The welding deformation is a key factor affecting the production quality of the side beam of the subway bogie frame. A major issue is how to control the welding deformation during the manufacturing processes. Based on...The welding deformation is a key factor affecting the production quality of the side beam of the subway bogie frame. A major issue is how to control the welding deformation during the manufacturing processes. Based on the "Local- Global" method, the thermal cycle and the stress of a local model extracted from the global side beam model were simulated. The simulated strain result was mapped into the global model as an initial load to simulate the welding assembly deformation. Then the deformation distribution of the side beam was obtained by elastic finite element method, and compared with the measurement results. Furthermore, the welding deformation under different welding sequences and constraints was simulated. The influence of the welding sequences and constraints on the side beam deformation was analyzed. The results indicate that the deformation is the smallest when the sequence is symmetrical and decreases with the increase in constraints.展开更多
The weld nugget formation in the resistance spot welding(RSW) of aluminum alloy was investigated in the present study. The nugget formation process was directly observed by using a digital high-speed camera. Numerical...The weld nugget formation in the resistance spot welding(RSW) of aluminum alloy was investigated in the present study. The nugget formation process was directly observed by using a digital high-speed camera. Numerical simulation was also employed to investigate the nugget formation process. The results showed that for the RSW of two aluminum alloy sheets, a nugget was first formed in the workpiece/workpiece(W/W) interface and grew along the radial direction and axial direction of the sheets, and then it became a large elliptical nugget. For the RSW of three aluminum alloy sheets, two small nuggets were firstly formed in two W/W interfaces and grew along the axial direction and radial direction; finally they fused into one nugget. Besides, there existed a critical welding time, after which the nugget size remained nearly unchanged. This indicates that a long welding time is unnecessary for the RSW of aluminum alloy. In addition, the calculated nugget radius was compared with the experimental results, which showed that the simulation results agreed well with the experimental results.展开更多
The dynamic thermal process during double-sided asymmetrical TIG backing welding of large thick plates ( 1 000 mm×700 mm×50 mm) is numerically simulated using MSC. MARC. The effect of arc distance on the t...The dynamic thermal process during double-sided asymmetrical TIG backing welding of large thick plates ( 1 000 mm×700 mm×50 mm) is numerically simulated using MSC. MARC. The effect of arc distance on the thermal cycle in weld zone during double-sided asymmetrical T1G backing welding is investigated. The results show that the workpiece experiences double-peak thermal cycle in double-sided asymmetrical TIG backing welding. On the one hand, the fore arc has the pre- heating effect on the rear pass, and the pre-heating temperature depends on the distance between the double arcs, the heat input of fore arc, and the initial temperature of workpiece. On the other hand, the rear arc has the post-heating effect on the fore pass. The mutual effects of two heat sources decrease with the increase of arc distance.展开更多
Keyhole is the most important characteristic for laser deep penetration welding, and its formation indicates the beginning of laser deep penetration welding mode. The keyhole developing process was analyzed and the ke...Keyhole is the most important characteristic for laser deep penetration welding, and its formation indicates the beginning of laser deep penetration welding mode. The keyhole developing process was analyzed and the keyhole formation time was calculated according to welding speed and the length of weld bead formed in the keyhole formation process. The results showed that the keyhole forms in 40 -70 ms at different rate of change of laser power. In laser deep penetration welding process, the variation of light intensity radiated by laser induced plasma can identify the keyhole formation, but it can not be used to estimate the keyhole formation time because of delay effect.展开更多
The energy model was founded to calculate the critical power of keyhole formation by using the limit principle in CW ( continuous wave ) Nd: YAG laser deep penetration welding process. The model was validated by ex...The energy model was founded to calculate the critical power of keyhole formation by using the limit principle in CW ( continuous wave ) Nd: YAG laser deep penetration welding process. The model was validated by experiments. The results show that '.there are two errors between the calculated critical power of keyhole formation and that of experiments : one is that the calculated results is less than those of experiments, which is caused by not considering the energy loss by heat conduction in the model of keyhole formation. The other is that there is 0. 9 mm error between the axis of the calculated curve of critical power with location of laser focus and that of experimental curve, which is induced by the excursion of laser focus in laser deep penetration welding. At last, the two errors were revised according to the analyses of the errors.展开更多
