Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In exist...Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In existing technologies,the efficiency of big data applications(BDAs)in distributed systems hinges on the stable-state and low-latency links between worker nodes.However,LMCNs with high-dynamic nodes and long-distance links can not provide the above conditions,which makes the performance of OBDP hard to be intuitively measured.To bridge this gap,a multidimensional simulation platform is indispensable that can simulate the network environment of LMCNs and put BDAs in it for performance testing.Using STK's APIs and parallel computing framework,we achieve real-time simulation for thousands of satellite nodes,which are mapped as application nodes through software defined network(SDN)and container technologies.We elaborate the architecture and mechanism of the simulation platform,and take the Starlink and Hadoop as realistic examples for simulations.The results indicate that LMCNs have dynamic end-to-end latency which fluctuates periodically with the constellation movement.Compared to ground data center networks(GDCNs),LMCNs deteriorate the computing and storage job throughput,which can be alleviated by the utilization of erasure codes and data flow scheduling of worker nodes.展开更多
In this paper,to study the mechanical responses of a solid propellant subjected to ultrahigh acceleration overload during the gun-launch process,specifically designed projectile flight tests with an onboard measuremen...In this paper,to study the mechanical responses of a solid propellant subjected to ultrahigh acceleration overload during the gun-launch process,specifically designed projectile flight tests with an onboard measurement system were performed.Two projectiles containing dummy HTPB propellant grains were successfully recovered after the flight tests with an ultrahigh acceleration overload value of 8100 g.The onboard-measured time-resolved axial displacement,contact stress and overload values were successfully obtained and analysed.Uniaxial compression tests of the dummy HTPB propellant used in the gunlaunched tests were carried out at low and intermediate strain rates to characterize the propellant's dynamic properties.A linear viscoelastic constitutive model was employed and applied in finite-element simulations of the projectile-launching process.During the launch process,the dummy propellant grain exhibited large deformation due to the high acceleration overload,possibly leading to friction between the motor case and propellant grain.The calculated contact stress showed good agreement with the experimental results,though discrepancies in the overall displacement of the dummy propellant grain were observed.The dynamic mechanical response process of the dummy propellant grain was analysed in detail.The results can be used to estimate the structural integrity of the analysed dummy propellant grain during the gun-launch process.展开更多
A mathematical model for simulating concentric-bed and other components of molecular sieve oxygen concentrator is established. In the model, the binary Langmuir equilibrium adsorption equation is adopted to describe t...A mathematical model for simulating concentric-bed and other components of molecular sieve oxygen concentrator is established. In the model, the binary Langmuir equilibrium adsorption equation is adopted to describe the adsorption performance of the adsorbent, the linear driving force (LDF) model is used to describe the mass transfer rate, and the thermal effect during adsorption is considered. The finite difference method is used in simulation and comparison. Numerical results have a reasonable agreement with the experimental research.展开更多
The Main Optical Telescope (MOT) is an important payload of the Space Solar Telescope (SST) with various instruments and observation modes. Its real-time data handling and management and control tasks are arduous. Bas...The Main Optical Telescope (MOT) is an important payload of the Space Solar Telescope (SST) with various instruments and observation modes. Its real-time data handling and management and control tasks are arduous. Based on the advanced techniques of foreign countries, an improved structure of onboard data handling systems feasible for SST, is proposed. This article concentrated on the development of a Central Management & Control Unit (MCU) based on FPGA and DSP. Through reconfigurating the FPGA and DSP programs, the prototype could perform different tasks. Thus the inheritability of the whole system is improved. The completed dual-channel prototype proves that the system meets all requirements of the MOT. Its high reliability and safety features also meet the requirements under harsh conditions such as mine detection.展开更多
