Background:Prolonged sitting and reduced physical activity lead to low energy expenditures.However,little is known about the joint impact of daily sitting time and physical activity on body fat distribution.We investi...Background:Prolonged sitting and reduced physical activity lead to low energy expenditures.However,little is known about the joint impact of daily sitting time and physical activity on body fat distribution.We investigated the independent and joint associations of daily sitting time and physical activity with body fat among adults.Methods:This was a cross-sectional analysis of U.S.nationally representative data from the National Health and Nutrition Examination Survey2011-2018 among adults aged 20 years or older.Daily sitting time and leisure-time physical activity(LTPA)were self-reported using the Global Physical Activity Questionnaire.Body fat(total and trunk fat percentage)was determined via dual X-ray absorptiometry.Results:Among 10,808 adults,about 54.6%spent 6 h/day or more sitting;more than one-half reported no LTPA(inactive)or less than 150 min/week LTPA(insufficiently active)with only 43.3%reported 150 min/week or more LTPA(active)in the past week.After fully adjusting for sociodemographic data,lifestyle behaviors,and chronic conditions,prolonged sitting time and low levels of LTPA were associated with higher total and trunk fat percentages in both sexes.When stratifying by LTPA,the association between daily sitting time and body fat appeared to be stronger in those who were inactive/insuufficiently active.In the joint analyses,inactive/insuufficiently active adults who reported sitting more than 8 h/day had the highest total(female:3.99%(95%confidence interval(95%CI):3.09%-4.88%);male:3.79%(95%CI:2.75%-4.82%))and trunk body fat percentages(female:4.21%(95%CI:3.09%-5.32%);male:4.07%(95%CI:2.95%-5.19%))when compared with those who were active and sitting less than 4 h/day.Conclusion:Prolonged daily sitting time was associated with increased body fat among U.S.adults.The higher body fat associated with 6 h/day sitting may not be offset by achieving recommended levels of physical activity.展开更多
The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ...The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.展开更多
Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including hig...Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including high-resolution imagery and exceptional mobility,making them well suited for monitoring flood extent and identifying rescue targets during floods.However,there are some challenges in interpreting rescue information in real time from flood images captured by UAVs,such as the complexity of the scenarios of UAV images,the lack of flood rescue target detection datasets and the limited real-time processing capabilities of the airborne on-board platform.Thus,we propose a real-time rescue target detection method for UAVs that is capable of efficiently delineating flood extent and identifying rescue targets(i.e.,pedestrians and vehicles trapped by floods).The proposed method achieves real-time rescue information extraction for UAV platforms by lightweight processing and fusion of flood extent extraction model and target detection model.The flood inundation range is extracted by the proposed method in real time and detects targets such as people and vehicles to be rescued based on this layer.Our experimental results demonstrate that the Intersection over Union(IoU)for flood water extraction reaches an impressive 80%,and the IoU for real-time flood water extraction stands at a commendable 76.4%.The information on flood stricken targets extracted by this method in real time can be used for flood emergency rescue.展开更多
Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast ele...Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast electronic processes on the attosecond timescale, including photoionization and tunneling ionization. These interrogation techniques include the attosecond streak camera, the reconstruction of attosecond beating by interference of two-photon transitions, and the attoclock. While the former two are usually employed to study photoionization processes, the latter is typically used to investigate tunneling ionization. In this review, we briefly overview these timing techniques towards an attosecond temporal resolution of ionization processes in atoms and molecules under intense laser fields. In particular, we review the backpropagation method, which is a novel hybrid quantum-classical approach towards the full characterization of tunneling ionization dynamics. Continued advances in the interrogation techniques promise to pave the pathway towards the exploration of ever faster dynamical processes on an ever shorter timescale.展开更多
Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the ma...Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the major locus controlling this trait,modulates flowering time.We report that the three J-family genes influence soybean flowering time,with the triple mutant Guangzhou Mammoth-2 flowering late under short days by inhibiting transcription of E1-family genes.J-family genes offer promising allelic combinations for breeding.展开更多
In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciat...In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciated,with most systems failing to capture the time-bound nuances of network traffic.This leads to compromised detection accuracy and overlooked temporal patterns.Addressing this gap,we introduce a novel SSAE-TCN-BiLSTM(STL)model that integrates time series analysis,significantly enhancing detection capabilities.Our approach reduces feature dimensionalitywith a Stacked Sparse Autoencoder(SSAE)and extracts temporally relevant features through a Temporal Convolutional Network(TCN)and Bidirectional Long Short-term Memory Network(Bi-LSTM).By meticulously adjusting time steps,we underscore the significance of temporal data in bolstering detection accuracy.On the UNSW-NB15 dataset,ourmodel achieved an F1-score of 99.49%,Accuracy of 99.43%,Precision of 99.38%,Recall of 99.60%,and an inference time of 4.24 s.For the CICDS2017 dataset,we recorded an F1-score of 99.53%,Accuracy of 99.62%,Precision of 99.27%,Recall of 99.79%,and an inference time of 5.72 s.These findings not only confirm the STL model’s superior performance but also its operational efficiency,underpinning its significance in real-world cybersecurity scenarios where rapid response is paramount.Our contribution represents a significant advance in cybersecurity,proposing a model that excels in accuracy and adaptability to the dynamic nature of network traffic,setting a new benchmark for intrusion detection systems.展开更多