TC4 titanium alloy was welded by double-sided gas tungsten arc welding(GTAW) process in comparison with conventional GTAW process, the microstructure and mechanical performance of weld were also studied. The results i...TC4 titanium alloy was welded by double-sided gas tungsten arc welding(GTAW) process in comparison with conventional GTAW process, the microstructure and mechanical performance of weld were also studied. The results indicate that double-sided GTAW is superior over regular single-sided GTAW on the aspects of increasing penetration, reducing welding deformation and improving welding efficiency. Good weld joint was obtained, which can reach 96.14% tensile strength and 70.85% elongation percentage of the base metal. The grains in heat-affected zone(HAZ) are thin and equiaxed and the degree of grain coarsening increases as one moves to the weld center line, and the interior of grains are α and α′ structures. The coarse columned and equiaxed grains, which interlace martensitic structures α′ and acicular α structures, are observed in weld zone. The fracture mode is ductile fracture.展开更多
In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is gr...In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is greatly improved. To analyze the current density distribution in DSAW is beneficial to understanding of this process. Considering all kinds of dynamic factors acting on the weldpool, this paper discusses firstly the surface deformation of the weldpool and the keyhole formation in PAW+TIG DSAW process on the basis of the magnetohydrodynamic theory and variation principles. Hence, a model of the current density distribution is developed. Through numerical simulation, the current density distribution in PAW+TIG DSAW process is quantitatively analyzed. It shows that the minimal radius of keyhole formed in PAW+TIG DSAW process is 0.5 mm and 89.5 percent of current flows through the keyhole.展开更多
Because of the presence of lower-level automation and efficiency in the backing welding of medium–thick plates,pulse-metalactive-gas–metal-inert-gas(MAG–MIG)dual-arc welding was applied to backing welding of 24-mm-...Because of the presence of lower-level automation and efficiency in the backing welding of medium–thick plates,pulse-metalactive-gas–metal-inert-gas(MAG–MIG)dual-arc welding was applied to backing welding of 24-mm-thick Q235-B plate and the process and mechanism of root welding with back formation were investigated.The heating position of the MAG-arc at the front of the molten pool could be adjusted by using the electromagnetic force between the MAG-arc and the MIG-arc,and part of the arc energy could work on the root face directly.By combining the arc-discharge behaviour and analysis of flow in the molten pool,the shear stress of a tungsten inert gas(TIG)arc to the molten pool could make the liquid metal flow backwards.Thus,the quality of the front and bottom liquid metal were reduced,which favored the balance and stability.Continuous and stable back formation with uniform penetration could be achieved by using the pulse MAG–TIG dual-arc welding technology.展开更多
Gas-jet-assisted keyhole laser welding offers the possibility of a breakthrough in the limitations of penetration depth in laser welding,which currently suffers from equipment restrictions.A gas jet of sufficient inte...Gas-jet-assisted keyhole laser welding offers the possibility of a breakthrough in the limitations of penetration depth in laser welding,which currently suffers from equipment restrictions.A gas jet of sufficient intensity to assist the keyhole should be used to obtain suppressed plasma,a deepened keyhole,and increased penetration depth.However,an excessively strong gas jet gives rise to humps.The incident angle of the keyhole-assisted gas jet is 60°,with a nozzle ahead of the laser beam.A series of experiments were carried out with different welding velocities and gas parameters by using HR-2 hydrogen-resistant stainless steel and a slab CO2 continuous-wave laser welding machine.The weld profiles can be categorized into four types,welds of traditional laser welding,welds of enhanced laser welding,undercut welds,and humping welds with increased gas pressure.A high-speed camera was employed in the experiments to monitor the formation of humps under an excessively strong gas jet.The results of analysis show that hump formation can be divided into six stages.Its main driving force is the intense turbulence of gas jet.There are two main reasons for hump formation:premature solidification of the molten pool caused by the large temperature gradient between the front and rear parts of the molten pool,and the emergence of a thin layer liquid bridge with one-directional flow under the enhanced cooling effect of excessively strong gas.展开更多
A series of laser-TIG double-side welding experiments for aluminum alloys were carried out to investigate the heat efficiency of the process. The melting efficiency was introduced to evaluate quantitatively the degree...A series of laser-TIG double-side welding experiments for aluminum alloys were carried out to investigate the heat efficiency of the process. The melting efficiency was introduced to evaluate quantitatively the degree of the mutual effect of the laser and the arc. The results showed that the melting efficiency of laser-TIG double-side welding exceeded the sum of the laser and the arc taken separately. With the increase of heat input, the weld depth and melting efficiency of the laser and the arc were increased signifwantly. This, in fact, implies the strong mutual effect of the laser and the arc as heat sources joined simultaneously in the process. Comparatively, the higher efficiency of the laser constituent of heat sources plays the main role in the increase of the process efficiency. The phenomena of arc column convergence, increased laser absorptivity and the formation of heat accumulation region are the causes of the improvement of heat efficiency.展开更多