Using the FengYun-3C(FY-3C)onboard BeiDou Navigation Satellite System(BDS)and Global Positioning System(GPS)data from 2013 to 2017,this study investigates the performance and contribution of BDS to precise orbit deter...Using the FengYun-3C(FY-3C)onboard BeiDou Navigation Satellite System(BDS)and Global Positioning System(GPS)data from 2013 to 2017,this study investigates the performance and contribution of BDS to precise orbit determination(POD)for a low-Earth orbit(LEO).The overlap comparison result indicates that code bias correction of BDS can improve the POD accuracy by 12.4%.The multi-year averaged one-dimensional(1D)root mean square(RMS)of the overlapping orbit differences(OODs)for the GPS-only solution is 2.0,1.7,and 1.5 cm,respectively,during the 2013,2015,and 2017 periods.The 1D RMS for the BDS-only solution is 150.9,115.0,and 47.4 cm,respectively,during the 2013,2015,and 2017 periods,which is much worse than the GPS-only solution due to the regional system of BDS and the few BDS channels of the FY-3C receiver.For the BDS and GPS combined solution(also known as the GC combined solution),the averaged 1D RMS is 2.5,2.3,and 1.6 cm,respectively,in 2013,2015,and 2017,while the GC combined POD presents a significant accuracy improvement after the exclusion of geostationary Earth orbit(GEO)satellites.The main reason for the improvement seen after this exclusion is the unfavorable satellite tracking geometry and poor orbit accuracy of GEO satellites.The accuracy of BDS-only and GC combined solutions have gradually improved from 2013 to 2017,thanks to improvements in the accuracy of International GNSS Service(IGS)orbit and clock products in recent years,especially the availability of a high-frequency satellite clock product(30 s sampling interval)since 2015.Moreover,the GC POD(without GEO)was able to achieve slightly better accuracy than the GPS-only POD in 2017,indicating that the fusion of BDS and GPS observations can improve the accuracy of LEO POD.GC combined POD can significantly improve the reliability of LEO POD,simply due to system redundancy.An increased contribution of BDS to LEO POD can be expected with the launch of more BDS satellites and with further improvements in the accuracy of BDS satellite products in the near future.展开更多
This paper presents a comprehensive charging operation for an electric-drive-reconfigured onboard charger(EDROC)with active power factor correction(APFC).The charging topology exclusively utilizes the three-phase perm...This paper presents a comprehensive charging operation for an electric-drive-reconfigured onboard charger(EDROC)with active power factor correction(APFC).The charging topology exclusively utilizes the three-phase permanent magnet synchronous motor(PMSM)propulsion system as a three-channel boost-type converter in which only a contactor and a small diode bridge are added.First,the operation scenario of the EDROC is introduced.Second,the relationship between electromagnetic torque and rotor position is investigated.Third,the current ripple cancellation of the EDROC is discussed in detail.Moreover,to implement the single-phase APFC along with charging voltage/current regulation of propulsion battery,control strategies including current balancing and synchronous/interleaving PWM strategies are incorporated.Finally,200W proof-of-concept prototype-based tests are conducted under different operation scenarios.展开更多
In this article,an omnidirectional dual-polarized antenna with synergetic electromagnetic and aerodynamic properties is propounded for high-speed diversity systems.The propounded antenna comprises a probe-fed cavity f...In this article,an omnidirectional dual-polarized antenna with synergetic electromagnetic and aerodynamic properties is propounded for high-speed diversity systems.The propounded antenna comprises a probe-fed cavity for horizontally polarized radiation and a microstrip-fed slot for vertical polarization.Double-layer metasurfaces are properly designed as artificial magnetic conductor boundaries with direct metal-mountable onboard installation and compact sizes.An attached wedge-shaped block is utilized for windage reduction in hydrodynamics.The propounded antenna is fabricated for design verification,and the experimental results agree well with the simulated ones.For vertical polarization,the operating bandwidth is in the range of 2.37–2.55 GHz,and the realized gain variation in the azimuthal radiation pattern is 3.67 decibels(dB).While an impedance bandwidth in the range of 2.45–2.47 GHz and a gain variation of 3.71 dB are also achieved for horizontal polarization.A port isolation more than 33 dB is obtained in a compact volume of 0.247λ_(0)×0.345λ_(0)×0.074λ_(0),whereλ_(0)represents the wavelength in vacuum at the center frequency,wherein the wedge-shaped block is included.The propounded diversity antenna has electromagnetic and aerodynamic merits,and exhibits an excellent potential for high-speed onboard communication.展开更多
