oysters.Methods based on near-infrared reflectance spectroscopy(NIRS)were developed to rapidly and proximately determine the nutrient content of the Pacific oyster Crassostreagigas.Samples of C.gigas from 19 costal sites were freeze-dried,ground,and scanned for spectral data collection using a Fourier transform NIR spectrometer(Thermo Fisher Scientific).NIRS models of glycogen and other nutrients were established using partial least squares,multiplication scattering correction first-order derivation,and Norris smoothing.The R_(C) values of the glycogen,fatty acids,amino acids,and taurine NIRS models were 0.9678,0.9312,0.9132,and 0.8928,respectively,and the residual prediction deviation(RPD)values of these components were 3.15,2.16,3.11,and 1.59,respectively,indicating a high correlation between the predicted and observed values,and that the models can be used in practice.The models were used to evaluate the nutrient compositions of 1278 oyster samples.Glycogen content was found to be positively correlated with fatty acids and negatively correlated with amino acids.The glycogen,amino acid,and taurine levels of C.gigas cultured in the subtidal and intertidal zones were also significantly different.This study suggests that C.gigas NIRS models can be a cost-effective alternative to traditional methods for the rapid and proximate analysis of various slaughter traits and may also contribute to future genetic and breeding-related studies in Pacific oysters.展开更多
A disposable biosensor was fabricated using single-walled carbon nanotubes, gold nanoparticles and tyrosinase (SWCNTs-AuNPs-Tyr) modified screen-printed electrodes. The prepared biosensor was applied to the rapid de...A disposable biosensor was fabricated using single-walled carbon nanotubes, gold nanoparticles and tyrosinase (SWCNTs-AuNPs-Tyr) modified screen-printed electrodes. The prepared biosensor was applied to the rapid determination of phenolic contaminants within 15 minutes. The SWCNTs-AuNPs-Tyr bionanocomposite sensing layer was characterized with scanning electron micro- scopy, electrochemical impedance spectroscopy and cyclic voltammetry methods. The characterization results revealed that SWCNTs could lead to a high loading of tyrosinase (Tyr) with the large surface area and the porous morphology, while AuNPs could retain the bioactivity of Tyr and enhance the sensitivity. The detection conditions, including working potential, pH of supporting electrolyte and the amount of Tyr were optimumed. As an example, the biosensor for catechol determination displayed a linear range of 8.0 × 10^-8 to 2.0 × 10^- 5 mol.L-1 with a detection limit of 4.5 × 10^-8 mol.L-1 (S/N= 3). This method has a rapid response time within 10 s, and shows excellent repeatability and stability. Moreover, the resulting biosen- sor could be disposable, low-cost, reliable and easy to carry. This kind of new Tyr biosensor provides great potential for rapid, on-site and cost-effective analysis of phenolic contaminants in environmental water samples.展开更多
文摘A new rapid determination method of wastewater COD in mixed acid solution H_2SO_4-H_3PO_4,with Mn(H_2PO_4)_2 as catalyst,has been proposed in this paper. Through orthogonal experiment, the optimal test conditions have been determined: Mn(H_2PO_4)_2:0. 3g,H_2SO_4:H_3PO_4=6:1(V/V),reflux time:5 minutes. The results were similar to that of the standard method, but the test time was only 1/24 of that and the test cost decreased 85%.
文摘Endoscopic ultrasound (EUS) has become an essential tool for the study of pancreatic diseases. Specifically, EUS plays a pivotal role evaluating patients with a known or suspected pancreatic mass. In this setting, differential diagnosis remains a clinical challenge. EUS-guided fine-needle aspiration (FNA) and fine-needle biopsy (FNB) have been proven to be safe and useful tools in this setting. EUS-guided FNA and FNB, by obtaining cytological and/or histological samples, are able to diagnose pancreatic lesions with high sensitivity and specificity. In this context, several methodological features, trying to increase the diagnostic yield of EUS-guided FNA and FNB, have been evaluated. In this review, we focus on the role of rapid on-site evaluation (ROSE). From data reported in the literature, ROSE may increase diagnostic yield of EUS-FNA specimens by 10%-30%, and thus, diagnostic accuracy. However, we should point out that many recent studies have reported adequacy rates of > 90% without ROSE, indicating that, perhaps, at high-volume centers, ROSE may not be indispensable to achieve excellent results. The use of ROSE can be considered important during the learning curve of EUS-FNA, and also in hospital with diagnostic accuracy rates < 90%.