A new high efficiency welding method, double-sided double arc welding with double powers (DSAW-D), is developed for thick plate of low alloy high strength steel in this study. It is well known that the thermal cycle...A new high efficiency welding method, double-sided double arc welding with double powers (DSAW-D), is developed for thick plate of low alloy high strength steel in this study. It is well known that the thermal cycles have an important influence on the microstructure, shape, stress, distortion and mechanical property. The DSA W-D method can control the temperature field on a wide range by regulating the distance between two arcs, improve the microstructure and prevent hot and cold cracking of high strength steel. But at present, the effect of arc distance on the temperature field and shape is not clear. Therefore, the paper researches the effect of arc distance on the temperature field and weld pool during DSAW-D using finite element method. The transient temperature field of different arc distance in DSAW-D is calculated. To verify the numerical results, the temperature is measured by the thermo-couple and the calculated results agree approximately with experimental data. Farther, the thermal property and mutual effect of double-sided arcs are investigated. The temperature distributions and weld pool profile at different arc distances are obtained. The results show that arc distance is a very important factor to affect the heat process.展开更多
Double-sided arc welding with a single power source can effectively increase the weld penetration, diminish distortion, improve welding speed and save energy. Compared to conventional arc welding processes, double-sid...Double-sided arc welding with a single power source can effectively increase the weld penetration, diminish distortion, improve welding speed and save energy. Compared to conventional arc welding processes, double-sided arc welding can generate a penetrating electromaguetic field to help to form fine dendritic microstrueture in the weld due to the symmetry of heating. Type 1Cr1SNi9Ti aastenitic stainless steel was bead-on-plate welded with double-sided arc welding and conventional plasma arc welding processes, respectively, and microstructure in the weld, heat-affected zone and base metal were examined. After analyzing the black carbon-enriched band in the weld during plasma arc welding with electron probe microanalyzer ( EPMA ) and X-ray diffraction (XRD) technology, it was found that the black band was shaped from the aggregation of ferrite in the fasion boundary. Hardness measurement showed that this black band does not apparently affect the microhardncss distribution in the weld.展开更多
The influence of laser parameters on are beharior of laser-TIC, dauble-side welding was investigated by utilizing CCD sensor and intage processing methods. It was found that are images had an obvious transformation fr...The influence of laser parameters on are beharior of laser-TIC, dauble-side welding was investigated by utilizing CCD sensor and intage processing methods. It was found that are images had an obvious transformation from laser preheating to laser plasma ejected from the keyhole bottom, resulting in the phenomena of arc column convergence and arc root constrictian. The attraction phenomenon of the laser and the arc is also found in laser-TIG double-side welding. More noteworthy is that the behavior of arc attraction or constriction became much obvious at a lower current or laser plasma ejected from the keyhole bottom. The decrease in arc voltage had a certain relation u'ith the improvement of arc stabilio.展开更多
High strength steel thick plate is widely used in shipbuilding, pressure vessels, etc. , the balance between weld quality and welding efficiency is becoming a research focus. In this paper, double-sided double arc fia...High strength steel thick plate is widely used in shipbuilding, pressure vessels, etc. , the balance between weld quality and welding efficiency is becoming a research focus. In this paper, double-sided double arc fiat-overhead welding experiments for high strength steel thick plate were conducted. Microstructures of weld have been observed through optical microscope (OM) and scanning electron microscope (SEM). Transformation of microstructures under thermal cycles of multi peaks was analyzed. Macro and micro hardness were also tested. The results show that the heat-affected zone (HAZ) near the fusion line experiences thermal cycles up to three times. The microstructures there are the most complex, including coarse lath martensite in original coarse-grained zone, and net-like structure along grain boundaries in critical reheat coarse-grained zone. After several times of tempering for bucking welding, the features of acicula and lath are weakened. Its microstructure approaches to the microstructure of base metal which is tempering sorbite. The hardness test shows that the maximum hardness occurs at critical reheat coarse-grained zone, the hardness of reticulation structure at grain boundary can be up to 450 HV.展开更多