Objective:Radical cystectomy is a complex lengthy procedure associated with postoperative morbidity.We aimed to assess the operative time(OT)in patients undergoing radical cystectomy and its impact on 90-day postopera...Objective:Radical cystectomy is a complex lengthy procedure associated with postoperative morbidity.We aimed to assess the operative time(OT)in patients undergoing radical cystectomy and its impact on 90-day postoperative complications and readmission rates.Methods:The retrospective cohort study included 296 patients undergoing radical cystectomy and urinary diversion from May 2010 to December 2018 in our institution.The OT of 369 min was set as a cutoff value between short and long OT groups.The primary outcome was 90-day postoperative complication rates.Secondary outcomes were gastrointestinal recovery time,length of hospital stay,and 90-day readmission rates.Results:The overall incidence of 90-day postoperative complications was 79.7%where 43.2%representing low-grade complications according to the ClavieneDindo classification(Grade 1 and Grade 2),and 36.5%representing high-grade complications(Grade3).Gastrointestinal tract and infectious complications are the most common complications in our data set(45.9%and 45.6%,respectively).On multivariable analysis,prolonged OT was significantly associated with odds of high-grade complications(odds ratio 2.340,95%confidence interval 1.288e4.250,p=0.005).After propensity score-matched analysis,a higher incidence of major complications was identified in the long OT group 55(51.4%)compared to 35(32.7%)in the short OT group(p=0.006).A shorter gastrointestinal tract recovery time was noticed in the short OT group(p=0.009).Prolonged OT was associated with a higher 90-day readmission rate on univariate and multivariate analyses(p<0.001,p=0.001,respectively).展开更多
Geothermal resources are increasingly gaining attention as a competitive,clean energy source to address the energy crisis and mitigate climate change.The Wugongshan area,situated in the southeast coast geothermal belt...Geothermal resources are increasingly gaining attention as a competitive,clean energy source to address the energy crisis and mitigate climate change.The Wugongshan area,situated in the southeast coast geothermal belt of China,is a typical geothermal anomaly and contains abundant medium-and low-temperature geothermal resources.This study employed hydrogeochemical and isotopic techniques to explore the cyclic evolution of geothermal water in the western Wugongshan region,encompassing the recharge origin,water-rock interaction mechanisms,and residence time.The results show that the geothermal water in the western region of Wugongshan is weakly alkaline,with low enthalpy and mineralization levels.The hydrochemistry of geothermal waters is dominated by Na-HCO_(3)and Na-SO_(4),while the hydrochemistry types of cold springs are all Na-HCO_(3).The hydrochemistry types of surface waters and rain waters are NaHCO_(3)or Ca-HCO_(3).The δD and δ^(18)O values reveal that the geothermal waters are recharged by atmospheric precipitation at an altitude between 550.0 and 1218.6 m.Molar ratios of maj or solutes and isotopic compositions of^(87)Sr/^(86)Sr underscore the significant role of silicate weathering,dissolution,and cation exchange in controlling geothermal water chemistry.Additionally,geothermal waters experienced varying degrees of mixing with cold water during their ascent.Theδ^(13)C values suggest that the primary sources of carbon in the geothermal waters were biogenic and organic.Theδ^(34)S value suggests that the sulfates in geothermal water originate from sulfide minerals in the surrounding rock.Age dating using 3H and^(14)C isotopes suggests that geothermal waters have a residence time exceeding 1 kaBP and undergo a long-distance cycling process.展开更多
In this paper,we mainly discuss a discrete estimation of the average differential entropy for a continuous time-stationary ergodic space-time random field.By estimating the probability value of a time-stationary rando...In this paper,we mainly discuss a discrete estimation of the average differential entropy for a continuous time-stationary ergodic space-time random field.By estimating the probability value of a time-stationary random field in a small range,we give an entropy estimation and obtain the average entropy estimation formula in a certain bounded space region.It can be proven that the estimation of the average differential entropy converges to the theoretical value with a probability of 1.In addition,we also conducted numerical experiments for different parameters to verify the convergence result obtained in the theoretical proofs.展开更多
Battery remaining charging time(RCT)prediction can facilitate charging management and alleviate mileage anxiety for electric vehicles(EVs).Also,it is of great significance to improve EV users’experience.However,the R...Battery remaining charging time(RCT)prediction can facilitate charging management and alleviate mileage anxiety for electric vehicles(EVs).Also,it is of great significance to improve EV users’experience.However,the RCT for a lithiumion battery pack in EVs changes with temperature and other battery parameters.This study proposes an electrothermal model-based method to accurately predict battery RCT.Firstly,a characteristic battery cell is adopted to represent the battery pack,thus an equivalent circuit model(ECM)of the characteristic battery cell is established to describe the electrical behaviors of a battery pack.Secondly,an equivalent thermal model(ETM)of the battery pack is developed by considering the influence of ambient temperature,thermal management,and battery connectors in the battery pack to calculate the temperature which is then fed back to the ECM to realize electrothermal coupling.Finally,the RCT prediction method is proposed based on the electrothermal model and validated in the wide temperature range from-20℃to 45℃.The experimental results show that the prediction error of the RCT in the whole temperature range is less than 1.5%.展开更多
In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.A...In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.Although many anomaly detection methods have been proposed,the temporal correlation of the time series over the same sensor and the state(spatial)correlation between different sensors are rarely considered simultaneously in these methods.Owing to the superior capability of Transformer in learning time series features.This paper proposes a time series anomaly detection method based on a spatial-temporal network and an improved Transformer.Additionally,the methods based on graph neural networks typically include a graph structure learning module and an anomaly detection module,which are interdependent.However,in the initial phase of training,since neither of the modules has reached an optimal state,their performance may influence each other.This scenario makes the end-to-end training approach hard to effectively direct the learning trajectory of each module.This interdependence between the modules,coupled with the initial instability,may cause the model to find it hard to find the optimal solution during the training process,resulting in unsatisfactory results.We introduce an adaptive graph structure learning method to obtain the optimal model parameters and graph structure.Experiments on two publicly available datasets demonstrate that the proposed method attains higher anomaly detection results than other methods.展开更多