基金supported by the project for talent training and development of the China National Center for Food Safety Risk Assessment(523 plan)Natural Science Foundation of Guangdong Province(No.2014A030310289 and No.2016A020210055)+1 种基金Natural Science Foundation of SZU(No.201576)National Natural Science Foundation of China(No.21107104)
文摘Immunoassays greatly contribute to veterinary drug residue analysis. However, there are few reports on detecting neomycin residues by immunoassay. Here, a rapid and sensitive chemiluminescent enzyme immunoassay (CLIEA) was successfully developed for neomycin residue analysis. CLIEA demonstrated good cross-reactivity for neomycin, and the IC50 value was 2.4 ng/mL in buffer.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11475082, 11375083, and 11275096)
文摘The monitors used to measure radon concentration must be calibrated,and the calibration factor of each measurement cycle should be determined.Thus,the determination time of calibration factors of NRL-Ⅱ radon monitors should be reduced.In this study,a method is proposed to determine the calibration factors of radon monitors rapidly.In the proposed method,the calibration factor is initially determined in the 60-min measurement cycle;the calibration factor is then identified in the other measurement cycle on the basis of the principle that the calibration factor of the same radon monitor in different measurement cycles is inversely proportional to the number of a particles produced by ^(218)Po decay in this cycle.Results demonstrate that the calculated calibration factor of the different measurement cycles is consistent with the experimental calibration factor.Therefore,this method is reliable and can be used to determine the calibration factor of radon monitors rapidly.
文摘In view of the limited space of offshore platform and the large amount of polymer injection, the dissolution time method, solution viscosity method, conductivity method, undissolved filtration method and falling ball method are used as the rapid detection methods of polymer dissolution. The results show that the error of conductivity method is the largest, and that of dissolution time method is the second, and both methods are time-consuming. Solution viscosity method and insolubles filtration method have small error, but they are time-consuming, especially for offshore platforms, which makes detection inconvenient. The drop ball method is simple in operation and has a small error, so it is a promising method for rapid determination of polymer dissolution time.
基金Supported by Science and Technology Research Program of Huizhou City~~
文摘Objective] This study aimed to detect al organophosphate, organochlorine and pyrethroid pesticide residues in fresh sweet corn in one determination using a gas chromatograph. [Method] The pesticide residues in fresh sweet corn were ex-tracted and loaded to simultaneously the gas chromatograph Agilent 6890N which was equipped with two autosamplers, two columns and two detectors. [Result] Al the 26 pesticides were completely separated and eluted out within 25 min. The re-coveries of standard addition of the 26 pesticides ranged from 76% to 106%, with relative standard deviations (RSD) ranging from 0.5% to 8.9%. The linear regression equation fit wel from 0.050 to 1.500 mg/L corn extract (r2&gt;0.996). [Conclusion] The method is accuracy, which meets the requirements of pesticide residue analysis and can be used for the rapid detection, qualitative and quantitative analysis of pesticide residues in fresh sweet corn.
文摘In this paper,the Fourier transform near-infrared(FTNIR)diffuse reflectance spectroscopy is applied for the rapid determination of protein in millet.The partial least-squares(PLS)regression is successfully used as an effective multivariate calibration technique.The calibration set is composed of 20 standard millet samples that the protein contents were determined by the traditional Kjeldahl method.The optimal model dimension is found to be 5 by cross-validation.22 millet samples were determined by the proposed FTNIR-PLS method.The correlation coefficient between the concentration values obtained by the FTNIR-PLS method and the traditional Kjeldahl method is 0.9805.The standard error of prediction(SEP)is 0.28% and the mean recovery is 100.2%.The proposed method has been successfully applied for the routine analysis of protein in about 10,000 grain samples.