Electron Beam Welding (EBW) is employed to both melt and unite materials, influencing their thermal history and subsequently determining the microstructure and properties of the welded joint. Welding Titanium alloys i...Electron Beam Welding (EBW) is employed to both melt and unite materials, influencing their thermal history and subsequently determining the microstructure and properties of the welded joint. Welding Titanium alloys involves undergoing local melting and rapid solidification, subjecting the material to thermal stresses induced by a thermal expansion coefficient of 9.5 × 10 m/m°C. This process, reaching range temperatures from the full melting alloy to room temperature, results in phase formation dictated by the thermodynamic preferences of the alloyed elements, posing a significant challenge. Recent efforts in simulation and calculations have been undertaken elsewhere to address this challenge. This study focuses on a joint of two plates with differing cross-sectional areas, influencing heat transfer during welding. This report presents a case study focusing on the metallurgical changes observed in the microstructure within the welded zone, emphasizing alterations in the cooling rate of the welded joint. The investigation utilizes optical metallography, Vickers’s Hardness testing, and SEM (scanning electron microscopy) to comprehensively characterize the observed changes in addition to heat transfer simulation of the welded zone.展开更多
Based on the theory of stability of the liquid metal under the action of surface tension,a physical mod- el is established for the mechanisms of the bead formation deferct' humping', which is generated durin...Based on the theory of stability of the liquid metal under the action of surface tension,a physical mod- el is established for the mechanisms of the bead formation deferct' humping', which is generated during high - speed welding.A boundary function is introduced to correct the model,theoretical results got by the model correspond well with the experimental phenomena. A two - dimensional conducting model is adoopted in the simulation of the temperature field during high - speed welding.Finally, the factors acting upon the stability of liquid metal are analyzed.展开更多
Ultra-narrow gap welding (UNGW) process with high stabilization, reliability and without spatter can be achieved with constricted arc by molten slag wall, which is made from melted flux. The experiments are carried ...Ultra-narrow gap welding (UNGW) process with high stabilization, reliability and without spatter can be achieved with constricted arc by molten slag wall, which is made from melted flux. The experiments are carried out by changing voltage under different currents. The results indicate voltage range being fit for UNGW is about 22 -31 V under the current range of 200 -320 A. With the increasing of voltage, weld formation of UNGW has the law of lack of fusion on sidewall, good weld and undercut in turn under a certain current. In addition, the action relationships among arc, molten slag wall and sidewalls can be improved by properly adjusting voltage and current of arc, which makes cathode spot properly distribute in ultra-narrow gap. Therefore, the effective control of weld formation of UNGW has been achieved.展开更多
The technology of CO2 laser welding and joint properties of titanium alloy were investigated. The problem of molten pool protection was resolved by designing a shielding trailer and a special clamp. Joints with silver...The technology of CO2 laser welding and joint properties of titanium alloy were investigated. The problem of molten pool protection was resolved by designing a shielding trailer and a special clamp. Joints with silvery appearance were obtained, which have no pore and crack. In addition, the welding speed could reach 3 m/min for the plate of 1.5 mm thickness being penetrated. The reason of the porosity formation in partial penetration joints is that the keyholes can be easily cut apart in the radial direction, which makes the gas enclosed in the molten pool. The surface oxide of specimens can not affect the porosity formation in welds directly.展开更多
Revealing grains and very fine dendrites in a solidified weld metal of aluminum–magnesium–silicon alloys is difficult and thus,there is no evidence to validate the micro-and meso-scale physical models for hot cracks...Revealing grains and very fine dendrites in a solidified weld metal of aluminum–magnesium–silicon alloys is difficult and thus,there is no evidence to validate the micro-and meso-scale physical models for hot cracks. In this research, the effect of preheating on the microstructure and hot crack creation in the pulsed laser welding of AA 6061 was investigated by an optical microscope and field emission electron microscopy. Etching was carried out in the gas phase using fresh Keller’s reagent for 600 s. The results showed that the grain size of the weld metal was proportional to the grain size of the base metal and was independent of the preheating temperature. Hot cracks passed the grain boundaries of the weld and the base metal. Lower solidification rates in the preheated samples led to coarser arm spacing;therefore, a lower cooling rate. Despite the results predicted by the micro and meso-scale models, lower cooling rates resulted in increased hot cracks. The cracks could grow in the weld metal after solidification;therefore, hot cracks were larger than predicted by the hot crack prediction models.展开更多