Flowering time is important for adaptation of soybean(Glycine max)to different environments.Here,we conducted a genome-wide association study of flowering time using a panel of 1490 cultivated soybean accessions.We id...Flowering time is important for adaptation of soybean(Glycine max)to different environments.Here,we conducted a genome-wide association study of flowering time using a panel of 1490 cultivated soybean accessions.We identified three strong signals at the qFT02-2 locus(Chr02:12037319–12238569),which were associated with flowering time in three environments:Gongzhuling,Mengcheng,and Nanchang.By analyzing linkage disequilibrium,gene expression patterns,gene annotation,and the diversity of variants,we identified an AP1 homolog as the candidate gene for the qFT02-2 locus,which we named GmAP1d.Only one nonsynonymous polymorphism existed among 1490 soybean accessions at position Chr02:12087053.Accessions carrying the Chr02:12087053-T allele flowered significantly earlier than those carrying the Chr02:12087053-A allele.Thus,we developed a cleaved amplified polymorphic sequence(CAPS)marker for the SNP at Chr02:12087053,which is suitable for marker-assisted breeding of flowering time.Knockout of GmAP1d in the‘Williams 82’background by gene editing promoted flowering under long-day conditions,confirming that GmAP1d is the causal gene for qFT02-2.An analysis of the region surrounding GmAP1d revealed that GmAP1d was artificially selected during the genetic improvement of soybean.Through stepwise selection,the proportion of modern cultivars carrying the Chr02:12087053-T allele has increased,and this allele has become nearly fixed(95%)in northern China.These findings provide a theoretical basis for better understanding the molecular regulatory mechanism of flowering time in soybean and a target gene that can be used for breeding modern soybean cultivars adapted to different latitudes.展开更多
Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same g...Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same granularity,segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy.However,these events of varying granularity frequently intersect with each other,which may possess unequal durations.Even minor differences can result in significant errors when matching time series with future trends.Besides,directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead to insufficient prediction accuracy.Therefore,this paper proposes a short-term forecasting method for time series based on a multi-granularity event,MGE-SP(multi-granularity event-based short-termprediction).First,amethodological framework for MGE-SP established guides the implementation steps.The framework consists of three key steps,including multi-granularity event matching based on the LTF(latest time first)strategy,multi-granularity event alignment using a piecewise aggregate approximation based on the compression ratio,and a short-term prediction model based on XGBoost.The data from a nationwide online car-hailing service in China ensures the method’s reliability.The average RMSE(root mean square error)and MAE(mean absolute error)of the proposed method are 3.204 and 2.360,lower than the respective values of 4.056 and 3.101 obtained using theARIMA(autoregressive integratedmoving average)method,as well as the values of 4.278 and 2.994 obtained using k-means-SVR(support vector regression)method.The other experiment is conducted on stock data froma public data set.The proposed method achieved an average RMSE and MAE of 0.836 and 0.696,lower than the respective values of 1.019 and 0.844 obtained using the ARIMA method,as well as the values of 1.350 and 1.172 obtained using the k-means-SVR method.展开更多
The external residence time distribution(RTD)curve is extensively used to characterise fluid flow within the single-strand continuous casting tundish.Dead volume fraction determination typically relies on the external...The external residence time distribution(RTD)curve is extensively used to characterise fluid flow within the single-strand continuous casting tundish.Dead volume fraction determination typically relies on the external RTD curve to reveal macroscopic fluid flow behaviour.Based on the external RTD to effectively assess dead volume fractions and other fluid characteristics under conditions of internal non-uniform flow,an internal RTD was introduced.In a smooth pipe under laminar flow conditions,the dead region occupies 25%of the total volume,which is defined as the space between the pipe wall and a radius of 0.866 R0(where R0 is the radius of pipe).Under turbulent flow conditions,the dead region only occupies 0.38%of the reactor’s internal volume,spanning from the pipe wall to a radius of 0.00189 R0.The results obtained using the external RTD method are consistent with the theoretical analysis.Experimental trials involving water were conducted to examine the flow of molten steel within a five-strand tundish.Subsequently,an analysis approach employing internal RTD was employed to evaluate fluid mixing within a multi-flow continuous casting tundish.Using the internal RTD method,the analysis revealed that the whole dead zone volume fraction of the intermediate package decreased from 26.9%to 18.9%after the addition of the flow control device.The dead volume fraction can be accurately depicted by utilising the internal mean RTD function.The association between the internal RTD function and the external average RTD can be effectively employed to scrutinise the response curve of the tracer within a system exhibiting uneven flow distribution.展开更多
This study aims to evaluate the effect of serum concentration, synchronization time, and confluence degree on the synchronisation efficiency of goat fibroblast cycle. The results indicated that there was no difference...This study aims to evaluate the effect of serum concentration, synchronization time, and confluence degree on the synchronisation efficiency of goat fibroblast cycle. The results indicated that there was no difference in the percentage of nucleated fibroblasts in the G0/G1 stage between serum concentrations of 0.3% and 0.4% (83.89% and 82.69%, respectively, P > 0.05) as well as between serum concentrations of 0.2% and 0.5% (76.95% and 75.46%, respectively, P > 0.05). The percentage of nucleated fibroblasts in the G0/G1 stage was highest at the concentration of 0.3% and lowest in the control group (83.89% vs. 62.67%, P 0.05). The beneficial effect of high confluence was confirmed by the large percentage of nucleated fibroblasts at the G0/G1 stage. The 60% confluency was significantly lower than the 80% and 100% confluency (73.44%, 86.63%, and 87.17%, respectively, P < 0.05). The results indicate that the goat fibroblast cycle synchronization is the most effective at the serum concentration of 0.3%, 72 hours of synchronization and 100% confluency.展开更多
