A class of two-level explicit difference schemes are presented for solving three-dimensional heat conduction equation. When the order of truncation error is 0(Deltat + (Deltax)(2)), the stability condition is mesh rat...A class of two-level explicit difference schemes are presented for solving three-dimensional heat conduction equation. When the order of truncation error is 0(Deltat + (Deltax)(2)), the stability condition is mesh ratio r = Deltat/(Deltax)(2) = Deltat/(Deltay)(2) = Deltat/(Deltaz)(2) less than or equal to 1/2, which is better than that of all the other explicit difference schemes. And when the order of truncation error is 0((Deltat)(2) + (Deltax)(4)), the stability condition is r less than or equal to 1/6, which contains the known results.展开更多
In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve ...In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve the timefractional heat conduction equation.The Caputo fractional derivative of the order 0 〈 α≤ 1 is used.The solution is presented in terms of the Mittag-Leffler functions.Numerical results are illustrated graphically for various values of fractional derivative.展开更多
文摘A class of two-level explicit difference schemes are presented for solving three-dimensional heat conduction equation. When the order of truncation error is 0(Deltat + (Deltax)(2)), the stability condition is mesh ratio r = Deltat/(Deltax)(2) = Deltat/(Deltay)(2) = Deltat/(Deltaz)(2) less than or equal to 1/2, which is better than that of all the other explicit difference schemes. And when the order of truncation error is 0((Deltat)(2) + (Deltax)(4)), the stability condition is r less than or equal to 1/6, which contains the known results.
基金supported by the National Natural Science Foundation of China(11072134 and 11102102)
文摘In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve the timefractional heat conduction equation.The Caputo fractional derivative of the order 0 〈 α≤ 1 is used.The solution is presented in terms of the Mittag-Leffler functions.Numerical results are illustrated graphically for various values of fractional derivative.