Because of the relativity among the parameters, partial least square regression(PLSR)was applied to build the model and get the regression equation. The improved algorithm simplified the calculating process greatly be...Because of the relativity among the parameters, partial least square regression(PLSR)was applied to build the model and get the regression equation. The improved algorithm simplified the calculating process greatly because of the reduction of calculation. The orthogonal design was adopted in this experiment. Every sample had strong representation, which could reduce the experimental time and obtain the overall test data. Combined with the formation problem of gas metal arc weld with big current, the auxiliary analysis technique of PLSR was discussed and the regression equation of form factors (i.e. surface width, weld penetration and weld reinforcement) to process parameters(i.e. wire feed rate, wire extension, welding speed, gas flow, welding voltage and welding current)was given. The correlativity structure among variables was analyzed and there was certain correlation between independent variables matrix X and dependent variables matrix Y. The regression analysis shows that the welding speed mainly influences the weld formation while the variation of gas flow in certain range has little influence on formation of weld. The fitting plot of regression accuracy is given. The fitting quality of regression equation is basically satisfactory.展开更多
文摘The welding deformation is a key factor affecting the production quality of the side beam of the subway bogie frame. A major issue is how to control the welding deformation during the manufacturing processes. Based on the "Local- Global" method, the thermal cycle and the stress of a local model extracted from the global side beam model were simulated. The simulated strain result was mapped into the global model as an initial load to simulate the welding assembly deformation. Then the deformation distribution of the side beam was obtained by elastic finite element method, and compared with the measurement results. Furthermore, the welding deformation under different welding sequences and constraints was simulated. The influence of the welding sequences and constraints on the side beam deformation was analyzed. The results indicate that the deformation is the smallest when the sequence is symmetrical and decreases with the increase in constraints.
基金Supported by the National Natural Science Foundation of China(No.51275342 and No.51275338)
文摘The weld nugget formation in the resistance spot welding(RSW) of aluminum alloy was investigated in the present study. The nugget formation process was directly observed by using a digital high-speed camera. Numerical simulation was also employed to investigate the nugget formation process. The results showed that for the RSW of two aluminum alloy sheets, a nugget was first formed in the workpiece/workpiece(W/W) interface and grew along the radial direction and axial direction of the sheets, and then it became a large elliptical nugget. For the RSW of three aluminum alloy sheets, two small nuggets were firstly formed in two W/W interfaces and grew along the axial direction and radial direction; finally they fused into one nugget. Besides, there existed a critical welding time, after which the nugget size remained nearly unchanged. This indicates that a long welding time is unnecessary for the RSW of aluminum alloy. In addition, the calculated nugget radius was compared with the experimental results, which showed that the simulation results agreed well with the experimental results.
文摘The dynamic thermal process during double-sided asymmetrical TIG backing welding of large thick plates ( 1 000 mm×700 mm×50 mm) is numerically simulated using MSC. MARC. The effect of arc distance on the thermal cycle in weld zone during double-sided asymmetrical T1G backing welding is investigated. The results show that the workpiece experiences double-peak thermal cycle in double-sided asymmetrical TIG backing welding. On the one hand, the fore arc has the pre- heating effect on the rear pass, and the pre-heating temperature depends on the distance between the double arcs, the heat input of fore arc, and the initial temperature of workpiece. On the other hand, the rear arc has the post-heating effect on the fore pass. The mutual effects of two heat sources decrease with the increase of arc distance.
基金Supported by National Natural Science Foundation of China ( Grant No. 50905099 ) and the Joint Foundation of the National Natural Science Foundation of China and China Academy of Engineering Physics (Grant No. 10776020).
文摘Keyhole is the most important characteristic for laser deep penetration welding, and its formation indicates the beginning of laser deep penetration welding mode. The keyhole developing process was analyzed and the keyhole formation time was calculated according to welding speed and the length of weld bead formed in the keyhole formation process. The results showed that the keyhole forms in 40 -70 ms at different rate of change of laser power. In laser deep penetration welding process, the variation of light intensity radiated by laser induced plasma can identify the keyhole formation, but it can not be used to estimate the keyhole formation time because of delay effect.