文摘A fluorimetric method for the determination of tyrosine in serum was proposed. The fluoriscence intensity is a linear function of tyrosine content in the range 0-1. 44ug/ml. The percentage of recovery was satisfactory.
文摘A rapid method of determination of BaP in various environmental samples,using synchronous fluorescence spectroscopy scanning in defined range of dual-wavelengths(SFDW)is described in this paper.
基金The Project Supported by National Natural Science Foundation of China.
文摘Rapid simultaneous determination of chlorophyll a and chlorophyll b by reverse variable-angle synchronous spectrofluorimetry has been studied on a laboratory-constructed microcomputer-controlled versatile spectrofluorimeter.A method in estimation of scan parameters for the determination of two-component system by variable-angle synchronous spectrofluorimetry has been suggested
基金Supported by the Shandong Province Key R&D Program Project(No.2021LZGC029)the Major Scientific and Technological Innovation Project of Shandong Province(No.2019JZZY010813)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA24030105)the Qingdao Key Technology and Industrialization Demonstration Project(No.22-3-3-hygg-2-hy)the Earmarked Fund for China Agriculture Research System(No.CARS-49)。
文摘Glycogen,amino acids,fatty acids,and other nutrient components affect the flavor and nutritional quality of oysters.Methods based on near-infrared reflectance spectroscopy(NIRS)were developed to rapidly and proximately determine the nutrient content of the Pacific oyster Crassostreagigas.Samples of C.gigas from 19 costal sites were freeze-dried,ground,and scanned for spectral data collection using a Fourier transform NIR spectrometer(Thermo Fisher Scientific).NIRS models of glycogen and other nutrients were established using partial least squares,multiplication scattering correction first-order derivation,and Norris smoothing.The R_(C) values of the glycogen,fatty acids,amino acids,and taurine NIRS models were 0.9678,0.9312,0.9132,and 0.8928,respectively,and the residual prediction deviation(RPD)values of these components were 3.15,2.16,3.11,and 1.59,respectively,indicating a high correlation between the predicted and observed values,and that the models can be used in practice.The models were used to evaluate the nutrient compositions of 1278 oyster samples.Glycogen content was found to be positively correlated with fatty acids and negatively correlated with amino acids.The glycogen,amino acid,and taurine levels of C.gigas cultured in the subtidal and intertidal zones were also significantly different.This study suggests that C.gigas NIRS models can be a cost-effective alternative to traditional methods for the rapid and proximate analysis of various slaughter traits and may also contribute to future genetic and breeding-related studies in Pacific oysters.
文摘A disposable biosensor was fabricated using single-walled carbon nanotubes, gold nanoparticles and tyrosinase (SWCNTs-AuNPs-Tyr) modified screen-printed electrodes. The prepared biosensor was applied to the rapid determination of phenolic contaminants within 15 minutes. The SWCNTs-AuNPs-Tyr bionanocomposite sensing layer was characterized with scanning electron micro- scopy, electrochemical impedance spectroscopy and cyclic voltammetry methods. The characterization results revealed that SWCNTs could lead to a high loading of tyrosinase (Tyr) with the large surface area and the porous morphology, while AuNPs could retain the bioactivity of Tyr and enhance the sensitivity. The detection conditions, including working potential, pH of supporting electrolyte and the amount of Tyr were optimumed. As an example, the biosensor for catechol determination displayed a linear range of 8.0 × 10^-8 to 2.0 × 10^- 5 mol.L-1 with a detection limit of 4.5 × 10^-8 mol.L-1 (S/N= 3). This method has a rapid response time within 10 s, and shows excellent repeatability and stability. Moreover, the resulting biosen- sor could be disposable, low-cost, reliable and easy to carry. This kind of new Tyr biosensor provides great potential for rapid, on-site and cost-effective analysis of phenolic contaminants in environmental water samples.