In this paper,the covert age of information(CAoI),which characterizes the timeliness and covertness performance of communication,is first investigated in the short-packet covert communication with time modulated retro...In this paper,the covert age of information(CAoI),which characterizes the timeliness and covertness performance of communication,is first investigated in the short-packet covert communication with time modulated retrodirective array(TMRDA).Specifically,the TMRDA is designed to maximize the antenna gain in the target direction while the side lobe is sufficiently suppressed.On this basis,the covertness constraint and CAoI are derived in closed form.To facilitate the covert transmission design,the transmit power and block-length are jointly optimized to minimize the CAoI,which demonstrates the trade-off between covertness and timelessness.Our results illustrate that there exists an optimal block-length that yields the minimum CAoI,and the presented optimization results can achieve enhanced performance compared with the fixed block-length case.Additionally,we observe that smaller beam pointing error at Bob leads to improvements in CAoI.展开更多
Background: Prenatal exposure to illicit substances is responsible for several long-term negative health consequences. It is critical for healthcare professionals to know the extent and scope of prenatal substance exp...Background: Prenatal exposure to illicit substances is responsible for several long-term negative health consequences. It is critical for healthcare professionals to know the extent and scope of prenatal substance exposure in their cases. Several studies exist with mixed results comparing the effectiveness of umbilical cord tissue (UCT) and meconium (MEC) as toxicology specimen types. The specific aim of this study is to compare the use of UCT and MEC regarding the time interval between the birth of the neonate, receipt of the specimen at the laboratory, and the hospital’s receipt of the final toxicology report. Method: The study queried de-identified results of 5358 consecutive UCT and 706 MEC from our laboratory. Results: The mean time from birth to receipt of the specimen at the laboratory for MEC and UCT was 4.5 days ± 2.9 days and 2.8 days ± 1.9 days, respectively. The mean time from birth to final report for MEC was 6.9 days ± 3.8 days, 5.7 days ± 3.3 days, and 8.4 days ± 3.8 days for all MEC specimens, negative MEC, and positive MEC, respectively. The mean time from birth to final report for UCT was 4.3 days ± 2.4 days, 3.5 days ± 2.2 days, and 5.4 days ± 2.2 days for all UCT, negative UCT and positive UCT, respectively. Discussion/Conclusion: Receipt of drug test results of the neonate prior to release from the hospital is critical. This study shows that UCT offers an advantage when results are needed quickly to make informed decisions about the health and well-being of newborns.展开更多
The composite time scale(CTS) provides an accurate and stable time-frequency reference for modern science and technology. Conventional CTS always features a centralized network topology, which means that the CTS is ac...The composite time scale(CTS) provides an accurate and stable time-frequency reference for modern science and technology. Conventional CTS always features a centralized network topology, which means that the CTS is accompanied by a local master clock. This largely restricts the stability and reliability of the CTS. We simulate the restriction and analyze the influence of the master clock on the CTS. It proves that the CTS's long-term stability is also positively related to that of the master clock, until the region dominated by the frequency drift of the H-maser(averaging time longer than ~10~5s).Aiming at this restriction, a real-time clock network is utilized. Based on the network, a real-time CTS referenced by a stable remote master clock is achieved. The experiment comparing two real-time CTSs referenced by a local and a remote master clock respectively reveals that under open-loop steering, the stability of the CTS is improved by referencing to a remote and more stable master clock instead of a local and less stable master clock. In this way, with the help of the proposed scheme, the CTS can be referenced to the most stable master clock within the network in real time, no matter whether it is local or remote, making democratic polycentric timekeeping possible.展开更多
文摘Background:Prolonged sitting and reduced physical activity lead to low energy expenditures.However,little is known about the joint impact of daily sitting time and physical activity on body fat distribution.We investigated the independent and joint associations of daily sitting time and physical activity with body fat among adults.Methods:This was a cross-sectional analysis of U.S.nationally representative data from the National Health and Nutrition Examination Survey2011-2018 among adults aged 20 years or older.Daily sitting time and leisure-time physical activity(LTPA)were self-reported using the Global Physical Activity Questionnaire.Body fat(total and trunk fat percentage)was determined via dual X-ray absorptiometry.Results:Among 10,808 adults,about 54.6%spent 6 h/day or more sitting;more than one-half reported no LTPA(inactive)or less than 150 min/week LTPA(insufficiently active)with only 43.3%reported 150 min/week or more LTPA(active)in the past week.After fully adjusting for sociodemographic data,lifestyle behaviors,and chronic conditions,prolonged sitting time and low levels of LTPA were associated with higher total and trunk fat percentages in both sexes.When stratifying by LTPA,the association between daily sitting time and body fat appeared to be stronger in those who were inactive/insuufficiently active.In the joint analyses,inactive/insuufficiently active adults who reported sitting more than 8 h/day had the highest total(female:3.99%(95%confidence interval(95%CI):3.09%-4.88%);male:3.79%(95%CI:2.75%-4.82%))and trunk body fat percentages(female:4.21%(95%CI:3.09%-5.32%);male:4.07%(95%CI:2.95%-5.19%))when compared with those who were active and sitting less than 4 h/day.Conclusion:Prolonged daily sitting time was associated with increased body fat among U.S.adults.The higher body fat associated with 6 h/day sitting may not be offset by achieving recommended levels of physical activity.
