期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于宽接收域的实时人体姿态估计网络 被引量:2
1
作者 苟先太 陶明江 +2 位作者 李欣 康立烨 金炜东 《计算机工程与设计》 北大核心 2023年第1期247-254,共8页
为解决人体姿态估计任务的准确率和实时性问题,提出一个卷积宽接收域、检测实时的人体姿态估计网络。构建稠密残差步进网络(dense residual steps network,DRSN),提高模型对输入图像空间信息的提取和全局特征的把握。在激活函数上,以改... 为解决人体姿态估计任务的准确率和实时性问题,提出一个卷积宽接收域、检测实时的人体姿态估计网络。构建稠密残差步进网络(dense residual steps network,DRSN),提高模型对输入图像空间信息的提取和全局特征的把握。在激活函数上,以改进的FReLU激活函数替换原始的激活函数,通过采用二维卷积的方式改变ReLU函数中的激活条件,扩大模型的接收域,关键点分类更加准确。该网络在标准MPII数据集上进行测试,在满足较高定位精度的条件下,模型在NVIDIA RTX 2080Ti GPU上的检测速度达到38 FPS,可有效解决检测实时性问题。 展开更多
关键词 姿态估计 FReLU激活函数 宽接收域 稠密残差步进网络 二维卷积激活
下载PDF
基于并行LSTM-CNN的化工过程故障检测 被引量:4
2
作者 肖飞扬 顾幸生 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第3期382-390,共9页
为保证生产过程的安全稳定运行,避免因故障导致损失,及时检测出异常工况并对异常工况进行准确诊断十分重要。针对化工过程的复杂性,提出一种并行长短时记忆网络和卷积神经网络(Parallel Long and Short-Term Memory Network and Convolu... 为保证生产过程的安全稳定运行,避免因故障导致损失,及时检测出异常工况并对异常工况进行准确诊断十分重要。针对化工过程的复杂性,提出一种并行长短时记忆网络和卷积神经网络(Parallel Long and Short-Term Memory Network and Convolutional Neural Network,PLSTM-CNN)模型进行化工生产过程故障检测。该模型有效结合LSTM对时间序列数据全局特征提取能力和CNN模型善于提取局部特征的能力,减少了特征信息的丢失,实现了较高的故障检测率。采用一维稠密卷积神经网络作为CNN的主体,结合LSTM网络对序列信息变化敏感的特点,在构建更深层网络的同时避免模型过拟合。采用最大互信息(Maximum Mutual Information Coefficient,MMIC)数据预处理方法,提高了数据的局部相关性以及从不同初始条件下PLSTM-CNN模型检测故障的效率。以TE(Tennessee Eastman)过程为研究对象,PLSTM-CNN模型在故障平均检测率和漏报率等指标上明显优于传统循环神经网络。 展开更多
关键词 故障检测 一维稠密卷积神经网络 长短时记忆网络 互信息 TE过程
下载PDF
基于一维密集卷积网络的悬臂梁断裂损伤识别
3
作者 沙春 《东莞理工学院学报》 2023年第3期101-107,共7页
基于振动的损伤识别是结构健康检测的重要任务,提出了一种基于加速度时程响应的悬臂梁断裂损伤识别方法。使用有限元分析模拟悬臂梁作为研究对象,通过分离裂缝模型施加裂缝模拟损伤状态,施加瞬态荷载获得损伤状态对应的加速度时程响应数... 基于振动的损伤识别是结构健康检测的重要任务,提出了一种基于加速度时程响应的悬臂梁断裂损伤识别方法。使用有限元分析模拟悬臂梁作为研究对象,通过分离裂缝模型施加裂缝模拟损伤状态,施加瞬态荷载获得损伤状态对应的加速度时程响应数据,利用偏移采样处理后的数据建立一维密集卷积网络回归模型,并与标准一维卷积神经网络模型和残差网络对比,最后在原始数据中添加白噪声模拟真实环境检验模型的实际应用效果。结果表明建立模型的识别精度以及效率均远远好于其他神经网络,并且在20分贝的噪声环境下效果也比较显著。证明了使用一维密集卷积网络对梁裂缝问题进行损伤识别的优越性和可行性。 展开更多
关键词 损伤识别 加速度时程响应 悬臂梁 裂缝 一维密集卷积网络
下载PDF
基于特征融合的提升机逆变器故障诊断 被引量:8
4
作者 吴传龙 陈伟 +3 位作者 刘晓文 史新国 刘柯 任晓红 《工矿自动化》 北大核心 2021年第5期46-51,共6页
矿井提升机逆变器故障诊断的难点在于提取表征故障的特征,目前主要利用信号处理方法得到故障统计特征,或通过神经网络提取故障深度特征。提升机逆变器在实际工作环境中,受背景噪声和负载变化等因素影响,运用单一的特征提取方法难以获得... 矿井提升机逆变器故障诊断的难点在于提取表征故障的特征,目前主要利用信号处理方法得到故障统计特征,或通过神经网络提取故障深度特征。提升机逆变器在实际工作环境中,受背景噪声和负载变化等因素影响,运用单一的特征提取方法难以获得能有效表征故障的特征,导致提升机逆变器故障诊断准确率低。针对上述问题,提出了一种基于统计特征与深度特征融合的提升机逆变器故障诊断方法。首先,利用希尔伯特-黄变换(HHT)对逆变器输出电流信号进行优化集合经验模态分解(MEEMD),提取故障统计特征,同时利用压缩激励密集连接卷积网络(SE-DenseNet)提取输出电流信号的深度特征;然后,利用局部线性判别分析(LFDA)对2种特征的组合进行融合降维处理,得到统计特征和深度特征的低维融合特征;最后,将低维融合特征输入极限学习机,实现逆变器故障分类。针对提升机逆变器中单个IGBT开路故障进行实验,结果表明,该方法得到的低维融合特征比单一特征的故障表征能力更强,有效提高了故障识别准确率。 展开更多
关键词 矿井提升机 逆变器开路 故障诊断 特征融合 特征降维 希尔伯特-黄变换 优化集合经验模态分解 压缩激励密集连接卷积网络
下载PDF
基于双通道三维密集连接网络的脑胶质瘤核磁共振成像分割算法研究 被引量:2
5
作者 霍智勇 杜帅煜 +1 位作者 陈钊 戴伟达 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2019年第5期763-768,776,共7页
针对脑胶质瘤形状、位置及大小的不一致性,本文提出了一种基于双通道三维密集连接网络的脑胶质瘤核磁共振成像(MRI)自动分割算法。该算法基于三维卷积神经网络,在两个通道采用不同大小卷积核,从而在不同尺度感受野下提取多尺度特征,并... 针对脑胶质瘤形状、位置及大小的不一致性,本文提出了一种基于双通道三维密集连接网络的脑胶质瘤核磁共振成像(MRI)自动分割算法。该算法基于三维卷积神经网络,在两个通道采用不同大小卷积核,从而在不同尺度感受野下提取多尺度特征,并构造各自的密集连接块进行特征学习与传递,通过特征结联后输入到分类层进行目标体素分类,最终实现脑胶质瘤的自动分割。为了验证本文算法的实用性,本文采用公开的脑肿瘤分割挑战赛数据集对网络进行训练与验证,并将得到的结果与其他脑胶质瘤分割方法比较。实验结果表明,本文所提出的算法能够更准确地分割出不同的肿瘤病变区域,在临床脑肿瘤疾病诊断中具有一定的应用价值。 展开更多
关键词 三维卷积神经网络 密集连接块 核磁共振成像 脑胶质瘤分割
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部