文摘The energy model was founded to calculate the critical power of keyhole formation by using the limit principle in CW ( continuous wave ) Nd: YAG laser deep penetration welding process. The model was validated by experiments. The results show that '.there are two errors between the calculated critical power of keyhole formation and that of experiments : one is that the calculated results is less than those of experiments, which is caused by not considering the energy loss by heat conduction in the model of keyhole formation. The other is that there is 0. 9 mm error between the axis of the calculated curve of critical power with location of laser focus and that of experimental curve, which is induced by the excursion of laser focus in laser deep penetration welding. At last, the two errors were revised according to the analyses of the errors.
文摘TC4 titanium alloy was welded by double-sided gas tungsten arc welding(GTAW) process in comparison with conventional GTAW process, the microstructure and mechanical performance of weld were also studied. The results indicate that double-sided GTAW is superior over regular single-sided GTAW on the aspects of increasing penetration, reducing welding deformation and improving welding efficiency. Good weld joint was obtained, which can reach 96.14% tensile strength and 70.85% elongation percentage of the base metal. The grains in heat-affected zone(HAZ) are thin and equiaxed and the degree of grain coarsening increases as one moves to the weld center line, and the interior of grains are α and α′ structures. The coarse columned and equiaxed grains, which interlace martensitic structures α′ and acicular α structures, are observed in weld zone. The fracture mode is ductile fracture.
基金The authors wish to express their gratitude to the financial support to this project from the project foundation of the National Key Laboratory of Advanced Welding Production Technology of Harbin Institute of Technology and the US National Science Foundation under grant No.DMI 9812981
文摘In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is greatly improved. To analyze the current density distribution in DSAW is beneficial to understanding of this process. Considering all kinds of dynamic factors acting on the weldpool, this paper discusses firstly the surface deformation of the weldpool and the keyhole formation in PAW+TIG DSAW process on the basis of the magnetohydrodynamic theory and variation principles. Hence, a model of the current density distribution is developed. Through numerical simulation, the current density distribution in PAW+TIG DSAW process is quantitatively analyzed. It shows that the minimal radius of keyhole formed in PAW+TIG DSAW process is 0.5 mm and 89.5 percent of current flows through the keyhole.
基金Innovation Research Group Project of National Natural Science Foundation of China(51621064)The National Natural Science Foundation General Projects(11375038).
文摘Because of the presence of lower-level automation and efficiency in the backing welding of medium–thick plates,pulse-metalactive-gas–metal-inert-gas(MAG–MIG)dual-arc welding was applied to backing welding of 24-mm-thick Q235-B plate and the process and mechanism of root welding with back formation were investigated.The heating position of the MAG-arc at the front of the molten pool could be adjusted by using the electromagnetic force between the MAG-arc and the MIG-arc,and part of the arc energy could work on the root face directly.By combining the arc-discharge behaviour and analysis of flow in the molten pool,the shear stress of a tungsten inert gas(TIG)arc to the molten pool could make the liquid metal flow backwards.Thus,the quality of the front and bottom liquid metal were reduced,which favored the balance and stability.Continuous and stable back formation with uniform penetration could be achieved by using the pulse MAG–TIG dual-arc welding technology.
基金supported by the National Natural Science Foundation of China(Grant No.51005219)the Key Project of Development Foundation of China Academy of Engineering Physics(Grant No.2013A0203008)
文摘Gas-jet-assisted keyhole laser welding offers the possibility of a breakthrough in the limitations of penetration depth in laser welding,which currently suffers from equipment restrictions.A gas jet of sufficient intensity to assist the keyhole should be used to obtain suppressed plasma,a deepened keyhole,and increased penetration depth.However,an excessively strong gas jet gives rise to humps.The incident angle of the keyhole-assisted gas jet is 60°,with a nozzle ahead of the laser beam.A series of experiments were carried out with different welding velocities and gas parameters by using HR-2 hydrogen-resistant stainless steel and a slab CO2 continuous-wave laser welding machine.The weld profiles can be categorized into four types,welds of traditional laser welding,welds of enhanced laser welding,undercut welds,and humping welds with increased gas pressure.A high-speed camera was employed in the experiments to monitor the formation of humps under an excessively strong gas jet.The results of analysis show that hump formation can be divided into six stages.Its main driving force is the intense turbulence of gas jet.There are two main reasons for hump formation:premature solidification of the molten pool caused by the large temperature gradient between the front and rear parts of the molten pool,and the emergence of a thin layer liquid bridge with one-directional flow under the enhanced cooling effect of excessively strong gas.