基金supported in part by the National Natural Science Foundation of China (62103093)the National Key Research and Development Program of China (2022YFB3305905)+6 种基金the Xingliao Talent Program of Liaoning Province of China (XLYC2203130)the Fundamental Research Funds for the Central Universities of China (N2108003)the Natural Science Foundation of Liaoning Province (2023-MS-087)the BNU Talent Seed Fund,UIC Start-Up Fund (R72021115)the Guangdong Key Laboratory of AI and MM Data Processing (2020KSYS007)the Guangdong Provincial Key Laboratory IRADS for Data Science (2022B1212010006)the Guangdong Higher Education Upgrading Plan 2021–2025 of “Rushing to the Top,Making Up Shortcomings and Strengthening Special Features” with UIC Research,China (R0400001-22,R0400025-21)。
文摘The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.
基金National Natural Science Foundation of China(No.42271416)Guangxi Science and Technology Major Project(No.AA22068072)Shennongjia National Park Resources Comprehensive Investigation Research Project(No.SNJNP2023015).
文摘Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including high-resolution imagery and exceptional mobility,making them well suited for monitoring flood extent and identifying rescue targets during floods.However,there are some challenges in interpreting rescue information in real time from flood images captured by UAVs,such as the complexity of the scenarios of UAV images,the lack of flood rescue target detection datasets and the limited real-time processing capabilities of the airborne on-board platform.Thus,we propose a real-time rescue target detection method for UAVs that is capable of efficiently delineating flood extent and identifying rescue targets(i.e.,pedestrians and vehicles trapped by floods).The proposed method achieves real-time rescue information extraction for UAV platforms by lightweight processing and fusion of flood extent extraction model and target detection model.The flood inundation range is extracted by the proposed method in real time and detects targets such as people and vehicles to be rescued based on this layer.Our experimental results demonstrate that the Intersection over Union(IoU)for flood water extraction reaches an impressive 80%,and the IoU for real-time flood water extraction stands at a commendable 76.4%.The information on flood stricken targets extracted by this method in real time can be used for flood emergency rescue.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.92150105,11834004,12227807,and 12241407)the Science and Technology Commission of Shanghai Municipality (Grant No.21ZR1420100)。
文摘Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast electronic processes on the attosecond timescale, including photoionization and tunneling ionization. These interrogation techniques include the attosecond streak camera, the reconstruction of attosecond beating by interference of two-photon transitions, and the attoclock. While the former two are usually employed to study photoionization processes, the latter is typically used to investigate tunneling ionization. In this review, we briefly overview these timing techniques towards an attosecond temporal resolution of ionization processes in atoms and molecules under intense laser fields. In particular, we review the backpropagation method, which is a novel hybrid quantum-classical approach towards the full characterization of tunneling ionization dynamics. Continued advances in the interrogation techniques promise to pave the pathway towards the exploration of ever faster dynamical processes on an ever shorter timescale.
基金supported by the National Key Research and Development Program of China(2023YFD1200600 to Xiaoya Lin)National Natural Science Foundation of China(32090060 to Fanjiang Kong,32001568 to Xiaoya Lin,31930083 to Baohui Liu,and 31901500 to Tiantian Bu)China Postdoctoral Science Foundation(2019 M652839 to Liyu Chen)。
文摘Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the major locus controlling this trait,modulates flowering time.We report that the three J-family genes influence soybean flowering time,with the triple mutant Guangzhou Mammoth-2 flowering late under short days by inhibiting transcription of E1-family genes.J-family genes offer promising allelic combinations for breeding.
基金supported in part by the Gansu Province Higher Education Institutions Industrial Support Program:Security Situational Awareness with Artificial Intelligence and Blockchain Technology.Project Number(2020C-29).