Tailoring of an operating system and an in embedded real-time operating system in particular is es-sential for both, kernel and operation. But many of current embedded real-time operating systems provide somebasic tai...Tailoring of an operating system and an in embedded real-time operating system in particular is es-sential for both, kernel and operation. But many of current embedded real-time operating systems provide somebasic tailoring at the cost of depleting the flexibility of hardware, which causes the lack of flexibility, and de-grades their tailors. A layered modular tailoring model has been proposed together with some tailoring operationsto improve the flexibility of the systems, and algorithms have been proposed for verification of tailoring opera-tions with the current operating system.展开更多
Onboard air separation devices,based on hollow fiber membranes,are traditionally used for the optimization of aircraft fuel tank inerting systems.In the present study,a set of tests have been designed and executed to ...Onboard air separation devices,based on hollow fiber membranes,are traditionally used for the optimization of aircraft fuel tank inerting systems.In the present study,a set of tests have been designed and executed to assess the air separation performances of these systems for different air inlet temperatures(70°C∼110°C),inlet pressures(0.1∼0.4 MPa),volume flow rates of nitrogen-enriched air(NEA)(30∼120 L/min)and flight altitudes(1.5∼18 km).In particular,the temperature,pressure,volume flow rate,and oxygen concentration of air,NEA and oxygen-enriched air(OEA)have been measured.The experimental results show that the oxygen concentration of NEA,air separation coefficient,and nitrogen utilization coefficient decrease with the rising of air inlet temperature,air inlet pressure,and flight altitude.The effect of air inlet pressure on the above three parameters is significant,while the influence of air inlet temperature and flight altitude is relatively small.展开更多
At 15:06 on May 10, China successfully sent Yaogan 14 satellite and Tiantuo 1 satellite into space with a Long March 4B rocket from the Taiyuan Satellite Launch Center. It marks another launch of two satellites by one...At 15:06 on May 10, China successfully sent Yaogan 14 satellite and Tiantuo 1 satellite into space with a Long March 4B rocket from the Taiyuan Satellite Launch Center. It marks another launch of two satellites by one rocket following the launch of two BeiDou (Compass) satellites by one rocket on April 30, and it is also the third consecutive launch mission conducted by CASC within 10 days.展开更多
The descent module of China's Shenzhou 3 spacecraft returned to Earth on April 1, 2002, one week after the spacecraft was launched at the Jiuquan Satellite Launching Center in Gansu Province. It was the third test...The descent module of China's Shenzhou 3 spacecraft returned to Earth on April 1, 2002, one week after the spacecraft was launched at the Jiuquan Satellite Launching Center in Gansu Province. It was the third test flight of a prototype spacecraft expected to carry taikonauts (stemming from the Chinese words for outer space) into space in the near future since the first launch of the Shenzhou (Divine Vessel) series on November 20,1999.展开更多
There are many reasons whymerchant ships make desirable targetsfor pirates and terrorists as well as aconvenient means of transport for thestowaway. Criminal activity in the form ofsuch threats is quickly becoming one...There are many reasons whymerchant ships make desirable targetsfor pirates and terrorists as well as aconvenient means of transport for thestowaway. Criminal activity in the form ofsuch threats is quickly becoming one ofthe greatest threats to ships and展开更多
The Haiyang-2D altimetry mission of China is one of the first Low Earth Orbit(LEO)satellites that can receive new B1C/B2a signals from the BeiDou-3 Navigation Satellite System(BDS-3)for Precise Orbit Determination(POD...The Haiyang-2D altimetry mission of China is one of the first Low Earth Orbit(LEO)satellites that can receive new B1C/B2a signals from the BeiDou-3 Navigation Satellite System(BDS-3)for Precise Orbit Determination(POD).In this work,the achievable accuracy of the single-receiver ambiguity resolution for onboard LEO satellites is studied based on the real measurements of new BDS-3 frequencies.Under normal conditions,six BDS-3 satellites on average are visible.However,the multipath of the B1C/B2a code observations presents some patchy patterns that cause near-field variations with an amplitude of approximately 40 cm and deteriorate