文摘A series of laser-TIG double-side welding experiments for aluminum alloys were carried out to investigate the heat efficiency of the process. The melting efficiency was introduced to evaluate quantitatively the degree of the mutual effect of the laser and the arc. The results showed that the melting efficiency of laser-TIG double-side welding exceeded the sum of the laser and the arc taken separately. With the increase of heat input, the weld depth and melting efficiency of the laser and the arc were increased signifwantly. This, in fact, implies the strong mutual effect of the laser and the arc as heat sources joined simultaneously in the process. Comparatively, the higher efficiency of the laser constituent of heat sources plays the main role in the increase of the process efficiency. The phenomena of arc column convergence, increased laser absorptivity and the formation of heat accumulation region are the causes of the improvement of heat efficiency.
基金This work was supported by National Natural Science Foundation of China, No 50675046, 50775053.
文摘A new high efficiency welding method, double-sided double arc welding with double powers (DSAW-D), is developed for thick plate of low alloy high strength steel in this study. It is well known that the thermal cycles have an important influence on the microstructure, shape, stress, distortion and mechanical property. The DSA W-D method can control the temperature field on a wide range by regulating the distance between two arcs, improve the microstructure and prevent hot and cold cracking of high strength steel. But at present, the effect of arc distance on the temperature field and shape is not clear. Therefore, the paper researches the effect of arc distance on the temperature field and weld pool during DSAW-D using finite element method. The transient temperature field of different arc distance in DSAW-D is calculated. To verify the numerical results, the temperature is measured by the thermo-couple and the calculated results agree approximately with experimental data. Farther, the thermal property and mutual effect of double-sided arcs are investigated. The temperature distributions and weld pool profile at different arc distances are obtained. The results show that arc distance is a very important factor to affect the heat process.
文摘Double-sided arc welding with a single power source can effectively increase the weld penetration, diminish distortion, improve welding speed and save energy. Compared to conventional arc welding processes, double-sided arc welding can generate a penetrating electromaguetic field to help to form fine dendritic microstrueture in the weld due to the symmetry of heating. Type 1Cr1SNi9Ti aastenitic stainless steel was bead-on-plate welded with double-sided arc welding and conventional plasma arc welding processes, respectively, and microstructure in the weld, heat-affected zone and base metal were examined. After analyzing the black carbon-enriched band in the weld during plasma arc welding with electron probe microanalyzer ( EPMA ) and X-ray diffraction (XRD) technology, it was found that the black band was shaped from the aggregation of ferrite in the fasion boundary. Hardness measurement showed that this black band does not apparently affect the microhardncss distribution in the weld.
文摘The influence of laser parameters on are beharior of laser-TIC, dauble-side welding was investigated by utilizing CCD sensor and intage processing methods. It was found that are images had an obvious transformation from laser preheating to laser plasma ejected from the keyhole bottom, resulting in the phenomena of arc column convergence and arc root constrictian. The attraction phenomenon of the laser and the arc is also found in laser-TIG double-side welding. More noteworthy is that the behavior of arc attraction or constriction became much obvious at a lower current or laser plasma ejected from the keyhole bottom. The decrease in arc voltage had a certain relation u'ith the improvement of arc stabilio.
基金Acknowledgments The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China under grant No. 51175119.
文摘High strength steel thick plate is widely used in shipbuilding, pressure vessels, etc. , the balance between weld quality and welding efficiency is becoming a research focus. In this paper, double-sided double arc fiat-overhead welding experiments for high strength steel thick plate were conducted. Microstructures of weld have been observed through optical microscope (OM) and scanning electron microscope (SEM). Transformation of microstructures under thermal cycles of multi peaks was analyzed. Macro and micro hardness were also tested. The results show that the heat-affected zone (HAZ) near the fusion line experiences thermal cycles up to three times. The microstructures there are the most complex, including coarse lath martensite in original coarse-grained zone, and net-like structure along grain boundaries in critical reheat coarse-grained zone. After several times of tempering for bucking welding, the features of acicula and lath are weakened. Its microstructure approaches to the microstructure of base metal which is tempering sorbite. The hardness test shows that the maximum hardness occurs at critical reheat coarse-grained zone, the hardness of reticulation structure at grain boundary can be up to 450 HV.