文摘In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciated,with most systems failing to capture the time-bound nuances of network traffic.This leads to compromised detection accuracy and overlooked temporal patterns.Addressing this gap,we introduce a novel SSAE-TCN-BiLSTM(STL)model that integrates time series analysis,significantly enhancing detection capabilities.Our approach reduces feature dimensionalitywith a Stacked Sparse Autoencoder(SSAE)and extracts temporally relevant features through a Temporal Convolutional Network(TCN)and Bidirectional Long Short-term Memory Network(Bi-LSTM).By meticulously adjusting time steps,we underscore the significance of temporal data in bolstering detection accuracy.On the UNSW-NB15 dataset,ourmodel achieved an F1-score of 99.49%,Accuracy of 99.43%,Precision of 99.38%,Recall of 99.60%,and an inference time of 4.24 s.For the CICDS2017 dataset,we recorded an F1-score of 99.53%,Accuracy of 99.62%,Precision of 99.27%,Recall of 99.79%,and an inference time of 5.72 s.These findings not only confirm the STL model’s superior performance but also its operational efficiency,underpinning its significance in real-world cybersecurity scenarios where rapid response is paramount.Our contribution represents a significant advance in cybersecurity,proposing a model that excels in accuracy and adaptability to the dynamic nature of network traffic,setting a new benchmark for intrusion detection systems.
基金Earlier version of this article was presented as a poster in the bladder section:invasive(MP 13-12)AUA-2021.
文摘Objective:Radical cystectomy is a complex lengthy procedure associated with postoperative morbidity.We aimed to assess the operative time(OT)in patients undergoing radical cystectomy and its impact on 90-day postoperative complications and readmission rates.Methods:The retrospective cohort study included 296 patients undergoing radical cystectomy and urinary diversion from May 2010 to December 2018 in our institution.The OT of 369 min was set as a cutoff value between short and long OT groups.The primary outcome was 90-day postoperative complication rates.Secondary outcomes were gastrointestinal recovery time,length of hospital stay,and 90-day readmission rates.Results:The overall incidence of 90-day postoperative complications was 79.7%where 43.2%representing low-grade complications according to the ClavieneDindo classification(Grade 1 and Grade 2),and 36.5%representing high-grade complications(Grade3).Gastrointestinal tract and infectious complications are the most common complications in our data set(45.9%and 45.6%,respectively).On multivariable analysis,prolonged OT was significantly associated with odds of high-grade complications(odds ratio 2.340,95%confidence interval 1.288e4.250,p=0.005).After propensity score-matched analysis,a higher incidence of major complications was identified in the long OT group 55(51.4%)compared to 35(32.7%)in the short OT group(p=0.006).A shorter gastrointestinal tract recovery time was noticed in the short OT group(p=0.009).Prolonged OT was associated with a higher 90-day readmission rate on univariate and multivariate analyses(p<0.001,p=0.001,respectively).
基金funded by the project of China Geological Survey(Grant No.DD20221677-2)the Central Public-Interest Scientific Institution Basal Research Fund(Grant No.JKYQN202307)。
文摘Geothermal resources are increasingly gaining attention as a competitive,clean energy source to address the energy crisis and mitigate climate change.The Wugongshan area,situated in the southeast coast geothermal belt of China,is a typical geothermal anomaly and contains abundant medium-and low-temperature geothermal resources.This study employed hydrogeochemical and isotopic techniques to explore the cyclic evolution of geothermal water in the western Wugongshan region,encompassing the recharge origin,water-rock interaction mechanisms,and residence time.The results show that the geothermal water in the western region of Wugongshan is weakly alkaline,with low enthalpy and mineralization levels.The hydrochemistry of geothermal waters is dominated by Na-HCO_(3)and Na-SO_(4),while the hydrochemistry types of cold springs are all Na-HCO_(3).The hydrochemistry types of surface waters and rain waters are NaHCO_(3)or Ca-HCO_(3).The δD and δ^(18)O values reveal that the geothermal waters are recharged by atmospheric precipitation at an altitude between 550.0 and 1218.6 m.Molar ratios of maj or solutes and isotopic compositions of^(87)Sr/^(86)Sr underscore the significant role of silicate weathering,dissolution,and cation exchange in controlling geothermal water chemistry.Additionally,geothermal waters experienced varying degrees of mixing with cold water during their ascent.Theδ^(13)C values suggest that the primary sources of carbon in the geothermal waters were biogenic and organic.Theδ^(34)S value suggests that the sulfates in geothermal water originate from sulfide minerals in the surrounding rock.Age dating using 3H and^(14)C isotopes suggests that geothermal waters have a residence time exceeding 1 kaBP and undergo a long-distance cycling process.
基金supported by the Shenzhen sustainable development project:KCXFZ 20201221173013036 and the National Natural Science Foundation of China(91746107).
文摘In this paper,we mainly discuss a discrete estimation of the average differential entropy for a continuous time-stationary ergodic space-time random field.By estimating the probability value of a time-stationary random field in a small range,we give an entropy estimation and obtain the average entropy estimation formula in a certain bounded space region.It can be proven that the estimation of the average differential entropy converges to the theoretical value with a probability of 1.In addition,we also conducted numerical experiments for different parameters to verify the convergence result obtained in the theoretical proofs.
基金Supported by National Key R&D Program of China(Grant No.2021YFB2402002)Beijing Municipal Natural Science Foundation of China(Grant No.L223013).
文摘Battery remaining charging time(RCT)prediction can facilitate charging management and alleviate mileage anxiety for electric vehicles(EVs).Also,it is of great significance to improve EV users’experience.However,the RCT for a lithiumion battery pack in EVs changes with temperature and other battery parameters.This study proposes an electrothermal model-based method to accurately predict battery RCT.Firstly,a characteristic battery cell is adopted to represent the battery pack,thus an equivalent circuit model(ECM)of the characteristic battery cell is established to describe the electrical behaviors of a battery pack.Secondly,an equivalent thermal model(ETM)of the battery pack is developed by considering the influence of ambient temperature,thermal management,and battery connectors in the battery pack to calculate the temperature which is then fed back to the ECM to realize electrothermal coupling.Finally,the RCT prediction method is proposed based on the electrothermal model and validated in the wide temperature range from-20℃to 45℃.The experimental results show that the prediction error of the RCT in the whole temperature range is less than 1.5%.