the ambiguity-fixed rate.By modeling those errors,for the B2a code,a remarkable reduction of 53%in the Root Mean Square(RMS)is achieved at high elevations,along with an increase of 8%in the ambiguity-fixed rates.Additionally,an analysis of the onboard antenna’s phase center offsets reveals that when compared to the solutions with float ambiguities,the estimated values in the antenna’s Z direction in the solutions with fixed ambiguities are notably smaller.The independent validation of the resulting POD using satellite laser ranging at 16 selected high-performance stations shows that the residuals are reduced by a minimum of 15.4%for ambiguity-fixed solutions with an RMS consistency of approximately 2.2 cm.Furthermore,when compared to the DORIS-derived orbits,a 4.3 cm 3D RMS consistency is achieved for the BDS-3-derived orbits,and the along-track bias is reduced from 2.9 to 0.4 cm using ambiguity fixing.展开更多
The onboard adaptive model can achieve the online real-time estimation of performance parameters that are difficult to measure in a real aero-engine,which is the key to realizing modelbased performance control.It must...The onboard adaptive model can achieve the online real-time estimation of performance parameters that are difficult to measure in a real aero-engine,which is the key to realizing modelbased performance control.It must possess satisfactory numerical stability and estimation accuracy.However,the positive definiteness of the state covariance matrix may be destroyed in filter estimation because of the existence of some uncertain factors,such as the accumulated measurement error,noise,and disturbance in the strongly nonlinear engine system,inevitably causing divergence of estimates of Cholesky decomposition-based Spherical Unscented Kalman Filter(SUKF).Therefore,this paper proposes an improved SUKF algorithm(iSUKF)and applies it to the performance degradation estimation of the engine.Compared to SUKF,the iSUKF mainly replaces the Cholesky decomposition with the Singular Value Decomposition(SVD),which is numerically stable without any strict requirement for the state covariance matrix.Meanwhile,a correction factor is designed to assess the measurement deviation between the real engine and the nonlinear onboard model to correct the state covariance matrix,thus maintaining better numerical stability of parameters estimated by the filter.Then,an offline correction strategy is also proposed to eliminate the influence of the degradation of unestimated health parameters or the filter’s inadequate estimation of the coupled health parameters.This action effectively promotes the onboard adaptive model’s estimation accuracy concerning the degradation of the engine’real health parameters and its performance parameters.Finally,the simulation results show that the iSUKF can maintain the numerical stability of the filter’s estimation of health parameters.Compared with the existing methods,the offline correction strategy improves the estimation accuracy of the iSUKF-based nonlinear onboard adaptive model for the performance parameters of the real engine by more than 50%.The proposed method will provide feasible technical support for model-based aero-engine performance control.展开更多
基金supported by National Natural Sciences Foundation of China(No.62271165,62027802,62201307)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030297)+2 种基金the Shenzhen Science and Technology Program ZDSYS20210623091808025Stable Support Plan Program GXWD20231129102638002the Major Key Project of PCL(No.PCL2024A01)。
文摘Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In existing technologies,the efficiency of big data applications(BDAs)in distributed systems hinges on the stable-state and low-latency links between worker nodes.However,LMCNs with high-dynamic nodes and long-distance links can not provide the above conditions,which makes the performance of OBDP hard to be intuitively measured.To bridge this gap,a multidimensional simulation platform is indispensable that can simulate the network environment of LMCNs and put BDAs in it for performance testing.Using STK's APIs and parallel computing framework,we achieve real-time simulation for thousands of satellite nodes,which are mapped as application nodes through software defined network(SDN)and container technologies.We elaborate the architecture and mechanism of the simulation platform,and take the Starlink and Hadoop as realistic examples for simulations.The results indicate that LMCNs have dynamic end-to-end latency which fluctuates periodically with the constellation movement.Compared to ground data center networks(GDCNs),LMCNs deteriorate the computing and storage job throughput,which can be alleviated by the utilization of erasure codes and data flow scheduling of worker nodes.