文摘Electron Beam Welding (EBW) is employed to both melt and unite materials, influencing their thermal history and subsequently determining the microstructure and properties of the welded joint. Welding Titanium alloys involves undergoing local melting and rapid solidification, subjecting the material to thermal stresses induced by a thermal expansion coefficient of 9.5 × 10 m/m°C. This process, reaching range temperatures from the full melting alloy to room temperature, results in phase formation dictated by the thermodynamic preferences of the alloyed elements, posing a significant challenge. Recent efforts in simulation and calculations have been undertaken elsewhere to address this challenge. This study focuses on a joint of two plates with differing cross-sectional areas, influencing heat transfer during welding. This report presents a case study focusing on the metallurgical changes observed in the microstructure within the welded zone, emphasizing alterations in the cooling rate of the welded joint. The investigation utilizes optical metallography, Vickers’s Hardness testing, and SEM (scanning electron microscopy) to comprehensively characterize the observed changes in addition to heat transfer simulation of the welded zone.
文摘Based on the theory of stability of the liquid metal under the action of surface tension,a physical mod- el is established for the mechanisms of the bead formation deferct' humping', which is generated during high - speed welding.A boundary function is introduced to correct the model,theoretical results got by the model correspond well with the experimental phenomena. A two - dimensional conducting model is adoopted in the simulation of the temperature field during high - speed welding.Finally, the factors acting upon the stability of liquid metal are analyzed.
基金The work was supported by National Natural Science Foundation of China (51105185) and Advanced Project Foundation of Jinchuan Company(420032).
文摘Ultra-narrow gap welding (UNGW) process with high stabilization, reliability and without spatter can be achieved with constricted arc by molten slag wall, which is made from melted flux. The experiments are carried out by changing voltage under different currents. The results indicate voltage range being fit for UNGW is about 22 -31 V under the current range of 200 -320 A. With the increasing of voltage, weld formation of UNGW has the law of lack of fusion on sidewall, good weld and undercut in turn under a certain current. In addition, the action relationships among arc, molten slag wall and sidewalls can be improved by properly adjusting voltage and current of arc, which makes cathode spot properly distribute in ultra-narrow gap. Therefore, the effective control of weld formation of UNGW has been achieved.
文摘The technology of CO2 laser welding and joint properties of titanium alloy were investigated. The problem of molten pool protection was resolved by designing a shielding trailer and a special clamp. Joints with silvery appearance were obtained, which have no pore and crack. In addition, the welding speed could reach 3 m/min for the plate of 1.5 mm thickness being penetrated. The reason of the porosity formation in partial penetration joints is that the keyholes can be easily cut apart in the radial direction, which makes the gas enclosed in the molten pool. The surface oxide of specimens can not affect the porosity formation in welds directly.
基金The authors would like to thank the metallography laboratory personnel of University of Tehran for their cooperation.
文摘Revealing grains and very fine dendrites in a solidified weld metal of aluminum–magnesium–silicon alloys is difficult and thus,there is no evidence to validate the micro-and meso-scale physical models for hot cracks. In this research, the effect of preheating on the microstructure and hot crack creation in the pulsed laser welding of AA 6061 was investigated by an optical microscope and field emission electron microscopy. Etching was carried out in the gas phase using fresh Keller’s reagent for 600 s. The results showed that the grain size of the weld metal was proportional to the grain size of the base metal and was independent of the preheating temperature. Hot cracks passed the grain boundaries of the weld and the base metal. Lower solidification rates in the preheated samples led to coarser arm spacing;therefore, a lower cooling rate. Despite the results predicted by the micro and meso-scale models, lower cooling rates resulted in increased hot cracks. The cracks could grow in the weld metal after solidification;therefore, hot cracks were larger than predicted by the hot crack prediction models.
文摘Because of the relativity among the parameters, partial least square regression(PLSR)was applied to build the model and get the regression equation. The improved algorithm simplified the calculating process greatly because of the reduction of calculation. The orthogonal design was adopted in this experiment. Every sample had strong representation, which could reduce the experimental time and obtain the overall test data. Combined with the formation problem of gas metal arc weld with big current, the auxiliary analysis technique of PLSR was discussed and the regression equation of form factors (i.e. surface width, weld penetration and weld reinforcement) to process parameters(i.e. wire feed rate, wire extension, welding speed, gas flow, welding voltage and welding current)was given. The correlativity structure among variables was analyzed and there was certain correlation between independent variables matrix X and dependent variables matrix Y. The regression analysis shows that the welding speed mainly influences the weld formation while the variation of gas flow in certain range has little influence on formation of weld. The fitting plot of regression accuracy is given. The fitting quality of regression equation is basically satisfactory.