基金This work is partly supported by the National Key Research and Development Program of China(Grant No.2020YFB1805403)the National Natural Science Foundation of China(Grant No.62032002)the 111 Project(Grant No.B21049).
文摘In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.Although many anomaly detection methods have been proposed,the temporal correlation of the time series over the same sensor and the state(spatial)correlation between different sensors are rarely considered simultaneously in these methods.Owing to the superior capability of Transformer in learning time series features.This paper proposes a time series anomaly detection method based on a spatial-temporal network and an improved Transformer.Additionally,the methods based on graph neural networks typically include a graph structure learning module and an anomaly detection module,which are interdependent.However,in the initial phase of training,since neither of the modules has reached an optimal state,their performance may influence each other.This scenario makes the end-to-end training approach hard to effectively direct the learning trajectory of each module.This interdependence between the modules,coupled with the initial instability,may cause the model to find it hard to find the optimal solution during the training process,resulting in unsatisfactory results.We introduce an adaptive graph structure learning method to obtain the optimal model parameters and graph structure.Experiments on two publicly available datasets demonstrate that the proposed method attains higher anomaly detection results than other methods.
基金supported by the National Natural Science Foundation of China(U22A20473)the National Key Research and Development Program of China(2021YFD1201600)+2 种基金the China Agriculture Research System(CARS-04-PS01)the Agricultural Science and Technology Innovation Program(ASTIP)of Chinese Academy of Agricultural Sciences,Scientific Innovation 2030 Project(2022ZD0401703)the Platform of National Crop Germplasm Resources of China。
文摘Flowering time is important for adaptation of soybean(Glycine max)to different environments.Here,we conducted a genome-wide association study of flowering time using a panel of 1490 cultivated soybean accessions.We identified three strong signals at the qFT02-2 locus(Chr02:12037319–12238569),which were associated with flowering time in three environments:Gongzhuling,Mengcheng,and Nanchang.By analyzing linkage disequilibrium,gene expression patterns,gene annotation,and the diversity of variants,we identified an AP1 homolog as the candidate gene for the qFT02-2 locus,which we named GmAP1d.Only one nonsynonymous polymorphism existed among 1490 soybean accessions at position Chr02:12087053.Accessions carrying the Chr02:12087053-T allele flowered significantly earlier than those carrying the Chr02:12087053-A allele.Thus,we developed a cleaved amplified polymorphic sequence(CAPS)marker for the SNP at Chr02:12087053,which is suitable for marker-assisted breeding of flowering time.Knockout of GmAP1d in the‘Williams 82’background by gene editing promoted flowering under long-day conditions,confirming that GmAP1d is the causal gene for qFT02-2.An analysis of the region surrounding GmAP1d revealed that GmAP1d was artificially selected during the genetic improvement of soybean.Through stepwise selection,the proportion of modern cultivars carrying the Chr02:12087053-T allele has increased,and this allele has become nearly fixed(95%)in northern China.These findings provide a theoretical basis for better understanding the molecular regulatory mechanism of flowering time in soybean and a target gene that can be used for breeding modern soybean cultivars adapted to different latitudes.
基金funded by the Fujian Province Science and Technology Plan,China(Grant Number 2019H0017).
文摘Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same granularity,segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy.However,these events of varying granularity frequently intersect with each other,which may possess unequal durations.Even minor differences can result in significant errors when matching time series with future trends.Besides,directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead to insufficient prediction accuracy.Therefore,this paper proposes a short-term forecasting method for time series based on a multi-granularity event,MGE-SP(multi-granularity event-based short-termprediction).First,amethodological framework for MGE-SP established guides the implementation steps.The framework consists of three key steps,including multi-granularity event matching based on the LTF(latest time first)strategy,multi-granularity event alignment using a piecewise aggregate approximation based on the compression ratio,and a short-term prediction model based on XGBoost.The data from a nationwide online car-hailing service in China ensures the method’s reliability.The average RMSE(root mean square error)and MAE(mean absolute error)of the proposed method are 3.204 and 2.360,lower than the respective values of 4.056 and 3.101 obtained using theARIMA(autoregressive integratedmoving average)method,as well as the values of 4.278 and 2.994 obtained using k-means-SVR(support vector regression)method.The other experiment is conducted on stock data froma public data set.The proposed method achieved an average RMSE and MAE of 0.836 and 0.696,lower than the respective values of 1.019 and 0.844 obtained using the ARIMA method,as well as the values of 1.350 and 1.172 obtained using the k-means-SVR method.
基金supported by grants from the National Natural Science Foundation of China(No.51774004)Anhui Province Outstanding Research and Innovation Team in Higher Education Institutions(No.2022AH010024).