文摘In this paper,to study the mechanical responses of a solid propellant subjected to ultrahigh acceleration overload during the gun-launch process,specifically designed projectile flight tests with an onboard measurement system were performed.Two projectiles containing dummy HTPB propellant grains were successfully recovered after the flight tests with an ultrahigh acceleration overload value of 8100 g.The onboard-measured time-resolved axial displacement,contact stress and overload values were successfully obtained and analysed.Uniaxial compression tests of the dummy HTPB propellant used in the gunlaunched tests were carried out at low and intermediate strain rates to characterize the propellant's dynamic properties.A linear viscoelastic constitutive model was employed and applied in finite-element simulations of the projectile-launching process.During the launch process,the dummy propellant grain exhibited large deformation due to the high acceleration overload,possibly leading to friction between the motor case and propellant grain.The calculated contact stress showed good agreement with the experimental results,though discrepancies in the overall displacement of the dummy propellant grain were observed.The dynamic mechanical response process of the dummy propellant grain was analysed in detail.The results can be used to estimate the structural integrity of the analysed dummy propellant grain during the gun-launch process.
文摘A mathematical model for simulating concentric-bed and other components of molecular sieve oxygen concentrator is established. In the model, the binary Langmuir equilibrium adsorption equation is adopted to describe the adsorption performance of the adsorbent, the linear driving force (LDF) model is used to describe the mass transfer rate, and the thermal effect during adsorption is considered. The finite difference method is used in simulation and comparison. Numerical results have a reasonable agreement with the experimental research.
基金Project 863-2.5.2.25 supported by the National High Technology Research & Development (863) Program of China
文摘The Main Optical Telescope (MOT) is an important payload of the Space Solar Telescope (SST) with various instruments and observation modes. Its real-time data handling and management and control tasks are arduous. Based on the advanced techniques of foreign countries, an improved structure of onboard data handling systems feasible for SST, is proposed. This article concentrated on the development of a Central Management & Control Unit (MCU) based on FPGA and DSP. Through reconfigurating the FPGA and DSP programs, the prototype could perform different tasks. Thus the inheritability of the whole system is improved. The completed dual-channel prototype proves that the system meets all requirements of the MOT. Its high reliability and safety features also meet the requirements under harsh conditions such as mine detection.
基金We are very grateful to the IGS,GFZ,and WHU for providing the precise orbit and clock products of GPS and BDS.Thanks also go to the EPOS-RT/PANDA software from GFZ.This study is financially supported by the National Natural Science Foundation of China(41774030,41974027,41974029,and 41505030)the Hubei Province Natural Science Foundation of China(2018CFA081)The numerical calculations in this paper were done on the supercomputing system at the Supercomputing Center of Wuhan University.
文摘Using the FengYun-3C(FY-3C)onboard BeiDou Navigation Satellite System(BDS)and Global Positioning System(GPS)data from 2013 to 2017,this study investigates the performance and contribution of BDS to precise orbit determination(POD)for a low-Earth orbit(LEO).The overlap comparison result indicates that code bias correction of BDS can improve the POD accuracy by 12.4%.The multi-year averaged one-dimensional(1D)root mean square(RMS)of the overlapping orbit differences(OODs)for the GPS-only solution is 2.0,1.7,and 1.5 cm,respectively,during the 2013,2015,and 2017 periods.The 1D RMS for the BDS-only solution is 150.9,115.0,and 47.4 cm,respectively,during the 2013,2015,and 2017 periods,which is much worse than the GPS-only solution due to the regional system of BDS and the few BDS channels of the FY-3C receiver.For the BDS and GPS combined solution(also known as the GC combined solution),the averaged 1D RMS is 2.5,2.3,and 1.6 cm,respectively,in 2013,2015,and 2017,while the GC combined POD presents a significant accuracy improvement after the exclusion of geostationary Earth orbit(GEO)satellites.The main reason for the improvement seen after this exclusion is the unfavorable satellite tracking geometry and poor orbit accuracy of GEO satellites.The accuracy of BDS-only and GC combined solutions have gradually improved from 2013 to 2017,thanks to improvements in the accuracy of International GNSS Service(IGS)orbit and clock products in recent years,especially the availability of a high-frequency satellite clock product(30 s sampling interval)since 2015.Moreover,the GC POD(without GEO)was able to achieve slightly better accuracy than the GPS-only POD in 2017,indicating that the fusion of BDS and GPS observations can improve the accuracy of LEO POD.GC combined POD can significantly improve the reliability of LEO POD,simply due to system redundancy.An increased contribution of BDS to LEO POD can be expected with the launch of more BDS satellites and with further improvements in the accuracy of BDS satellite products in the near future.
