Although previous studies have shown the neuroprotective effects of the adenosine triphosphate (ATP)-sensitive potassium (KATP) channel opener against ischemic neuronal damage, little is known about the mechanisms...Although previous studies have shown the neuroprotective effects of the adenosine triphosphate (ATP)-sensitive potassium (KATP) channel opener against ischemic neuronal damage, little is known about the mechanisms involved. Phosphatidylinositol-3 kinase (PI3K)/v-akt murine thy-moma viral oncogene homolog (Akt) and Bcl-2 are thought to be important factors that mediate neuroprotection. The present study investigated the effects of KATP openers on hypoxia-induced PC12 cell apoptosis, as well as mRNA and protein expression of Akt and Bcl-2. Results demon-strated that pretreatment of PC12 cells with pinacidil, a KATP opener, resulted in decreased PC12 cell apoptosis following hypoxia, as detected by Annexin-V fluorescein isothiocyanate/ propidium iodide double staining flow cytometry. In addition, mRNA and protein expression of phosphorylated Akt (p-Akt) and Bcl-2 increased, as detected by immunofluorescence, Western blot analysis, and reverse-transcription polymerase chain reaction. The protective effect of this preconditioning was attenuated by glipizide, a selective KATP blocker. These results demonstrate for the first time that the protective mechanisms of KATP openers on PC12 cell apoptosis following hypoxia could result from activation of the PI3K/Akt signaling pathway, which further activates expression of the downstream Bcl-2 gene.展开更多
Reversible protein phosphorylation is a central regulatory mechanism of cell function. Deregulation of the balanced actions of protein kinases and phosphatases has been frequently associated with several pathological ...Reversible protein phosphorylation is a central regulatory mechanism of cell function. Deregulation of the balanced actions of protein kinases and phosphatases has been frequently associated with several pathological conditions, including cancer. Many studies have already addressed the role of protein kinases misregulation in cancer. However, much less is known about protein phosphatases influence. Phosphoprotein Phosphatase 1 (PPP1) is one of the major serine/threonine protein phosphatases who has three catalytic isoforms: PPP1CA, PPP1CB, and PPP1CC. Its function is achieved by binding to regulatory subunits, known as PPP1-interacting proteins (PIPs), which may prefer a catalytic isoform. Also, some inhibitors/enhancers may exhibit isoform specificity. Here we show that, prodigiosin (PG), a molecule with anticancer properties, promotes the formation of PPP1CA-AKT complex and not of PPP1CC-MAPK complex. Both, AKT and MAPK, are well-known PIPs from two pathways that crosstalk and regulate melanoma cells survival. In addition, the analysis performed using surface plasmon resonance (SPR) technology indicates that PPP1 interacts with obatoclax (OBX), a drug that belongs to the same family of PG. Overall, these results suggest that PG might, at least in part, act through PPP1C/PIPs. Also, this study is pioneer in demonstrating PPP1 isoform-specific modulation by small molecules.展开更多
基金the Natural Science Foundation of Liaoning Province,No.20052097,2008225010
文摘Although previous studies have shown the neuroprotective effects of the adenosine triphosphate (ATP)-sensitive potassium (KATP) channel opener against ischemic neuronal damage, little is known about the mechanisms involved. Phosphatidylinositol-3 kinase (PI3K)/v-akt murine thy-moma viral oncogene homolog (Akt) and Bcl-2 are thought to be important factors that mediate neuroprotection. The present study investigated the effects of KATP openers on hypoxia-induced PC12 cell apoptosis, as well as mRNA and protein expression of Akt and Bcl-2. Results demon-strated that pretreatment of PC12 cells with pinacidil, a KATP opener, resulted in decreased PC12 cell apoptosis following hypoxia, as detected by Annexin-V fluorescein isothiocyanate/ propidium iodide double staining flow cytometry. In addition, mRNA and protein expression of phosphorylated Akt (p-Akt) and Bcl-2 increased, as detected by immunofluorescence, Western blot analysis, and reverse-transcription polymerase chain reaction. The protective effect of this preconditioning was attenuated by glipizide, a selective KATP blocker. These results demonstrate for the first time that the protective mechanisms of KATP openers on PC12 cell apoptosis following hypoxia could result from activation of the PI3K/Akt signaling pathway, which further activates expression of the downstream Bcl-2 gene.
基金supported by grants from Fundacao para a Ciencia e Tecnologia(FCT)of the Portuguese Ministry of Science and Higher Education(PTDC/DTP-PIC/0460/2012)by FEDER through Eixo I do Programa Operacional Fatores de Competitividade(POFC)(FCOMP-01-0124-FEDER-028692)co-funded by QREN
文摘Reversible protein phosphorylation is a central regulatory mechanism of cell function. Deregulation of the balanced actions of protein kinases and phosphatases has been frequently associated with several pathological conditions, including cancer. Many studies have already addressed the role of protein kinases misregulation in cancer. However, much less is known about protein phosphatases influence. Phosphoprotein Phosphatase 1 (PPP1) is one of the major serine/threonine protein phosphatases who has three catalytic isoforms: PPP1CA, PPP1CB, and PPP1CC. Its function is achieved by binding to regulatory subunits, known as PPP1-interacting proteins (PIPs), which may prefer a catalytic isoform. Also, some inhibitors/enhancers may exhibit isoform specificity. Here we show that, prodigiosin (PG), a molecule with anticancer properties, promotes the formation of PPP1CA-AKT complex and not of PPP1CC-MAPK complex. Both, AKT and MAPK, are well-known PIPs from two pathways that crosstalk and regulate melanoma cells survival. In addition, the analysis performed using surface plasmon resonance (SPR) technology indicates that PPP1 interacts with obatoclax (OBX), a drug that belongs to the same family of PG. Overall, these results suggest that PG might, at least in part, act through PPP1C/PIPs. Also, this study is pioneer in demonstrating PPP1 isoform-specific modulation by small molecules.