文摘The external residence time distribution(RTD)curve is extensively used to characterise fluid flow within the single-strand continuous casting tundish.Dead volume fraction determination typically relies on the external RTD curve to reveal macroscopic fluid flow behaviour.Based on the external RTD to effectively assess dead volume fractions and other fluid characteristics under conditions of internal non-uniform flow,an internal RTD was introduced.In a smooth pipe under laminar flow conditions,the dead region occupies 25%of the total volume,which is defined as the space between the pipe wall and a radius of 0.866 R0(where R0 is the radius of pipe).Under turbulent flow conditions,the dead region only occupies 0.38%of the reactor’s internal volume,spanning from the pipe wall to a radius of 0.00189 R0.The results obtained using the external RTD method are consistent with the theoretical analysis.Experimental trials involving water were conducted to examine the flow of molten steel within a five-strand tundish.Subsequently,an analysis approach employing internal RTD was employed to evaluate fluid mixing within a multi-flow continuous casting tundish.Using the internal RTD method,the analysis revealed that the whole dead zone volume fraction of the intermediate package decreased from 26.9%to 18.9%after the addition of the flow control device.The dead volume fraction can be accurately depicted by utilising the internal mean RTD function.The association between the internal RTD function and the external average RTD can be effectively employed to scrutinise the response curve of the tracer within a system exhibiting uneven flow distribution.
文摘This study aims to evaluate the effect of serum concentration, synchronization time, and confluence degree on the synchronisation efficiency of goat fibroblast cycle. The results indicated that there was no difference in the percentage of nucleated fibroblasts in the G0/G1 stage between serum concentrations of 0.3% and 0.4% (83.89% and 82.69%, respectively, P > 0.05) as well as between serum concentrations of 0.2% and 0.5% (76.95% and 75.46%, respectively, P > 0.05). The percentage of nucleated fibroblasts in the G0/G1 stage was highest at the concentration of 0.3% and lowest in the control group (83.89% vs. 62.67%, P 0.05). The beneficial effect of high confluence was confirmed by the large percentage of nucleated fibroblasts at the G0/G1 stage. The 60% confluency was significantly lower than the 80% and 100% confluency (73.44%, 86.63%, and 87.17%, respectively, P < 0.05). The results indicate that the goat fibroblast cycle synchronization is the most effective at the serum concentration of 0.3%, 72 hours of synchronization and 100% confluency.
文摘In this paper,the covert age of information(CAoI),which characterizes the timeliness and covertness performance of communication,is first investigated in the short-packet covert communication with time modulated retrodirective array(TMRDA).Specifically,the TMRDA is designed to maximize the antenna gain in the target direction while the side lobe is sufficiently suppressed.On this basis,the covertness constraint and CAoI are derived in closed form.To facilitate the covert transmission design,the transmit power and block-length are jointly optimized to minimize the CAoI,which demonstrates the trade-off between covertness and timelessness.Our results illustrate that there exists an optimal block-length that yields the minimum CAoI,and the presented optimization results can achieve enhanced performance compared with the fixed block-length case.Additionally,we observe that smaller beam pointing error at Bob leads to improvements in CAoI.
文摘Background: Prenatal exposure to illicit substances is responsible for several long-term negative health consequences. It is critical for healthcare professionals to know the extent and scope of prenatal substance exposure in their cases. Several studies exist with mixed results comparing the effectiveness of umbilical cord tissue (UCT) and meconium (MEC) as toxicology specimen types. The specific aim of this study is to compare the use of UCT and MEC regarding the time interval between the birth of the neonate, receipt of the specimen at the laboratory, and the hospital’s receipt of the final toxicology report. Method: The study queried de-identified results of 5358 consecutive UCT and 706 MEC from our laboratory. Results: The mean time from birth to receipt of the specimen at the laboratory for MEC and UCT was 4.5 days ± 2.9 days and 2.8 days ± 1.9 days, respectively. The mean time from birth to final report for MEC was 6.9 days ± 3.8 days, 5.7 days ± 3.3 days, and 8.4 days ± 3.8 days for all MEC specimens, negative MEC, and positive MEC, respectively. The mean time from birth to final report for UCT was 4.3 days ± 2.4 days, 3.5 days ± 2.2 days, and 5.4 days ± 2.2 days for all UCT, negative UCT and positive UCT, respectively. Discussion/Conclusion: Receipt of drug test results of the neonate prior to release from the hospital is critical. This study shows that UCT offers an advantage when results are needed quickly to make informed decisions about the health and well-being of newborns.
基金supported in part by the National Natural Science Foundation of China (Grant No.61971259)the National Key R&D Program of China (Grant No.2021YFA1402102)Tsinghua University Initiative Scientific Research Program。
文摘The composite time scale(CTS) provides an accurate and stable time-frequency reference for modern science and technology. Conventional CTS always features a centralized network topology, which means that the CTS is accompanied by a local master clock. This largely restricts the stability and reliability of the CTS. We simulate the restriction and analyze the influence of the master clock on the CTS. It proves that the CTS's long-term stability is also positively related to that of the master clock, until the region dominated by the frequency drift of the H-maser(averaging time longer than ~10~5s).Aiming at this restriction, a real-time clock network is utilized. Based on the network, a real-time CTS referenced by a stable remote master clock is achieved. The experiment comparing two real-time CTSs referenced by a local and a remote master clock respectively reveals that under open-loop steering, the stability of the CTS is improved by referencing to a remote and more stable master clock instead of a local and less stable master clock. In this way, with the help of the proposed scheme, the CTS can be referenced to the most stable master clock within the network in real time, no matter whether it is local or remote, making democratic polycentric timekeeping possible.