基金This work was supported in part by the National Natural Science Foundation of China(51807098,61673226)and the Six Talent Peaks Project in Jiangsu Province(2015-JY-028).
文摘This paper presents a comprehensive charging operation for an electric-drive-reconfigured onboard charger(EDROC)with active power factor correction(APFC).The charging topology exclusively utilizes the three-phase permanent magnet synchronous motor(PMSM)propulsion system as a three-channel boost-type converter in which only a contactor and a small diode bridge are added.First,the operation scenario of the EDROC is introduced.Second,the relationship between electromagnetic torque and rotor position is investigated.Third,the current ripple cancellation of the EDROC is discussed in detail.Moreover,to implement the single-phase APFC along with charging voltage/current regulation of propulsion battery,control strategies including current balancing and synchronous/interleaving PWM strategies are incorporated.Finally,200W proof-of-concept prototype-based tests are conducted under different operation scenarios.
基金support from the Natural Science Foundation of Beijing Manipulate (4182029)the Youth Top Program of Beijing Outstanding Talent Funding Projectthe National Key Research and Development Program of China (2018YFB1801603)
文摘In this article,an omnidirectional dual-polarized antenna with synergetic electromagnetic and aerodynamic properties is propounded for high-speed diversity systems.The propounded antenna comprises a probe-fed cavity for horizontally polarized radiation and a microstrip-fed slot for vertical polarization.Double-layer metasurfaces are properly designed as artificial magnetic conductor boundaries with direct metal-mountable onboard installation and compact sizes.An attached wedge-shaped block is utilized for windage reduction in hydrodynamics.The propounded antenna is fabricated for design verification,and the experimental results agree well with the simulated ones.For vertical polarization,the operating bandwidth is in the range of 2.37–2.55 GHz,and the realized gain variation in the azimuthal radiation pattern is 3.67 decibels(dB).While an impedance bandwidth in the range of 2.45–2.47 GHz and a gain variation of 3.71 dB are also achieved for horizontal polarization.A port isolation more than 33 dB is obtained in a compact volume of 0.247λ_(0)×0.345λ_(0)×0.074λ_(0),whereλ_(0)represents the wavelength in vacuum at the center frequency,wherein the wedge-shaped block is included.The propounded diversity antenna has electromagnetic and aerodynamic merits,and exhibits an excellent potential for high-speed onboard communication.
基金Sponsored by the Research Projection of the Tenth Five-year of National Defence Department( Grant No. 417010402)
文摘Tailoring of an operating system and an in embedded real-time operating system in particular is es-sential for both, kernel and operation. But many of current embedded real-time operating systems provide somebasic tailoring at the cost of depleting the flexibility of hardware, which causes the lack of flexibility, and de-grades their tailors. A layered modular tailoring model has been proposed together with some tailoring operationsto improve the flexibility of the systems, and algorithms have been proposed for verification of tailoring opera-tions with the current operating system.
基金This project is supported by the Fund of Natural Science Project of Hunan Province,China,with the Item No.2020JJ5393Education Department of Hunan Province,China,with the Item No.18C0735.
文摘Onboard air separation devices,based on hollow fiber membranes,are traditionally used for the optimization of aircraft fuel tank inerting systems.In the present study,a set of tests have been designed and executed to assess the air separation performances of these systems for different air inlet temperatures(70°C∼110°C),inlet pressures(0.1∼0.4 MPa),volume flow rates of nitrogen-enriched air(NEA)(30∼120 L/min)and flight altitudes(1.5∼18 km).In particular,the temperature,pressure,volume flow rate,and oxygen concentration of air,NEA and oxygen-enriched air(OEA)have been measured.The experimental results show that the oxygen concentration of NEA,air separation coefficient,and nitrogen utilization coefficient decrease with the rising of air inlet temperature,air inlet pressure,and flight altitude.The effect of air inlet pressure on the above three parameters is significant,while the influence of air inlet temperature and flight altitude is relatively small.
文摘At 15:06 on May 10, China successfully sent Yaogan 14 satellite and Tiantuo 1 satellite into space with a Long March 4B rocket from the Taiyuan Satellite Launch Center. It marks another launch of two satellites by one rocket following the launch of two BeiDou (Compass) satellites by one rocket on April 30, and it is also the third consecutive launch mission conducted by CASC within 10 days.
文摘The descent module of China's Shenzhou 3 spacecraft returned to Earth on April 1, 2002, one week after the spacecraft was launched at the Jiuquan Satellite Launching Center in Gansu Province. It was the third test flight of a prototype spacecraft expected to carry taikonauts (stemming from the Chinese words for outer space) into space in the near future since the first launch of the Shenzhou (Divine Vessel) series on November 20,1999.
文摘There are many reasons whymerchant ships make desirable targetsfor pirates and terrorists as well as aconvenient means of transport for thestowaway. Criminal activity in the form ofsuch threats is quickly becoming one ofthe greatest threats to ships and
基金This work is partly sponsored by China Postdoctoral Science Foundation(Grant Nos.2021M702507)the National Natural Science Foundation of China(Grant Nos.42204020,42004020,42074032,41931075 and 42030109)the Key Research and Development Plan Project of Hubei Province(Grant Nos.2020BIB006).
文摘The Haiyang-2D altimetry mission of China is one of the first Low Earth Orbit(LEO)satellites that can receive new B1C/B2a signals from the BeiDou-3 Navigation Satellite System(BDS-3)for Precise Orbit Determination(POD).In this work,the achievable accuracy of the single-receiver ambiguity resolution for onboard LEO satellites is studied based on the real measurements of new BDS-3 frequencies.Under normal conditions,six BDS-3 satellites on average are visible.However,the multipath of the B1C/B2a code observations presents some patchy patterns that cause near-field variations with an amplitude of approximately 40 cm and deteriorate the ambiguity-fixed rate.By modeling those errors,for the B2a code,a remarkable reduction of 53%in the Root Mean Square(RMS)is achieved at high elevations,along with an increase of 8%in the ambiguity-fixed rates.Additionally,an analysis of the onboard antenna’s phase center offsets reveals that when compared to the solutions with float ambiguities,the estimated values in the antenna’s Z direction in the solutions with fixed ambiguities are notably smaller.The independent validation of the resulting POD using satellite laser ranging at 16 selected high-performance stations shows that the residuals are reduced by a minimum of 15.4%for ambiguity-fixed solutions with an RMS consistency of approximately 2.2 cm.Furthermore,when compared to the DORIS-derived orbits,a 4.3 cm 3D RMS consistency is achieved for the BDS-3-derived orbits,and the along-track bias is reduced from 2.9 to 0.4 cm using ambiguity fixing.
基金the National Natural Science Foundation of China(Nos.51906103,52176009).
文摘The onboard adaptive model can achieve the online real-time estimation of performance parameters that are difficult to measure in a real aero-engine,which is the key to realizing modelbased performance control.It must possess satisfactory numerical stability and estimation accuracy.However,the positive definiteness of the state covariance matrix may be destroyed in filter estimation because of the existence of some uncertain factors,such as the accumulated measurement error,noise,and disturbance in the strongly nonlinear engine system,inevitably causing divergence of estimates of Cholesky decomposition-based Spherical Unscented Kalman Filter(SUKF).Therefore,this paper proposes an improved SUKF algorithm(iSUKF)and applies it to the performance degradation estimation of the engine.Compared to SUKF,the iSUKF mainly replaces the Cholesky decomposition with the Singular Value Decomposition(SVD),which is numerically stable without any strict requirement for the state covariance matrix.Meanwhile,a correction factor is designed to assess the measurement deviation between the real engine and the nonlinear onboard model to correct the state covariance matrix,thus maintaining better numerical stability of parameters estimated by the filter.Then,an offline correction strategy is also proposed to eliminate the influence of the degradation of unestimated health parameters or the filter’s inadequate estimation of the coupled health parameters.This action effectively promotes the onboard adaptive model’s estimation accuracy concerning the degradation of the engine’real health parameters and its performance parameters.Finally,the simulation results show that the iSUKF can maintain the numerical stability of the filter’s estimation of health parameters.Compared with the existing methods,the offline correction strategy improves the estimation accuracy of the iSUKF-based nonlinear onboard adaptive model for the performance parameters of the real engine by more than 50%.The proposed method will provide feasible technical support for model-based aero-engine performance control.